Newer
Older
#include "dtw.h"
#include "calcul.h"
#include "print.h"
#include "help.h"
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
input_info - info about input data
parameter - parameter for dtw method
*/
vtr<double> dtw::main(input_method const &input, input_info const &info, parameter const ¶ms)
vtr<double> result;
if (params.segmented)
result = main_segment(input, info, params);
result = main_pair(input, info, params);
return result;
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
input_info - info about input data
parameter - parameter for dtw method
*/
vtr<double> dtw::main_pair(input_method const &input, input_info const &info, parameter const ¶ms)
if ((input.A.size() * input.B.size()) / 131'072 > params.ram) //131072 to convert bytes to MB
{
cout << "size A: " << input.A.size() << ", size B: " << input.B.size() << endl;
//throw runtime_error("DTW aborted. Input too large: " + to_string(input.A.size() * input.B.size()) + "B");
cout << "DTW aborted. Input too large: " << (input.A.size() * input.B.size() * 8) / 1024 / 1024 << "MB" << endl;
exit(0);
}
auto result = configure(input, info, params);
if (params.drawOut.size() > 0)
draw::plot_pair(result, input, info, params);
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
{
for (size_t i = 0; i < result.score.size(); i++)
result.score[params.scoreType - 1] = 1 - result.score[params.scoreType - 1];
return result.score;
}
else
return result.score;
}
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
input_info - info about input data
parameter - parameter for dtw method
*/
vtr<double> dtw::main_segment(input_method const &input, input_info const &info, parameter const ¶ms)
{
//segmentig
int win = params.segmented + 1;
tree trieA1, trieA2, trieB1, trieB2;
trieA1 = tree(input.A, win);
trieB1 = tree(input.B, win);
vtr2<double> revA(input.A);
reverse(revA.begin(), revA.end());
trieA2 = tree(revA, win);
vtr2<double> revB(input.B);
reverse(revB.begin(), revB.end());
trieB2 = tree(revB, win);
vtr3<double> setA, setB;
//setA = trieA.process(input.A, params.segmented);
//setB = trieA.process(input.B, params.segmented);
setA = trieA1.getSegments(input.A, trieA1.getVotes(input.A, win - 1), trieA2.getVotes(revA, win- 1), win);
setB = trieA1.getSegments(input.B, trieB1.getVotes(input.B, win - 1), trieB2.getVotes(revB, win- 1), win);
vtr2<result_dtw> result(setA.size());
for (size_t i = 0; i < setA.size(); i++)
{
result[i] = vtr<result_dtw>(setB.size());
for (size_t j = 0; j < setB.size(); j++)
{
input_method subInput(setA[i], setB[j]);
result[i][j] = configure(subInput, info, params);
}
}
if (params.drawOut.size() > 0) {
draw::plot_segmets(input, result, info, params);
}
if (params.isRatioReversed())
{
for (size_t i = 0; i < result.size(); i++)
for (size_t j = 0; j < result[i].size(); j++)
result[i][j].score[j] -= 1;
return result[0][0].score;
return result[0][0].score;
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
input_info - info about input data
parameter - parameter for dtw method
*/
result_dtw dtw::configure(input_method const &input, input_info const &info, parameter const ¶ms)
//distanceMatrix<double> dm(A, B, params);
DISTANCE d;
d.classic = calcul::distance_dtw_euklid;
d.classic = calcul::distance_dtw_manhattan;
d.csi_chroma = calcul::distance_dtw_csi_chroma;
else if (params.distance == 4)
d.csi_chord = calcul::distance_dtw_csi_chord;
else if (params.distance == 5)
d.classic = calcul::distance_dtw_euklid_mean;
/*if(params.matrixDataType == "double")
{*/
if (params.isMemoization())
{
//auto begin = chrono::steady_clock::now();
back = matrix_memoized<double>(input.A, input.B, params);
