diff --git a/mesh_looptools.py b/mesh_looptools.py
new file mode 100644
index 0000000000000000000000000000000000000000..76b471507d839587170a82a338c1a63e69f8907e
--- /dev/null
+++ b/mesh_looptools.py
@@ -0,0 +1,3712 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+#  This program is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU General Public License
+#  as published by the Free Software Foundation; either version 2
+#  of the License, or (at your option) any later version.
+#
+#  This program is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#  GNU General Public License for more details.
+#
+#  You should have received a copy of the GNU General Public License
+#  along with this program; if not, write to the Free Software Foundation,
+#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+# <pep8 compliant>
+
+bl_info = {
+    'name': "LoopTools",
+    'author': "Bart Crouch",
+    'version': (3, 2, 0),
+    'blender': (2, 5, 7),
+    'api': 35979,
+    'location': "View3D > Toolbar and View3D > Specials (W-key)",
+    'warning': "",
+    'description': "Mesh modelling toolkit. Several tools to aid modelling",
+    'wiki_url': "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
+        "Scripts/Modeling/LoopTools",
+    'tracker_url': "http://projects.blender.org/tracker/index.php?"\
+        "func=detail&aid=26189",
+    'category': 'Mesh'}
+
+
+import bpy
+import mathutils
+import math
+
+
+##########################################
+####### General functions ################
+##########################################
+
+
+# used by all tools to improve speed on reruns
+looptools_cache = {}
+
+
+# force a full recalculation next time
+def cache_delete(tool):
+    if tool in looptools_cache:
+        del looptools_cache[tool]
+
+
+# check cache for stored information
+def cache_read(tool, object, mesh, input_method, boundaries):
+    # current tool not cached yet
+    if tool not in looptools_cache:
+        return(False, False, False, False, False)
+    # check if selected object didn't change
+    if object.name != looptools_cache[tool]["object"]:
+        return(False, False, False, False, False)
+    # check if input didn't change
+    if input_method != looptools_cache[tool]["input_method"]:
+        return(False, False, False, False, False)
+    if boundaries != looptools_cache[tool]["boundaries"]:
+        return(False, False, False, False, False)
+    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
+        and mod.type == 'MIRROR']
+    if modifiers != looptools_cache[tool]["modifiers"]:
+        return(False, False, False, False, False)
+    input = [v.index for v in mesh.vertices if v.select and not v.hide]
+    if input != looptools_cache[tool]["input"]:
+        return(False, False, False, False, False)
+    # reading values
+    single_loops = looptools_cache[tool]["single_loops"]
+    loops = looptools_cache[tool]["loops"]
+    derived = looptools_cache[tool]["derived"]
+    mapping = looptools_cache[tool]["mapping"]
+    
+    return(True, single_loops, loops, derived, mapping)
+
+
+# store information in the cache
+def cache_write(tool, object, mesh, input_method, boundaries, single_loops,
+loops, derived, mapping):
+    # clear cache of current tool
+    if tool in looptools_cache:
+        del looptools_cache[tool]
+    # prepare values to be saved to cache
+    input = [v.index for v in mesh.vertices if v.select and not v.hide]
+    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
+        and mod.type == 'MIRROR']
+    # update cache
+    looptools_cache[tool] = {"input": input, "object": object.name,
+        "input_method": input_method, "boundaries": boundaries,
+        "single_loops": single_loops, "loops": loops,
+        "derived": derived, "mapping": mapping, "modifiers": modifiers}
+
+
+# calculates natural cubic splines through all given knots
+def calculate_cubic_splines(mesh_mod, tknots, knots):
+    # hack for circular loops
+    if knots[0] == knots[-1] and len(knots) > 1:
+        circular = True
+        k_new1 = []
+        for k in range(-1, -5, -1):
+            if k - 1 < -len(knots):
+                k += len(knots)
+            k_new1.append(knots[k-1])
+        k_new2 = []
+        for k in range(4):
+            if k + 1 > len(knots) - 1:
+                k -= len(knots)
+            k_new2.append(knots[k+1])
+        for k in k_new1:
+            knots.insert(0, k)
+        for k in k_new2:
+            knots.append(k)
+        t_new1 = []
+        total1 = 0
+        for t in range(-1, -5, -1):
+            if t - 1 < -len(tknots):
+                t += len(tknots)
+            total1 += tknots[t] - tknots[t-1]
+            t_new1.append(tknots[0] - total1)
+        t_new2 = []
+        total2 = 0
+        for t in range(4):
+            if t + 1 > len(tknots) - 1:
+                t -= len(tknots)
+            total2 += tknots[t+1] - tknots[t]
+            t_new2.append(tknots[-1] + total2)
+        for t in t_new1:
+            tknots.insert(0, t)
+        for t in t_new2:
+            tknots.append(t)
+    else:
+        circular = False
+    # end of hack
+    
+    n = len(knots)
+    if n < 2:
+        return False
+    x = tknots[:]
+    locs = [mesh_mod.vertices[k].co[:] for k in knots]
+    result = []
+    for j in range(3):
+        a = []
+        for i in locs:
+            a.append(i[j])
+        h = []
+        for i in range(n-1):
+            if x[i+1] - x[i] == 0:
+                h.append(1e-8)
+            else:
+                h.append(x[i+1] - x[i])
+        q = [False]
+        for i in range(1, n-1):
+            q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
+        l = [1.0]
+        u = [0.0]
+        z = [0.0]
+        for i in range(1, n-1):
+            l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
+            if l[i] == 0:
+                l[i] = 1e-8
+            u.append(h[i] / l[i])
+            z.append((q[i] - h[i-1] * z[i-1]) / l[i])
+        l.append(1.0)
+        z.append(0.0)
+        b = [False for i in range(n-1)]
+        c = [False for i in range(n)]
+        d = [False for i in range(n-1)]
+        c[n-1] = 0.0
+        for i in range(n-2, -1, -1):
+            c[i] = z[i] - u[i]*c[i+1]
+            b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
+            d[i] = (c[i+1]-c[i]) / (3*h[i])
+        for i in range(n-1):
+            result.append([a[i], b[i], c[i], d[i], x[i]])
+    splines = []
+    for i in range(len(knots)-1):
+        splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
+    if circular: # cleaning up after hack
+        knots = knots[4:-4]
+        tknots = tknots[4:-4]
+    
+    return(splines)
+
+
+# calculates linear splines through all given knots
+def calculate_linear_splines(mesh_mod, tknots, knots):
+    splines = []
+    for i in range(len(knots)-1):
+        a = mesh_mod.vertices[knots[i]].co
+        b = mesh_mod.vertices[knots[i+1]].co
+        d = b-a
+        t = tknots[i]
+        u = tknots[i+1]-t
+        splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
+    
+    return(splines)
+
+
+# calculate a best-fit plane to the given vertices
+def calculate_plane(mesh_mod, loop, method="best_fit", object=False):
+    # getting the vertex locations
+    locs = [mathutils.Vector(mesh_mod.vertices[v].co[:]) for v in loop[0]]
+    
+    # calculating the center of masss
+    com = mathutils.Vector()
+    for loc in locs:
+        com += loc
+    com /= len(locs)
+    x, y, z = com
+    
+    if method == 'best_fit':
+        # creating the covariance matrix
+        mat = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
+            [0.0, 0.0, 0.0]])
+        for loc in locs:
+            mat[0][0] += (loc[0]-x)**2
+            mat[0][1] += (loc[0]-x)*(loc[1]-y)
+            mat[0][2] += (loc[0]-x)*(loc[2]-z)
+            mat[1][0] += (loc[1]-y)*(loc[0]-x)
+            mat[1][1] += (loc[1]-y)**2
+            mat[1][2] += (loc[1]-y)*(loc[2]-z)
+            mat[2][0] += (loc[2]-z)*(loc[0]-x)
+            mat[2][1] += (loc[2]-z)*(loc[1]-y)
+            mat[2][2] += (loc[2]-z)**2
+        
+        # calculating the normal to the plane
+        normal = False
+        try:
+            mat.invert()
+        except:
+            if sum(mat[0]) == 0.0:
+                normal = mathutils.Vector([1.0, 0.0, 0.0])
+            elif sum(mat[1]) == 0.0:
+                normal = mathutils.Vector([0.0, 1.0, 0.0])
+            elif sum(mat[2]) == 0.0:
+                normal = mathutils.Vector([0.0, 0.0, 1.0])
+        if not normal:
+            itermax = 500
+            iter = 0
+            vec = mathutils.Vector([1.0, 1.0, 1.0])
+            vec2 = (vec*mat)/(vec*mat).length
+            while vec != vec2 and iter<itermax:
+                iter += 1
+                vec = vec2
+                vec2 = (vec*mat)/(vec*mat).length
+            normal = vec2
+    
+    elif method == 'normal':
+        # averaging the vertex normals
+        v_normals = [mesh_mod.vertices[v].normal for v in loop[0]]
+        normal = mathutils.Vector()
+        for v_normal in v_normals:
+            normal += v_normal
+        normal /= len(v_normals)
+        normal.normalize()
+        
+    elif method == 'view':
+        # calculate view normal
+        rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
+            inverted()
+        normal = mathutils.Vector([0.0, 0.0, 1.0]) * rotation
+        if object:
+            normal *= object.matrix_world.inverted().to_euler().to_matrix()
+    
+    return(com, normal)
+
+
+# calculate splines based on given interpolation method (controller function)
+def calculate_splines(interpolation, mesh_mod, tknots, knots):
+    if interpolation == 'cubic':
+        splines = calculate_cubic_splines(mesh_mod, tknots, knots[:])
+    else: # interpolations == 'linear'
+        splines = calculate_linear_splines(mesh_mod, tknots, knots[:])
+    
+    return(splines)
+
+
+# check loops and only return valid ones
+def check_loops(loops, mapping, mesh_mod):
+    valid_loops = []
+    for loop, circular in loops:
+        # loop needs to have at least 3 vertices
+        if len(loop) < 3:
+            continue
+        # loop needs at least 1 vertex in the original, non-mirrored mesh
+        if mapping:
+            all_virtual = True
+            for vert in loop:
+                if mapping[vert] > -1:
+                    all_virtual = False
+                    break
+            if all_virtual:
+                continue
+        # vertices can not all be at the same location
+        stacked = True
+        for i in range(len(loop) - 1):
+            if (mesh_mod.vertices[loop[i]].co - \
+            mesh_mod.vertices[loop[i+1]].co).length > 1e-6:
+                stacked = False
+                break
+        if stacked:
+            continue    
+        # passed all tests, loop is valid
+        valid_loops.append([loop, circular])
+    
+    return(valid_loops)
+
+
+# input: mesh, output: dict with the edge-key as key and face-index as value
+def dict_edge_faces(mesh):
+    edge_faces = dict([[edge.key, []] for edge in mesh.edges if not edge.hide])
+    for face in mesh.faces:
+        if face.hide:
+            continue
+        for key in face.edge_keys:
+            edge_faces[key].append(face.index)
+    
+    return(edge_faces)
+
+# input: mesh (edge-faces optional), output: dict with face-face connections
+def dict_face_faces(mesh, edge_faces=False):
+    if not edge_faces:
+        edge_faces = dict_edge_faces(mesh)
+    
+    connected_faces = dict([[face.index, []] for face in mesh.faces if \
+        not face.hide])
+    for face in mesh.faces:
+        if face.hide:
+            continue
+        for edge_key in face.edge_keys:
+            for connected_face in edge_faces[edge_key]:
+                if connected_face == face.index:
+                    continue
+                connected_faces[face.index].append(connected_face)
+    
+    return(connected_faces)
+
+
+# input: mesh, output: dict with the vert index as key and edge-keys as value
+def dict_vert_edges(mesh):
+    vert_edges = dict([[v.index, []] for v in mesh.vertices if not v.hide])
+    for edge in mesh.edges:
+        if edge.hide:
+            continue
+        for vert in edge.key:
+            vert_edges[vert].append(edge.key)
+    
+    return(vert_edges)
+
+
+# input: mesh, output: dict with the vert index as key and face index as value
+def dict_vert_faces(mesh):
+    vert_faces = dict([[v.index, []] for v in mesh.vertices if not v.hide])
+    for face in mesh.faces:
+        if not face.hide:
+            for vert in face.vertices:
+                vert_faces[vert].append(face.index)
+                
+    return(vert_faces)
+
+
+# input: list of edge-keys, output: dictionary with vertex-vertex connections
+def dict_vert_verts(edge_keys):
+    # create connection data
+    vert_verts = {}
+    for ek in edge_keys:
+        for i in range(2):
+            if ek[i] in vert_verts:
+                vert_verts[ek[i]].append(ek[1-i])
+            else:
+                vert_verts[ek[i]] = [ek[1-i]]
+    
+    return(vert_verts)
+
+
+# calculate input loops
+def get_connected_input(object, mesh, scene, input):
+    # get mesh with modifiers applied
+    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
+    
+    # calculate selected loops
+    edge_keys = [edge.key for edge in mesh_mod.edges if \
+        edge.select and not edge.hide]
+    loops = get_connected_selections(edge_keys)
+    
+    # if only selected loops are needed, we're done
+    if input == 'selected':
+        return(derived, mesh_mod, loops)
+    # elif input == 'all':    
+    loops = get_parallel_loops(mesh_mod, loops)
+    
+    return(derived, mesh_mod, loops)
+
+
+# sorts all edge-keys into a list of loops
+def get_connected_selections(edge_keys):
+    # create connection data
+    vert_verts = dict_vert_verts(edge_keys)
+    
+    # find loops consisting of connected selected edges
+    loops = []
+    while len(vert_verts) > 0:
+        loop = [iter(vert_verts.keys()).__next__()]
+        growing = True
+        flipped = False
+        
+        # extend loop
+        while growing:
+            # no more connection data for current vertex
+            if loop[-1] not in vert_verts:
+                if not flipped:
+                    loop.reverse()
+                    flipped = True
+                else:
+                    growing = False
+            else:
+                extended = False
+                for i, next_vert in enumerate(vert_verts[loop[-1]]):
+                    if next_vert not in loop:
+                        vert_verts[loop[-1]].pop(i)
+                        if len(vert_verts[loop[-1]]) == 0:
+                            del vert_verts[loop[-1]]
+                        # remove connection both ways
+                        if next_vert in vert_verts:
+                            if len(vert_verts[next_vert]) == 1:
+                                del vert_verts[next_vert]
+                            else:
+                                vert_verts[next_vert].remove(loop[-1])
+                        loop.append(next_vert)
+                        extended = True
+                        break
+                if not extended:
+                    # found one end of the loop, continue with next
+                    if not flipped:
+                        loop.reverse()
+                        flipped = True