/*cout << print::printElapsed("v2: ", chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now() - begin).count()) << ", ";
begin = chrono::steady_clock::now();
back = dtw::matrix<double>(A, B, params);
cout << print::printElapsed("v1: ", chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now() - begin).count()) << endl;
cout << "diff: " << back2.pathSize - (int)back.path.size() << ", " << back.scoreRaw << " v2: " << back2.scoreRaw << endl;
cout << back2.path << endl;
cout << back.path << endl;
}
if (back2.scoreRaw != back.scoreRaw)
cout << "diff: " << back2.pathSize - (int)back.path.size() << ", " << back.scoreRaw << " v2: " << back2.scoreRaw << " ~~!!!~~" << endl;*/
back = dtw::matrix_tiled<double>(input.A, input.B, params);
back = dtw::matrix_simd<double>(input.A, input.B, params);
result = dtw::alignment<double>(input, info, d, params);
//}
/*else if(params.matrixDataType == "int")
result = dtw::alignment<int>(input, info, d, params);
else if (params.matrixDataType == "float")
result = dtw::alignment<float>(input, info, d, params)*/;
//auto noacc = createMatrix_noAccumulation(A, B, params);
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
input_info - info about input data
DISTANCE - pointer to function used for distance calculations
parameter - parameter for dtw method
*/
result_dtw dtw::alignment(input_method const &input, input_info const &info, DISTANCE distance, parameter const ¶ms)
vtr2<node<T>> m;
if (params.experiment)
{
m = dtw::matrix_noaccumulation<T>(input, distance, params);
auto mMinims = dtw::get_minimums(m, params);
for (auto &i : mMinims)
m[i.row][i.col] = 0;
dtw::accumulate(m, params);
}
else
m = dtw::matrix<T>(input, distance, params);
auto end = get_relaxedEnds(m, params);
auto warping = get_warping(m, end, params);
warping.scoreRaw = m[end.row][end.col].value;
warping.wpEnd = end;
result_dtw result;
if (params.drawOut.size() > 0) {
result.matrix_acc = draw::matrix(m, warping.path, params);
result.matrix_noacc = draw::matrix(dtw::matrix_noaccumulation<T>(input, distance, params), warping.path, params);
//draw::visualisation<T>(m, dtw::matrix_noaccumulation<T>(input, distance, params), input, warping.path, params.drawOut);
if (params.isDebugInfo())
{
cout << endl << print::distanceMatrix<T>(m);
//cout << endl << print::printPathShape(back.path, end, (int)A.size() + 1, (int)B.size() + 1);
//print::write(print::printHtmlDistanceMatrix<T>(m), "c:\\code\\data\\sc\\dm.html", false);
}
vtr<double> resultScore;
resultScore.push_back(warping.scoreRaw);
resultScore.push_back(calcul::score_dtw_s2(warping.scoreRaw, warping.pathSize)); // back.path.size());
resultScore.push_back(calcul::score_dtw_s3(warping.wpEnd.row - warping.wpStart.row, warping.wpEnd.col - warping.wpStart.col, warping.pathSize));
resultScore.push_back(calcul::score_dtw_s4(warping.scoreRaw, calcul::score_dtw_max(input.A, input.B, warping.wpStart, warping.wpEnd)));
resultScore.push_back(calcul::score_dtw_s5(warping.scoreRaw,
calcul::score_dtw_max(input.A, input.B, warping.wpStart, warping.wpEnd),
calcul::lenRatio(warping.wpEnd.row - warping.wpStart.row, warping.wpEnd.col - warping.wpStart.row)));
result.score = resultScore;
result.path = warping.path;
return result;
/*
sumary: entry point function for dtw method
parameters:
input_method - input for the dtw method
DISTANCE - pointer to function used for distance calculations
parameter - parameter for dtw method
*/
vtr2<node<T>> dtw::matrix(input_method const &input, DISTANCE distance, parameter const ¶ms)
int lenA = (int)input.A.size();
int lenB = (int)input.B.size();
vtr2<node<T>> m(lenA + 1);
for (int i = 0; i < lenA + 1; i++)
m[i] = vtr<node<T>>(lenB + 1);
for (int i = 0; i < min(lenA, params.relax.start + 1); i++) //include 0,0 = 0 !!