+                    # found both ends of the loop, stop growing
+                    else:
+                        growing = False
+        
+        # check if loop is circular
+        if loop[0] in vert_verts:
+            if loop[-1] in vert_verts[loop[0]]:
+                # is circular
+                if len(vert_verts[loop[0]]) == 1:
+                    del vert_verts[loop[0]]
+                else:
+                    vert_verts[loop[0]].remove(loop[-1])
+                if len(vert_verts[loop[-1]]) == 1:
+                    del vert_verts[loop[-1]]
+                else:
+                    vert_verts[loop[-1]].remove(loop[0])
+                loop = [loop, True]
+            else:
+                # not circular
+                loop = [loop, False]
+        else:
+            # not circular
+            loop = [loop, False]
+        
+        loops.append(loop)
+    
+    return(loops)
+
+
+# get the derived mesh data, if there is a mirror modifier
+def get_derived_mesh(object, mesh, scene):
+    # check for mirror modifiers
+    if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
+        derived = True
+        # disable other modifiers
+        show_viewport = [mod.name for mod in object.modifiers if \
+            mod.show_viewport]
+        for mod in object.modifiers:
+            if mod.type != 'MIRROR':
+                mod.show_viewport = False
+        # get derived mesh
+        mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
+        # re-enable other modifiers
+        for mod_name in show_viewport:
+            object.modifiers[mod_name].show_viewport = True
+    # no mirror modifiers, so no derived mesh necessary
+    else:
+        derived = False
+        mesh_mod = mesh
+    
+    return(derived, mesh_mod)
+
+
+# return a mapping of derived indices to indices
+def get_mapping(derived, mesh, mesh_mod, single_vertices, full_search, loops):
+    if not derived:
+        return(False)
+    
+    if full_search:
+        verts = [v for v in mesh.vertices if not v.hide]
+    else:
+        verts = [v for v in mesh.vertices if v.select and not v.hide]
+    
+    # non-selected vertices around single vertices also need to be mapped
+    if single_vertices:
+        mapping = dict([[vert, -1] for vert in single_vertices])
+        verts_mod = [mesh_mod.vertices[vert] for vert in single_vertices]
+        for v in verts:
+            for v_mod in verts_mod:
+                if (v.co - v_mod.co).length < 1e-6:
+                    mapping[v_mod.index] = v.index
+                    break
+        real_singles = [v_real for v_real in mapping.values() if v_real>-1]
+        
+        verts_indices = [vert.index for vert in verts]
+        for face in [face for face in mesh.faces if not face.select \
+        and not face.hide]:
+            for vert in face.vertices:
+                if vert in real_singles:
+                    for v in face.vertices:
+                        if not v in verts_indices:
+                            if mesh.vertices[v] not in verts:
+                                verts.append(mesh.vertices[v])
+                    break
+    
+    # create mapping of derived indices to indices
+    mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
+    if single_vertices:
+        for single in single_vertices:
+            mapping[single] = -1
+    verts_mod = [mesh_mod.vertices[i] for i in mapping.keys()]
+    for v in verts:
+        for v_mod in verts_mod:
+            if (v.co - v_mod.co).length < 1e-6:
+                mapping[v_mod.index] = v.index
+                verts_mod.remove(v_mod)
+                break
+    
+    return(mapping)
+
+
+# returns a list of all loops parallel to the input, input included
+def get_parallel_loops(mesh_mod, loops):
+    # get required dictionaries
+    edge_faces = dict_edge_faces(mesh_mod)
+    connected_faces = dict_face_faces(mesh_mod, edge_faces)
+    # turn vertex loops into edge loops
+    edgeloops = []
+    for loop in loops:
+        edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
+            range(len(loop[0])-1)], loop[1]]
+        if loop[1]: # circular
+            edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
+        edgeloops.append(edgeloop[:])
+    # variables to keep track while iterating
+    all_edgeloops = []
+    has_branches = False
+    
+    for loop in edgeloops:
+        # initialise with original loop
+        all_edgeloops.append(loop[0])
+        newloops = [loop[0]]
+        verts_used = []
+        for edge in loop[0]:
+            if edge[0] not in verts_used:
+                verts_used.append(edge[0])
+            if edge[1] not in verts_used:
+                verts_used.append(edge[1])
+        
+        # find parallel loops
+        while len(newloops) > 0:
+            side_a = []
+            side_b = []
+            for i in newloops[-1]:
+                i = tuple(i)
+                forbidden_side = False
+                if not i in edge_faces:
+                    # weird input with branches
+                    has_branches = True
+                    break
+                for face in edge_faces[i]:
+                    if len(side_a) == 0 and forbidden_side != "a":
+                        side_a.append(face)
+                        if forbidden_side:
+                            break
+                        forbidden_side = "a"
+                        continue
+                    elif side_a[-1] in connected_faces[face] and \
+                    forbidden_side != "a":
+                        side_a.append(face)
+                        if forbidden_side:
+                            break
+                        forbidden_side = "a"
+                        continue
+                    if len(side_b) == 0 and forbidden_side != "b":
+                        side_b.append(face)
+                        if forbidden_side:
+                            break
+                        forbidden_side = "b"
+                        continue
+                    elif side_b[-1] in connected_faces[face] and \
+                    forbidden_side != "b":
+                        side_b.append(face)
+                        if forbidden_side:
+                            break
+                        forbidden_side = "b"
+                        continue
+            
+            if has_branches:
+                # weird input with branches
+                break
+            
+            newloops.pop(-1)
+            sides = []
+            if side_a:
+                sides.append(side_a)
+            if side_b:
+                sides.append(side_b)
+            
+            for side in sides:
+                extraloop = []
+                for fi in side:
+                    for key in mesh_mod.faces[fi].edge_keys:
+                        if key[0] not in verts_used and key[1] not in \
+                        verts_used:
+                            extraloop.append(key)
+                            break
+                if extraloop:
+                    for key in extraloop:
+                        for new_vert in key:
+                            if new_vert not in verts_used:
+                                verts_used.append(new_vert)
+                    newloops.append(extraloop)
+                    all_edgeloops.append(extraloop)
+    
+    # input contains branches, only return selected loop
+    if has_branches:
+        return(loops)
+    
+    # change edgeloops into normal loops
+    loops = []
+    for edgeloop in all_edgeloops:
+        loop = []
+        # grow loop by comparing vertices between consecutive edge-keys
+        for i in range(len(edgeloop)-1):
+            for vert in range(2):