for (int i = 0; i < min(lenB, params.relax.end + 1); i++)
if (params.isSubsequence() && calcul::lenRatio(lenA, lenB) < params.subsequence)
if(lenA < lenB)
for (int i = 0; i < lenB + 1; i++)
if (lenB < lenA)
for (int i = 0; i < lenA + 1; i++)
const int w = (int)(lenB * params.w);
double coef = lenB / static_cast<double>(lenA);
for (int i = 1; i < lenA + 1; i++) //row - y
size_t start = max(1, (int)(ceil((i - 1) * coef + 0.0000000001) - w));
size_t end = min(lenB + 1, (int)(ceil(i * coef) + 1) + w);
for (size_t j = start; j < end; j++) //col - x
{
const double u = m[i - 1][j].value;
const double l = m[i][j - 1].value;
const double d = m[i - 1][j - 1].value;
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
m[i][j].value = static_cast<T>(distance.csi_chroma(input.A[i - 1], input.B[j - 1], 0.07) + min);
else if (params.distance == 4)
m[i][j].value = static_cast<T>(distance.csi_chord(input.A[i - 1], input.B[j - 1], input.A2[i - 1], input.B2[j - 1]) + min);
else
m[i][j].value = static_cast<T>(distance.classic(input.A[i - 1], input.B[j - 1]) + min);
}
}
return m;
}
/*
sumary:
parameters:
*/
template<class T>
vtr2<node<T>> dtw::matrix_noaccumulation(input_method const &input, DISTANCE distance, parameter const ¶ms)
{
int lenA = (int)input.A.size();
int lenB = (int)input.B.size();
vtr2<node<T>> m(lenA + 1);
for (int i = 0; i < lenA + 1; i++)
m[i] = vtr<node<T>>(lenB + 1);
for (int i = 0; i < min(lenA, params.relax.start + 1); i++)
m[i][0].value = 0;
for (int i = 0; i < min(lenB, params.relax.end + 1); i++)
m[0][i].value = 0;
if (params.isSubsequence() && calcul::lenRatio(lenA, lenB) < params.subsequence)
{
if (lenA < lenB)
for (int i = 0; i < lenB + 1; i++)
m[0][i].value = 0;
if (lenB < lenA)
for (int i = 0; i < lenA + 1; i++)
m[i][0].value = 0;
}
const int w = (int)(lenB * params.w);
for (int i = 1; i < lenA + 1; i++) //row = y
{
const size_t start = max(1, (int)(ceil((i - 1) * (lenB / (double)lenA + 0.0000000001)) - w));
const size_t end = min(lenB + 1, (int)(ceil(i * lenB / (double)lenA) + 1) + w);
for (size_t j = start; j < end; j++) //col = x
{
if (params.distance == 3)
m[i][j].value = static_cast<T>(distance.csi_chroma(input.A[i - 1], input.B[j - 1], 0.07));
else if (params.distance == 4)
m[i][j].value = static_cast<T>(distance.csi_chord(input.A[i - 1], input.B[j - 1], input.A2[i - 1], input.B2[j - 1]));
m[i][j].value = static_cast<T>(distance.classic(input.A[i - 1], input.B[j - 1]));
void dtw::accumulate(vtr2<node<T>> &m, parameter const ¶ms)
{
int lenA = (int)m.size();
int lenB = (int)m[0].size();
const int w = (int)(lenB * params.w);
for (int i = 1; i < lenA; i++) //row = y
{
const size_t start = max(1, (int)(ceil((i - 1) * (lenB / (double)lenA + 0.0000000001)) - w));
const size_t end = min(lenB, (int)(ceil(i * lenB / (double)lenA)) + w);
for (size_t j = start; j < end; j++) //col = x
{
m[i][j].value += std::min({ m[i - 1][j - 1].value, m[i - 1][j].value, m[i][j - 1].value });
}
}
}
template<class T>
void dtw::accumulate(vtr2<node<T>> &m, vtr parameter const ¶ms)
{
int lenA = (int)m.size();
int lenB = (int)m[0].size();
const int w = (int)(lenB * params.w);
for (int i = 1; i < lenA; i++) //row = y
{
const size_t start = max(1, (int)(ceil((i - 1) * (lenB / (double)lenA + 0.0000000001)) - w));
const size_t end = min(lenB, (int)(ceil(i * lenB / (double)lenA)) + w);
for (size_t j = start; j < end; j++) //col = x
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
m[i][j].value += std::min({ m[i - 1][j - 1].value, m[i - 1][j].value, m[i][j - 1].value });
}
}
}
template<class T>
vtr<coords> dtw::get_minimums(vtr2<node<T>> const &m, parameter const ¶ms)
{
vtr<coords> minims;
int lenA = (int)m.size();
int lenB = (int)m[0].size();
const int w = (int)(lenB * params.w);
for (int i = 1; i < lenA; i++) //row = y
{
const int start = max(1, (int)(ceil((i - 1) * (lenB / (double)lenA + 0.0000000001)) - w));
const int end = min(lenB, (int)(ceil(i * lenB / (double)lenA)) + w);
for (int j = start; j < end; j++) //col = x
{
T current = m[i][j].value;
if (i + 1 < m.size() && j + 1 < m[i].size() &&
m[i - 1][j].value > current && m[i - 1][j + 1].value > current && m[i][j - 1].value > current &&
m[i][j + 1].value > current && m[i + 1][j - 1].value > current && m[i + 1][j].value > current)
{
minims.push_back(coords(i, j));
}
}
}
return minims;
}
/*
sumary:
parameters:
vtr2<node<T>> -
i
j
params
*/
template<class T>
result_path dtw::get_warping(vtr2<node<T>> const &m, coords coord, parameter const ¶ms)
double sizeA = coord.row;
double sizeB = coord.col;
while (coord.row > 0 && coord.col > 0)
double u = m[coord.row - 1][coord.col].value;
double l = m[coord.row][coord.col - 1].value;
double d = m[coord.row - 1][coord.col - 1].value;
if (min({ d, u, l }) == d)
{
wp.path = "M" + wp.path;
coord.row--;
coord.col--;
}
else
{
if (l < u)
{
wp.path = "L" + wp.path;
}
else if (u < l)
{
wp.path = "U" + wp.path;
if(sizeA / coord.row > sizeB / coord.col)
if (!params.isSubsequence() || (params.isSubsequence() && m.size() < m[0].size()))
while (coord.row > params.relax.start)
if (!params.isSubsequence() || (params.isSubsequence() && m[0].size() < m.size()))
while (coord.col > params.relax.end)
wp.wpStart.row = coord.row;
wp.wpStart.col = coord.col;
vtr<result_path> dtw::get_warpings(vtr2<node<T>> const &m, vtr<result_path> const &paths, parameter const ¶ms)
{
vtr<result_path> outPaths;
for(auto &i : paths)
outPaths.push_back(get_warping(m, i.wpStart.row, i.wpStart.col, params))
return paths;
}
/*
sumary:
parameters:
*/
template<class T>
coords dtw::get_relaxedEnds(vtr2<node<T>> const &m, parameter const ¶ms)
double min = constant::MAX_double;
int lenA = (int)m.size() - 1;
int lenB = (int)m[0].size() - 1;
int startA = (lenA - params.relax.start) < 0 ? 0 : lenA - params.relax.start;
int startB = (lenB - params.relax.end) < 0 ? 0 : lenB - params.relax.end;
if (lenA < lenB)
startB = 0;
else if (lenB < lenA)
startA = 0;
}
for (size_t i = startA; i < m.size(); i++)
{
if (m[i][lenB].value <= min)
min = m[i][lenB].value;
coordMin.row = (int)i;
coordMin.col = lenB;
for (size_t i = startB; i < m[0].size(); i++)
min = m[lenA][i].value;
coordMin.row = lenA;
coordMin.col = (int)i;
/*
sumary:
parameters:
*/
result_path dtw::matrix_tiled(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
{
vtr2<node<T>> m(A.size() + 1);
for (size_t i = 0; i < A.size() + 1; i++)
m[i] = vtr<node<T>>(B.size() + 1);
for (int i = 0; i < min((int)A.size(), params.relax.start + 1); i++) //include 0,0 = 0 !!