+                if edgeloop[i][vert] in edgeloop[i+1]:
+                    loop.append(edgeloop[i][vert])
+                    break
+        if loop:
+            # add starting vertex
+            for vert in range(2):
+                if edgeloop[0][vert] != loop[0]:
+                    loop = [edgeloop[0][vert]] + loop
+                    break
+            # add ending vertex
+            for vert in range(2):
+                if edgeloop[-1][vert] != loop[-1]:
+                    loop.append(edgeloop[-1][vert])
+                    break
+            # check if loop is circular
+            if loop[0] == loop[-1]:
+                circular = True
+                loop = loop[:-1]
+            else:
+                circular = False
+        loops.append([loop, circular])
+    
+    return(loops)
+
+
+# gather initial data
+def initialise():
+    global_undo = bpy.context.user_preferences.edit.use_global_undo
+    bpy.context.user_preferences.edit.use_global_undo = False
+    bpy.ops.object.mode_set(mode='OBJECT')
+    object = bpy.context.active_object
+    mesh = bpy.context.active_object.data
+    
+    return(global_undo, object, mesh)
+
+
+# move the vertices to their new locations
+def move_verts(mesh, mapping, move, influence):
+    for loop in move:
+        for index, loc in loop:
+            if mapping:
+                if mapping[index] == -1:
+                    continue
+                else:
+                    index = mapping[index]
+            if influence >= 0:
+                mesh.vertices[index].co = loc*(influence/100) + \
+                    mesh.vertices[index].co*((100-influence)/100)
+            else:
+                mesh.vertices[index].co = loc
+
+
+# load custom tool settings 
+def settings_load(self):
+    lt = bpy.context.window_manager.looptools
+    tool = self.name.split()[0].lower()
+    keys = self.as_keywords().keys()
+    for key in keys:
+        setattr(self, key, getattr(lt, tool + "_" + key))
+
+
+# store custom tool settings
+def settings_write(self):
+    lt = bpy.context.window_manager.looptools
+    tool = self.name.split()[0].lower()
+    keys = self.as_keywords().keys()
+    for key in keys:
+        setattr(lt, tool + "_" + key, getattr(self, key))
+
+
+# clean up and set settings back to original state
+def terminate(global_undo):
+    bpy.ops.object.mode_set(mode='EDIT')
+    bpy.context.user_preferences.edit.use_global_undo = global_undo
+
+
+##########################################
+####### Bridge functions #################
+##########################################
+
+# calculate a cubic spline through the middle section of 4 given coordinates
+def bridge_calculate_cubic_spline(mesh, coordinates):
+    result = []
+    x = [0, 1, 2, 3]
+    
+    for j in range(3):
+        a = []
+        for i in coordinates:
+            a.append(float(i[j]))
+        h = []
+        for i in range(3):
+            h.append(x[i+1]-x[i])
+        q = [False]
+        for i in range(1,3):
+            q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
+        l = [1.0]
+        u = [0.0]
+        z = [0.0]
+        for i in range(1,3):
+            l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
+            u.append(h[i]/l[i])
+            z.append((q[i]-h[i-1]*z[i-1])/l[i])
+        l.append(1.0)
+        z.append(0.0)
+        b = [False for i in range(3)]
+        c = [False for i in range(4)]
+        d = [False for i in range(3)]
+        c[3] = 0.0
+        for i in range(2,-1,-1):
+            c[i] = z[i]-u[i]*c[i+1]
+            b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
+            d[i] = (c[i+1]-c[i])/(3.0*h[i])
+        for i in range(3):
+            result.append([a[i], b[i], c[i], d[i], x[i]])
+    spline = [result[1], result[4], result[7]]
+
+    return(spline)
+
+
+# return a list with new vertex location vectors, a list with face vertex 
+# integers, and the highest vertex integer in the virtual mesh
+def bridge_calculate_geometry(mesh, lines, vertex_normals, segments,
+interpolation, cubic_strength, min_width, max_vert_index):
+    new_verts = []
+    faces = []
+    
+    # calculate location based on interpolation method
+    def get_location(line, segment, splines):
+        v1 = mesh.vertices[lines[line][0]].co
+        v2 = mesh.vertices[lines[line][1]].co
+        if interpolation == 'linear':
+            return v1 + (segment/segments) * (v2-v1)
+        else: # interpolation == 'cubic'
+            m = (segment/segments)
+            ax,bx,cx,dx,tx = splines[line][0]
+            x = ax+bx*m+cx*m**2+dx*m**3
+            ay,by,cy,dy,ty = splines[line][1]
+            y = ay+by*m+cy*m**2+dy*m**3
+            az,bz,cz,dz,tz = splines[line][2]
+            z = az+bz*m+cz*m**2+dz*m**3
+            return mathutils.Vector([x,y,z])
+        
+    # no interpolation needed
+    if segments == 1:
+        for i, line in enumerate(lines):
+            if i < len(lines)-1:
+                faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
+    # more than 1 segment, interpolate
+    else:
+        # calculate splines (if necessary) once, so no recalculations needed
+        if interpolation == 'cubic':
+            splines = []
+            for line in lines:
+                v1 = mesh.vertices[line[0]].co
+                v2 = mesh.vertices[line[1]].co
+                size = (v2-v1).length * cubic_strength
+                splines.append(bridge_calculate_cubic_spline(mesh,
+                    [v1+size*vertex_normals[line[0]], v1, v2,
+                    v2+size*vertex_normals[line[1]]]))
+        else:
+            splines = False
+        
+        # create starting situation
+        virtual_width = [(mathutils.Vector(mesh.vertices[lines[i][0]].co) - \
+            mathutils.Vector(mesh.vertices[lines[i+1][0]].co)).length for i \
+            in range(len(lines)-1)]
+        new_verts = [get_location(0, seg, splines) for seg in range(1,
+            segments)]
+        first_line_indices = [i for i in range(max_vert_index+1,
+            max_vert_index+segments)]
+        
+        prev_verts = new_verts[:] # vertex locations of verts on previous line
+        prev_vert_indices = first_line_indices[:]
+        max_vert_index += segments - 1 # highest vertex index in virtual mesh
+        next_verts = [] # vertex locations of verts on current line
+        next_vert_indices = []
+        
+        for i, line in enumerate(lines):
+            if i < len(lines)-1:
+                v1 = line[0]
+                v2 = lines[i+1][0]
+                end_face = True
+                for seg in range(1, segments):
+                    loc1 = prev_verts[seg-1]
+                    loc2 = get_location(i+1, seg, splines)
+                    if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
+                    and line[1]==lines[i+1][1]:
+                        # triangle, no new vertex
+                        faces.append([v1, v2, prev_vert_indices[seg-1],
+                            prev_vert_indices[seg-1]])
+                        next_verts += prev_verts[seg-1:]
+                        next_vert_indices += prev_vert_indices[seg-1:]
+                        end_face = False
+                        break
+                    else:
+                        if i == len(lines)-2 and lines[0] == lines[-1]:
+                            # quad with first line, no new vertex
+                            faces.append([v1, v2, first_line_indices[seg-1],
+                                prev_vert_indices[seg-1]])
+                            v2 = first_line_indices[seg-1]
+                            v1 = prev_vert_indices[seg-1]
+                        else:
+                            # quad, add new vertex
+                            max_vert_index += 1
+                            faces.append([v1, v2, max_vert_index,
+                                prev_vert_indices[seg-1]])
+                            v2 = max_vert_index
+                            v1 = prev_vert_indices[seg-1]
+                            new_verts.append(loc2)
+                            next_verts.append(loc2)
+                            next_vert_indices.append(max_vert_index)
+                if end_face:
+                    faces.append([v1, v2, lines[i+1][1], line[1]])
+                
+                prev_verts = next_verts[:]
+                prev_vert_indices = next_vert_indices[:]
+                next_verts = []
+                next_vert_indices = []
+    
+    return(new_verts, faces, max_vert_index)
+
+
+# calculate lines (list of lists, vertex indices) that are used for bridging
+def bridge_calculate_lines(mesh, loops, mode, twist, reverse):
+    lines = []
+    loop1, loop2 = [i[0] for i in loops]
+    loop1_circular, loop2_circular = [i[1] for i in loops]
+    circular = loop1_circular or loop2_circular
+    circle_full = False
+    
+    # calculate loop centers
+    centers = []
+    for loop in [loop1, loop2]:
+        center = mathutils.Vector([0,0,0])
+        for vertex in loop:
+            center += mesh.vertices[vertex].co
+        center /= len(loop)
+        centers.append(center)
+    for i, loop in enumerate([loop1, loop2]):
+        for vertex in loop:
+            if mesh.vertices[vertex].co == centers[i]:
+                # prevent zero-length vectors in angle comparisons
+                centers[i] += mathutils.Vector([0.01, 0, 0])
+                break
+    center1, center2 = centers
+    
+    # calculate the normals of the virtual planes that the loops are on
+    normals = []
+    normal_plurity = False
+    for i, loop in enumerate([loop1, loop2]):
+        # covariance matrix
+        mat = mathutils.Matrix(((0.0, 0.0, 0.0), (0.0, 0.0, 0.0),
+            (0.0, 0.0, 0.0)))
+        x, y, z = centers[i]
+        for loc in [mesh.vertices[vertex].co for vertex in loop]:
+            mat[0][0] += (loc[0]-x)**2
+            mat[0][1] += (loc[0]-x)*(loc[1]-y)
+            mat[0][2] += (loc[0]-x)*(loc[2]-z)
+            mat[1][0] += (loc[1]-y)*(loc[0]-x)
+            mat[1][1] += (loc[1]-y)**2
+            mat[1][2] += (loc[1]-y)*(loc[2]-z)
+            mat[2][0] += (loc[2]-z)*(loc[0]-x)
+            mat[2][1] += (loc[2]-z)*(loc[1]-y)
+            mat[2][2] += (loc[2]-z)**2
+        # plane normal
+        normal = False
+        if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
+            normal_plurity = True
+        try:
+            mat.invert()
+        except:
+            if sum(mat[0]) == 0:
+                normal = mathutils.Vector([1.0, 0.0, 0.0])
+            elif sum(mat[1]) == 0:
+                normal = mathutils.Vector([0.0, 1.0, 0.0])
+            elif sum(mat[2]) == 0:
+                normal = mathutils.Vector([0.0, 0.0, 1.0])
+        if not normal:
+            itermax = 500
+            iter = 0
+            vec = mathutils.Vector([1.0, 1.0, 1.0])
+            vec2 = (vec*mat)/(vec*mat).length
+            while vec != vec2 and iter<itermax:
+                iter+=1
+                vec = vec2
+                vec2 = (vec*mat)/(vec*mat).length
+            normal = vec2
+        normals.append(normal)
+    # have plane normals face in the same direction (maximum angle: 90 degrees)
+    if ((center1 + normals[0]) - center2).length < \
+    ((center1 - normals[0]) - center2).length:
+        normals[0].negate()
+    if ((center2 + normals[1]) - center1).length > \
+    ((center2 - normals[1]) - center1).length:
+        normals[1].negate()
+    
+    # rotation matrix, representing the difference between the plane normals
+    axis = normals[0].cross(normals[1])
+    axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
+    if axis.angle(mathutils.Vector([0, 0, 1]), 0) > 1.5707964:
+        axis.negate()
+    angle = normals[0].dot(normals[1])
+    rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
+    
+    # if circular, rotate loops so they are aligned
+    if circular:
+        # make sure loop1 is the circular one (or both are circular)
+        if loop2_circular and not loop1_circular:
+            loop1_circular, loop2_circular = True, False
+            loop1, loop2 = loop2, loop1
+        
+        # match start vertex of loop1 with loop2
+        target_vector = mesh.vertices[loop2[0]].co - center2
+        dif_angles = [[((mesh.vertices[vertex].co - center1) * \
+            rotation_matrix).angle(target_vector, 0), False, i] for \
+            i, vertex in enumerate(loop1)]
+        dif_angles.sort()
+        if len(loop1) != len(loop2):
+            angle_limit = dif_angles[0][0] * 1.2 # 20% margin
+            dif_angles = [[(mesh.vertices[loop2[0]].co - \
+                mesh.vertices[loop1[index]].co).length, angle, index] for \
+                angle, distance, index in dif_angles if angle <= angle_limit]
+            dif_angles.sort()
+        loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
+    
+    # have both loops face the same way
+    if normal_plurity and not circular:
+        second_to_first, second_to_second, second_to_last = \
+            [(mesh.vertices[loop1[1]].co - center1).\
+            angle(mesh.vertices[loop2[i]].co - center2) for i in [0, 1, -1]]
+        last_to_first, last_to_second = [(mesh.vertices[loop1[-1]].co - \
+            center1).angle(mesh.vertices[loop2[i]].co - center2) for \
+            i in [0, 1]]
+        if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
+        second_to_second)) or (loop2_circular and second_to_last*1.1 < \
+        min(second_to_first, second_to_second)):
+            loop1.reverse()
+            if circular:
+                loop1 = [loop1[-1]] + loop1[:-1]
+    else:
+        angle = (mesh.vertices[loop1[0]].co - center1).\
+            cross(mesh.vertices[loop1[1]].co - center1).angle(normals[0], 0)
+        target_angle = (mesh.vertices[loop2[0]].co - center2).\
+            cross(mesh.vertices[loop2[1]].co - center2).angle(normals[1], 0)
+        limit = 1.5707964 # 0.5*pi, 90 degrees
+        if not ((angle > limit and target_angle > limit) or \
+        (angle < limit and target_angle < limit)):
+            loop1.reverse()
+            if circular:
+                loop1 = [loop1[-1]] + loop1[:-1]
+        elif normals[0].angle(normals[1]) > limit:
+            loop1.reverse()
+            if circular:
+                loop1 = [loop1[-1]] + loop1[:-1]
+    
+    # both loops have the same length
+    if len(loop1) == len(loop2):
+        # manual override
+        if twist:
+            if abs(twist) < len(loop1):
+                loop1 = loop1[twist:]+loop1[:twist]
+        if reverse:
+            loop1.reverse()
+        
+        lines.append([loop1[0], loop2[0]])
+        for i in range(1, len(loop1)):
+            lines.append([loop1[i], loop2[i]])
+    
+    # loops of different lengths
+    else:
+        # make loop1 longest loop
+        if len(loop2) > len(loop1):
+            loop1, loop2 = loop2, loop1
+            loop1_circular, loop2_circular = loop2_circular, loop1_circular
+        
+        # manual override
+        if twist:
+            if abs(twist) < len(loop1):
+                loop1 = loop1[twist:]+loop1[:twist]
+        if reverse:
+            loop1.reverse()
+            
+        # shortest angle difference doesn't always give correct start vertex
+        if loop1_circular and not loop2_circular:
+            shifting = 1
+            while shifting:
+                if len(loop1) - shifting < len(loop2):
+                    shifting = False