for (int i = 0; i < min((int)B.size(), params.relax.end + 1); i++)
if (params.isSubsequence() && calcul::lenRatio(A.size(), B.size()) < params.subsequence) {
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
if (A.size() < B.size())
for (size_t i = 0; i < B.size() + 1; i++)
m[0][i].value = 0;
if (B.size() < A.size())
for (size_t i = 0; i < A.size() + 1; i++)
m[i][0].value = 0;
}
int block = params.block;
//const int w = (int)(B.size() * params.w);
for (size_t i = 0; i < m.size(); i += block) //row - y
{
//size_t start = max(1, (int)(ceil((i - 1) * (static_cast<double>(B.size()) / (double)A.size() + 0.0000000001)) - w));
//size_t end = min((int)B.size() + 1, (int)(ceil(i * B.size() / (double)A.size()) + 1) + w);
for (size_t j = 0; j < m[0].size(); j += block) //col - x
{
size_t iis = i + 1;
size_t jjs = j + 1;
size_t iie = iis + block < m.size() ? iis + block : m.size();
size_t jje = jjs + block < m[0].size() ? jjs + block : m[0].size();
for (size_t ii = iis; ii < iie; ii++)
{
for (size_t jj = jjs; jj < jje; jj++)
{
/*const double u = m[ii - 1][jj].value;
const double l = m[ii][jj - 1].value;
const double d = m[ii - 1][jj - 1].value;
double min = std::min({ u, l, d });*/
//_m_prefetchw(m[ii - 1][jj].value);
double min = std::min({ m[ii - 1][jj].value, m[ii][jj - 1].value, m[ii - 1][jj - 1].value });
m[ii][jj].value = static_cast<T>(calcul::distance_dtw_euklid(A[ii - 1], B[jj - 1]) + min);
}
}
}
}
auto end = get_relaxedEnds(m, params);
auto back = get_warping(m, end, params);
back.scoreRaw = m[end.row][end.col].value;
back.wpEnd = end;
if (params.isDebugInfo())
{
cout << endl << print::distanceMatrix<T>(m);
//cout << endl << print::printPathShape(back.path, end, (int)A.size() + 1, (int)B.size() + 1);
//print::write(print::printHtmlDistanceMatrix<T>(m), "c:\\code\\data\\sc\\dm.html", false);
}
return back;
}
/*
sumary:
parameters:
*/
result_path dtw::matrix_memoized(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
{
vtr<node2<T>> m1(B.size() + 1);
vtr<node2<T>> m2(B.size() + 1);
//double coef = A.size() / (double)B.size();
m1[0].value = 0;
//m1[0].path.reserve(A.size() + B.size());
string path = "";
path.reserve(A.size() + B.size());
//const int w = (int)(B.size() * params.w);
for (size_t i = 1; i < A.size() + 1; i++) //row - y
{
for (size_t j = 1; j < B.size() + 1; j++) //row - y
{
const double u = m1[j].value;
const double d = m1[j - 1].value;
const double l = m2[j - 1].value;
int to = 0;
double min = std::min({ d, u, l });
int pathSize = 0;
if (min == d){
//path = std::move(m1[j - 1].path);
//path.push_back('M');
pathSize = m1[j - 1].pathSize + 1;
else if (u < l)
to = 1;
else if (l < u)
to = 2; // L
if (m2[j - 1].pathSize < m1[j].pathSize)
to = 2;
else if (m1[j].pathSize < m2[j - 1].pathSize)
to = 1;
else
{
double coefA = A.size() / (double)i;
double coefB = B.size() / (double)j;
if (coefA > coefB)
to = 2;
else
to = 1;
if(to == 1)
{
//path.append(m1[j].path + "U");
//path.push_back('U');
pathSize = m1[j].pathSize + 1;
}
else if (to == 2)
{
//path.append(m2[j - 1].path + "L");
//path.push_back('L');
pathSize = m2[j - 1].pathSize + 1;
}
//m2[j].path = std::move(path);
m2[j].pathSize = pathSize;
m2[j].value = static_cast<T>(calcul::distance_dtw_euklid(A[i - 1], B[j - 1])) + min;