+                    break
+                to_last, to_first = [((mesh.vertices[loop1[-1]].co - \
+                    center1) * rotation_matrix).angle((mesh.\
+                    vertices[loop2[i]].co - center2), 0) for i in [-1, 0]]
+                if to_first < to_last:
+                    loop1 = [loop1[-1]] + loop1[:-1]
+                    shifting += 1
+                else:
+                    shifting = False
+                    break
+        
+        # basic shortest side first
+        if mode == 'basic':
+            lines.append([loop1[0], loop2[0]])
+            for i in range(1, len(loop1)):
+                if i >= len(loop2) - 1:
+                    # triangles
+                    lines.append([loop1[i], loop2[-1]])
+                else:
+                    # quads
+                    lines.append([loop1[i], loop2[i]])
+        
+        # shortest edge algorithm
+        else: # mode == 'shortest'
+            lines.append([loop1[0], loop2[0]])
+            prev_vert2 = 0
+            for i in range(len(loop1) -1):
+                if prev_vert2 == len(loop2) - 1 and not loop2_circular:
+                    # force triangles, reached end of loop2
+                    tri, quad = 0, 1
+                elif prev_vert2 == len(loop2) - 1 and loop2_circular:
+                    # at end of loop2, but circular, so check with first vert
+                    tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
+                        co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
+                        length for j in [prev_vert2, 0]]
+                    circle_full = 2
+                elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
+                not circle_full:
+                    # force quads, otherwise won't make it to end of loop2
+                    tri, quad = 1, 0
+                else:
+                    # calculate if tri or quad gives shortest edge
+                    tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
+                        co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
+                        length for j in range(prev_vert2, prev_vert2+2)]
+                
+                # triangle
+                if tri < quad:
+                    lines.append([loop1[i+1], loop2[prev_vert2]])
+                    if circle_full == 2:
+                        circle_full = False
+                # quad
+                elif not circle_full:
+                    lines.append([loop1[i+1], loop2[prev_vert2+1]])
+                    prev_vert2 += 1
+                # quad to first vertex of loop2
+                else:
+                    lines.append([loop1[i+1], loop2[0]])
+                    prev_vert2 = 0
+                    circle_full = True
+    
+    # final face for circular loops
+    if loop1_circular and loop2_circular:
+        lines.append([loop1[0], loop2[0]])
+    
+    return(lines)
+
+
+# calculate number of segments needed
+def bridge_calculate_segments(mesh, lines, loops, segments):
+    # return if amount of segments is set by user
+    if segments != 0:
+        return segments
+    
+    # edge lengths
+    average_edge_length = [(mesh.vertices[vertex].co - \
+        mesh.vertices[loop[0][i+1]].co).length for loop in loops for \
+        i, vertex in enumerate(loop[0][:-1])]
+    # closing edges of circular loops
+    average_edge_length += [(mesh.vertices[loop[0][-1]].co - \
+        mesh.vertices[loop[0][0]].co).length for loop in loops if loop[1]] 
+    
+    # average lengths
+    average_edge_length = sum(average_edge_length) / len(average_edge_length)
+    average_bridge_length = sum([(mesh.vertices[v1].co - \
+        mesh.vertices[v2].co).length for v1, v2 in lines]) / len(lines)
+    
+    segments = max(1, round(average_bridge_length / average_edge_length))
+        
+    return(segments)
+
+
+# return dictionary with vertex index as key, and the normal vector as value
+def bridge_calculate_virtual_vertex_normals(mesh, lines, loops, edge_faces,
+edgekey_to_edge):
+    if not edge_faces: # interpolation isn't set to cubic
+        return False
+    
+    # pity reduce() isn't one of the basic functions in python anymore
+    def average_vector_dictionary(dic):
+        for key, vectors in dic.items():
+            #if type(vectors) == type([]) and len(vectors) > 1:
+            if len(vectors) > 1:
+                average = mathutils.Vector([0, 0, 0])
+                for vector in vectors:
+                    average += vector
+                average /= len(vectors)
+                dic[key] = [average]
+        return dic
+    
+    # get all edges of the loop
+    edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
+        loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
+        j in [0,1]]
+    edges = edges[0] + edges[1]
+    for j in [0, 1]:
+        if loops[j][1]: # circular
+            edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
+                loops[j][0][-1]]))])
+    
+    """
+    calculation based on face topology (assign edge-normals to vertices)
+    
+    edge_normal = face_normal x edge_vector
+    vertex_normal = average(edge_normals)
+    """
+    vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
+    for edge in edges:
+        faces = edge_faces[edge.key] # valid faces connected to edge
+        
+        if faces:
+            # get edge coordinates
+            v1, v2 = [mesh.vertices[edge.key[i]].co for i in [0,1]]
+            edge_vector = v1 - v2
+            if edge_vector.length < 1e-4:
+                # zero-length edge, vertices at same location
+                continue
+            edge_center = (v1 + v2) / 2
+            
+            # average face coordinates, if connected to more than 1 valid face
+            if len(faces) > 1:
+                face_normal = mathutils.Vector([0, 0, 0])
+                face_center = mathutils.Vector([0, 0, 0])
+                for face in faces:
+                    face_normal += face.normal
+                    face_center += face.center
+                face_normal /= len(faces)
+                face_center /= len(faces)
+            else:
+                face_normal = faces[0].normal
+                face_center = faces[0].center
+            if face_normal.length < 1e-4:
+                # faces with a surface of 0 have no face normal
+                continue
+            
+            # calculate virtual edge normal
+            edge_normal = edge_vector.cross(face_normal)
+            edge_normal.length = 0.01
+            if (face_center - (edge_center + edge_normal)).length > \
+            (face_center - (edge_center - edge_normal)).length:
+                # make normal face the correct way
+                edge_normal.negate()
+            edge_normal.normalize()
+            # add virtual edge normal as entry for both vertices it connects
+            for vertex in edge.key:
+                vertex_normals[vertex].append(edge_normal)
+    
+    """ 
+    calculation based on connection with other loop (vertex focused method) 
+    - used for vertices that aren't connected to any valid faces
+    
+    plane_normal = edge_vector x connection_vector
+    vertex_normal = plane_normal x edge_vector
+    """
+    vertices = [vertex for vertex, normal in vertex_normals.items() if not \
+        normal]
+    
+    if vertices:
+        # edge vectors connected to vertices
+        edge_vectors = dict([[vertex, []] for vertex in vertices])
+        for edge in edges:
+            for v in edge.key:
+                if v in edge_vectors:
+                    edge_vector = mesh.vertices[edge.key[0]].co - \
+                        mesh.vertices[edge.key[1]].co