back.pathSize = m1[m2.size() - 1].pathSize;
back.scoreRaw = m1[m2.size() - 1].value;
back.wpStart.col = 0;
back.wpStart.row = 0;
back.wpEnd.col = (int)B.size();
back.wpEnd.row = (int)A.size();
/*
sumary:
parameters:
*/
result_path dtw::matrix_diagonal(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
{
size_t simds = A[0].size() / 4;
size_t rest = A[0].size() % 4;
//double m1[A.size()] __attribute__((aligned(A.size())));
//double m2[A.size()] __attribute__((aligned(A.size())));
//double m3[A.size()] __attribute__((aligned(A.size())));
size_t shorter = std::min(A.size(), B.size());
size_t lenDiff = std::abs((int)A.size() - (int)B.size());
vtr<node2<T>> m1(shorter + 2);
vtr<node2<T>> m2(shorter + 2);
vtr<node2<T>> m3(shorter + 2);
m1[0].value = 0;
//double coef = A.size() / (double)B.size();
//__asm__(
//
//)
size_t iEnd = shorter;
for (size_t i = 0; i < A.size(); i++)
{
size_t a = i;
size_t jEnd = i >= B.size() ? B.size() + 1 : i + 2;
for (size_t j = 1; j < jEnd; j++)
{
node2<T> l = m2[j - 1]; //l
node2<T> u = m2[j]; //u
node2<T> d = m1[j - 1]; //d
double min = std::min({ l.value, u.value, d.value });
//m3[j] = calcul::distance_dtw(A[a], B[j - 1]) + min;
m3[j] = calcul::distance_dtw_simd(A[a], B[j - 1], simds, rest) + min;
//cout << a - 1 << ", " << j - 1 << ", " << j - 1 << ", " << j << ", " << j - 1 << endl;
if (min == d.value)
m3[j].pathSize = d.pathSize + 1;
else if (u.value < l.value)
m3[j].pathSize = u.pathSize + 1;
else if (l.value < u.value)
m3[j].pathSize = l.pathSize + 1;
else
{
if (l.pathSize < u.pathSize)
m3[j].pathSize = l.pathSize + 1;
else if (u.pathSize < l.pathSize)
m3[j].pathSize = u.pathSize + 1;
else
{
double coefA = A.size() / (double)a;
double coefB = B.size() / (double)j;
if (coefA > coefB)
m3[j].pathSize = l.pathSize + 1;
else
m3[j].pathSize = u.pathSize + 1;
}
}
a--;
}
//cout << a - 1 << ", " << j - 1 << ", " << j - 1 << ", " << j << ", " << j - 1 << endl;
m1.swap(m2);
m2.swap(m3);
m3[0].value = constant::MAX_double;
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
}
rotate(m2.begin(), m2.begin() + 1, m2.end());
for (size_t i = 1; i < B.size(); i++)
{
size_t a = A.size() - 1;
size_t jEnd = A.size() - i;
// A.size() - (i - lenDiff);
if (B.size() > A.size())
{
if (i > lenDiff)
jEnd = A.size() - (i - lenDiff);
else
jEnd = A.size();
}
else
jEnd = std::min(A.size(), B.size()) - i; // -1 for decreasing size of last triangle
for (size_t j = 0; j < jEnd/* A.size() - i*/; j++)
{
node2<T> l = m2[j]; //l
node2<T> u = m2[j + 1]; //u
node2<T> d = m1[j + 1]; //d
//__m256d v256 = _mm256_set_pd(l.value, u.value, d.value, dMAX)
//__mm256_min
double min = std::min({ l.value, u.value, d.value });
//m3[j] = calcul::distance_dtw(A[a], B[j + i]) + min;//l,u,d
m3[j] = calcul::distance_dtw_simd(A[a], B[j + i], simds, rest) + min;
//cout << a << ", " << j << ", " << j << ", " << j + 1 << ", " << j + 1 << endl;
if (min == d.value)
m3[j].pathSize = d.pathSize + 1;
else if (u.value < l.value)
m3[j].pathSize = u.pathSize + 1;
else if (l.value < u.value)
m3[j].pathSize = l.pathSize + 1;
else
{
if (l.pathSize < u.pathSize)
m3[j].pathSize = l.pathSize + 1;
else if (u.pathSize < l.pathSize)
m3[j].pathSize = u.pathSize + 1;
else
{
double coefA = A.size() / (double)a + 1;