+                    if edge_vector.length < 1e-4:
+                        # zero-length edge, vertices at same location
+                        continue
+                    edge_vectors[v].append(edge_vector)
+    
+        # connection vectors between vertices of both loops
+        connection_vectors = dict([[vertex, []] for vertex in vertices])
+        connections = dict([[vertex, []] for vertex in vertices])
+        for v1, v2 in lines:
+            if v1 in connection_vectors or v2 in connection_vectors:
+                new_vector = mesh.vertices[v1].co - mesh.vertices[v2].co
+                if new_vector.length < 1e-4:
+                    # zero-length connection vector,
+                    # vertices in different loops at same location
+                    continue
+                if v1 in connection_vectors:
+                    connection_vectors[v1].append(new_vector)
+                    connections[v1].append(v2)
+                if v2 in connection_vectors:
+                    connection_vectors[v2].append(new_vector)
+                    connections[v2].append(v1)
+        connection_vectors = average_vector_dictionary(connection_vectors)
+        connection_vectors = dict([[vertex, vector[0]] if vector else \
+            [vertex, []] for vertex, vector in connection_vectors.items()])
+        
+        for vertex, values in edge_vectors.items():
+            # vertex normal doesn't matter, just assign a random vector to it
+            if not connection_vectors[vertex]:
+                vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
+                continue
+            
+            # calculate to what location the vertex is connected, 
+            # used to determine what way to flip the normal
+            connected_center = mathutils.Vector([0, 0, 0])
+            for v in connections[vertex]:
+                connected_center += mesh.vertices[v].co
+            if len(connections[vertex]) > 1:
+                connected_center /= len(connections[vertex])
+            if len(connections[vertex]) == 0:
+                # shouldn't be possible, but better safe than sorry
+                vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
+                continue
+            
+            # can't do proper calculations, because of zero-length vector
+            if not values:
+                if (connected_center - (mesh.vertices[vertex].co + \
+                connection_vectors[vertex])).length < (connected_center - \
+                (mesh.vertices[vertex].co - connection_vectors[vertex])).\
+                length:
+                    connection_vectors[vertex].negate()
+                vertex_normals[vertex] = [connection_vectors[vertex].\
+                    normalized()]
+                continue
+            
+            # calculate vertex normals using edge-vectors,
+            # connection-vectors and the derived plane normal
+            for edge_vector in values:
+                plane_normal = edge_vector.cross(connection_vectors[vertex])
+                vertex_normal = edge_vector.cross(plane_normal)
+                vertex_normal.length = 0.1
+                if (connected_center - (mesh.vertices[vertex].co + \
+                vertex_normal)).length < (connected_center - \
+                (mesh.vertices[vertex].co - vertex_normal)).length:
+                # make normal face the correct way
+                    vertex_normal.negate()
+                vertex_normal.normalize()
+                vertex_normals[vertex].append(vertex_normal)
+    
+    # average virtual vertex normals, based on all edges it's connected to
+    vertex_normals = average_vector_dictionary(vertex_normals)
+    vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
+        vertex_normals.items()])
+    
+    return(vertex_normals)
+
+
+# add vertices to mesh
+def bridge_create_vertices(mesh, vertices):
+    start_index = len(mesh.vertices)
+    mesh.vertices.add(len(vertices))
+    for i in range(len(vertices)):
+        mesh.vertices[start_index + i].co = vertices[i]
+
+
+# add faces to mesh
+def bridge_create_faces(mesh, faces, twist):
+    # have the normal point the correct way
+    if twist < 0:
+        [face.reverse() for face in faces]
+        faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
+            face in faces]
+    
+    # eekadoodle prevention
+    for i in range(len(faces)):
+        if not faces[i][-1]:
+            if faces[i][0] == faces[i][-1]:
+                faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
+            else:
+                faces[i] = [faces[i][-1]] + faces[i][:-1]
+    
+    start_faces = len(mesh.faces)
+    mesh.faces.add(len(faces))
+    for i in range(len(faces)):
+        mesh.faces[start_faces + i].vertices_raw = faces[i]
+    mesh.update(calc_edges = True) # calc_edges prevents memory-corruption
+
+
+# calculate input loops
+def bridge_get_input(mesh):
+    # create list of internal edges, which should be skipped
+    eks_of_selected_faces = [item for sublist in [face.edge_keys for face \
+        in mesh.faces if face.select and not face.hide] for item in sublist]
+    edge_count = {}
+    for ek in eks_of_selected_faces:
+        if ek in edge_count:
+            edge_count[ek] += 1
+        else:
+            edge_count[ek] = 1
+    internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
+    
+    # sort correct edges into loops
+    selected_edges = [edge.key for edge in mesh.edges if edge.select \
+        and not edge.hide and edge.key not in internal_edges]
+    loops = get_connected_selections(selected_edges)
+    
+    return(loops)
+
+
+# return values needed by the bridge operator
+def bridge_initialise(mesh, interpolation):
+    if interpolation == 'cubic':
+        # dict with edge-key as key and list of connected valid faces as value
+        face_blacklist = [face.index for face in mesh.faces if face.select or \
+            face.hide]
+        edge_faces = dict([[edge.key, []] for edge in mesh.edges if not \
+            edge.hide])
+        for face in mesh.faces:
+            if face.index in face_blacklist:
+                continue
+            for key in face.edge_keys:
+                edge_faces[key].append(face)
+        # dictionary with the edge-key as key and edge as value
+        edgekey_to_edge = dict([[edge.key, edge] for edge in mesh.edges if \
+            edge.select and not edge.hide])
+    else:
+        edge_faces = False
+        edgekey_to_edge = False
+    
+    # selected faces input
+    old_selected_faces = [face.index for face in mesh.faces if face.select \
+        and not face.hide]
+    
+    # find out if faces created by bridging should be smoothed
+    smooth = False
+    if mesh.faces:
+        if sum([face.use_smooth for face in mesh.faces])/len(mesh.faces) \
+        >= 0.5:
+            smooth = True
+    
+    return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
+
+
+# return a string with the input method
+def bridge_input_method(loft, loft_loop):
+    method = ""
+    if loft:
+        if loft_loop:
+            method = "Loft loop"
+        else:
+            method = "Loft no-loop"
+    else:
+        method = "Bridge"
+    
+    return(method)
+
+
+# match up loops in pairs, used for multi-input bridging
+def bridge_match_loops(mesh, loops):
+    # calculate average loop normals and centers
+    normals = []
+    centers = []
+    for vertices, circular in loops:
+        normal = mathutils.Vector([0, 0, 0])
+        center = mathutils.Vector([0, 0, 0])
+        for vertex in vertices:
+            normal += mesh.vertices[vertex].normal
+            center += mesh.vertices[vertex].co
+        normals.append(normal / len(vertices) / 10)