double coefB = B.size() / (double)j + 1;
if (coefA > coefB)
m3[j].pathSize = l.pathSize + 1;
else
m3[j].pathSize = u.pathSize + 1;
}
}
a--;
}
m1.swap(m2);
m2.swap(m3);
}
//back.path = m2[0].path;
back.pathSize = m2[0].pathSize;
back.scoreRaw = m2[0].value;
back.wpStart = { 0, 0 };
back.wpEnd = { (int)A.size(), (int)B.size() };
return back;
}
/*
sumary:
parameters:
*/
result_path dtw::matrix_simd(vtr2<double> const &A, vtr2<double> const &B, parameter const ¶ms)
{
size_t simds = A[0].size() / 4;
size_t rest = A[0].size() % 4;
//double m1[A.size()] __attribute__((aligned(A.size())));
//double m2[A.size()] __attribute__((aligned(A.size())));
//double m3[A.size()] __attribute__((aligned(A.size())));
size_t shorter = std::min(A.size(), B.size());
size_t lenDiff = std::abs((int)A.size() - (int)B.size());
vtr<node2<T>> m1(shorter + 2);
vtr<node2<T>> m2(shorter + 2);
vtr<node2<T>> m3(shorter + 2);
m1[0].value = 0;
//double coef = A.size() / (double)B.size();
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
for (size_t i = 0; i < A.size(); i++)
{
size_t a = i;
size_t jEnd = i >= B.size() ? B.size() + 1 : i + 2;
for (size_t j = 1; j < jEnd; j++)
{
node2<T> l = m2[j - 1]; //l
node2<T> u = m2[j]; //u
node2<T> d = m1[j - 1]; //d
double min = std::min({ l.value, u.value, d.value });
//m3[j] = calcul::distance_dtw(A[a], B[j - 1]) + min;
m3[j] = calcul::distance_dtw_simd(A[a], B[j - 1], simds, rest) + min;
//cout << a - 1 << ", " << j - 1 << ", " << j - 1 << ", " << j << ", " << j - 1 << endl;
if (min == d.value)
m3[j].pathSize = d.pathSize + 1;
else if (u.value < l.value)
m3[j].pathSize = u.pathSize + 1;
else if (l.value < u.value)
m3[j].pathSize = l.pathSize + 1;
else
{
if (l.pathSize < u.pathSize)
m3[j].pathSize = l.pathSize + 1;
else if (u.pathSize < l.pathSize)
m3[j].pathSize = u.pathSize + 1;
else
{
double coefA = A.size() / (double)a;
double coefB = B.size() / (double)j;
if (coefA > coefB)
m3[j].pathSize = l.pathSize + 1;
else
m3[j].pathSize = u.pathSize + 1;
}
}
a--;
}
//cout << a - 1 << ", " << j - 1 << ", " << j - 1 << ", " << j << ", " << j - 1 << endl;
m1.swap(m2);
m2.swap(m3);
m3[0].value = constant::MAX_double;
}
rotate(m2.begin(), m2.begin() + 1, m2.end());
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
for (size_t i = 1; i < B.size(); i++)
{
size_t a = A.size() - 1;
size_t jEnd = A.size() - i;
// A.size() - (i - lenDiff);
if (B.size() > A.size())
{
if(i > lenDiff)
jEnd = A.size() - (i - lenDiff);
else
jEnd = A.size();
}
else
jEnd = std::min(A.size(), B.size()) - i; // -1 for decreasing size of last triangle
for (size_t j = 0; j < jEnd/* A.size() - i*/; j++)
{
node2<T> l = m2[j]; //l
node2<T> u = m2[j + 1]; //u
node2<T> d = m1[j + 1]; //d
//__m256d v256 = _mm256_set_pd(l.value, u.value, d.value, dMAX)
//__mm256_min
double min = std::min({l.value, u.value, d.value });
//m3[j] = calcul::distance_dtw(A[a], B[j + i]) + min;//l,u,d
m3[j] = calcul::distance_dtw_simd(A[a], B[j + i], simds, rest) + min;
//cout << a << ", " << j << ", " << j << ", " << j + 1 << ", " << j + 1 << endl;
if (min == d.value)
m3[j].pathSize = d.pathSize + 1;
else if (u.value < l.value)
m3[j].pathSize = u.pathSize + 1;
else if (l.value < u.value)
m3[j].pathSize = l.pathSize + 1;
else
{
if (l.pathSize < u.pathSize)