+        centers.append(center / len(vertices))
+    
+    # possible matches if loop normals are faced towards the center
+    # of the other loop
+    matches = dict([[i, []] for i in range(len(loops))])
+    matches_amount = 0
+    for i in range(len(loops) + 1):
+        for j in range(i+1, len(loops)):
+            if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
+            + normals[j])).length and (centers[j] - centers[i]).length > \
+            (centers[j] - (centers[i] + normals[i])).length:
+                matches_amount += 1
+                matches[i].append([(centers[i] - centers[j]).length, i, j])
+                matches[j].append([(centers[i] - centers[j]).length, j, i])
+    # if no loops face each other, just make matches between all the loops
+    if matches_amount == 0:
+        for i in range(len(loops) + 1):
+            for j in range(i+1, len(loops)):
+                matches[i].append([(centers[i] - centers[j]).length, i, j])
+                matches[j].append([(centers[i] - centers[j]).length, j, i])
+    for key, value in matches.items():
+        value.sort()
+    
+    # matches based on distance between centers and number of vertices in loops
+    new_order = []
+    for loop_index in range(len(loops)):
+        if loop_index in new_order:
+            continue
+        loop_matches = matches[loop_index]
+        if not loop_matches:
+            continue
+        shortest_distance = loop_matches[0][0]
+        shortest_distance *= 1.1
+        loop_matches = [[abs(len(loops[loop_index][0]) - \
+            len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
+            loop_matches if loop[0] < shortest_distance]
+        loop_matches.sort()
+        for match in loop_matches:
+            if match[3] not in new_order:
+                new_order += [loop_index, match[3]]
+                break
+    
+    # reorder loops based on matches
+    if len(new_order) >= 2:
+        loops = [loops[i] for i in new_order]
+    
+    return(loops)
+
+
+# have normals of selection face outside
+def bridge_recalculate_normals():
+    bpy.ops.object.mode_set(mode = 'EDIT')
+    bpy.ops.mesh.normals_make_consistent()
+
+
+# remove old_selected_faces
+def bridge_remove_internal_faces(mesh, old_selected_faces):
+    select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
+    bpy.context.tool_settings.mesh_select_mode = [False, False, True]
+    
+    # hack to keep track of the current selection
+    for edge in mesh.edges:
+        if edge.select and not edge.hide:
+            edge.bevel_weight = (edge.bevel_weight/3) + 0.2
+        else:
+            edge.bevel_weight = (edge.bevel_weight/3) + 0.6
+    
+    # remove faces
+    bpy.ops.object.mode_set(mode = 'EDIT')
+    bpy.ops.mesh.select_all(action = 'DESELECT')
+    bpy.ops.object.mode_set(mode = 'OBJECT')
+    for face in old_selected_faces:
+        mesh.faces[face].select = True
+    bpy.ops.object.mode_set(mode = 'EDIT')
+    bpy.ops.mesh.delete(type = 'FACE')
+    
+    # restore old selection, using hack
+    bpy.ops.object.mode_set(mode = 'OBJECT')
+    bpy.context.tool_settings.mesh_select_mode = [False, True, False]
+    for edge in mesh.edges:
+        if edge.bevel_weight < 0.6:
+            edge.bevel_weight = (edge.bevel_weight-0.2) * 3
+            edge.select = True
+        else:
+            edge.bevel_weight = (edge.bevel_weight-0.6) * 3
+    bpy.ops.object.mode_set(mode = 'EDIT')
+    bpy.ops.object.mode_set(mode = 'OBJECT')
+    bpy.context.tool_settings.mesh_select_mode = select_mode
+
+
+# update list of internal faces that are flagged for removal
+def bridge_save_unused_faces(mesh, old_selected_faces, loops):
+    # key: vertex index, value: lists of selected faces using it
+    vertex_to_face = dict([[i, []] for i in range(len(mesh.vertices))])
+    [[vertex_to_face[vertex_index].append(face) for vertex_index in \
+        mesh.faces[face].vertices] for face in old_selected_faces]
+    
+    # group selected faces that are connected
+    groups = []
+    grouped_faces = []
+    for face in old_selected_faces:
+        if face in grouped_faces:
+            continue
+        grouped_faces.append(face)
+        group = [face]
+        new_faces = [face]
+        while new_faces:
+            grow_face = new_faces[0]
+            for vertex in mesh.faces[grow_face].vertices:
+                vertex_face_group = [face for face in vertex_to_face[vertex] \
+                    if face not in grouped_faces]
+                new_faces += vertex_face_group
+                grouped_faces += vertex_face_group
+                group += vertex_face_group
+            new_faces.pop(0)
+        groups.append(group)
+    
+    # key: vertex index, value: True/False (is it in a loop that is used)
+    used_vertices = dict([[i, 0] for i in range(len(mesh.vertices))])
+    for loop in loops:
+        for vertex in loop[0]:
+            used_vertices[vertex] = True
+    
+    # check if group is bridged, if not remove faces from internal faces list
+    for group in groups:
+        used = False
+        for face in group:
+            if used:
+                break
+            for vertex in mesh.faces[face].vertices:
+                if used_vertices[vertex]:
+                    used = True
+                    break
+        if not used:
+            for face in group:
+                old_selected_faces.remove(face)
+
+
+# add the newly created faces to the selection
+def bridge_select_new_faces(mesh, amount, smooth):
+    select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
+    bpy.context.tool_settings.mesh_select_mode = [False, False, True]
+    for i in range(amount):
+        mesh.faces[-(i+1)].select = True
+        mesh.faces[-(i+1)].use_smooth = smooth
+    bpy.ops.object.mode_set(mode = 'EDIT')
+    bpy.ops.object.mode_set(mode = 'OBJECT')
+    bpy.context.tool_settings.mesh_select_mode = select_mode
+
+
+# sort loops, so they are connected in the correct order when lofting
+def bridge_sort_loops(mesh, loops, loft_loop):
+    # simplify loops to single points, and prepare for pathfinding
+    x, y, z = [[sum([mesh.vertices[i].co[j] for i in loop[0]]) / \
+        len(loop[0]) for loop in loops] for j in range(3)]
+    nodes = [mathutils.Vector([x[i], y[i], z[i]]) for i in range(len(loops))]
+    
+    active_node = 0
+    open = [i for i in range(1, len(loops))]
+    path = [[0,0]]
+    # connect node to path, that is shortest to active_node
+    while len(open) > 0:
+        distances = [(nodes[active_node] - nodes[i]).length for i in open]
+        active_node = open[distances.index(min(distances))]
+        open.remove(active_node)
+        path.append([active_node, min(distances)])
+    # check if we didn't start in the middle of the path
+    for i in range(2, len(path)):
+        if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
+            temp = path[:i]
+            path.reverse()
+            path = path[:-i] + temp
+            break
+    
+    # reorder loops
+    loops = [loops[i[0]] for i in path]
+    # if requested, duplicate first loop at last position, so loft can loop
+    if loft_loop:
+        loops = loops + [loops[0]]
+    
+    return(loops)
+
+
+##########################################
+####### Circle functions #################
+##########################################
+
+# convert 3d coordinates to 2d coordinates on plane
+def circle_3d_to_2d(mesh_mod, loop, com, normal):
+    # project vertices onto the plane
+    verts = [mesh_mod.vertices[v] for v in loop[0]]
+    verts_projected = [[mathutils.Vector(v.co[:]) - \
+        (mathutils.Vector(v.co[:])-com).dot(normal)*normal, v.index] \
+        for v in verts]
+    
+    # calculate two vectors (p and q) along the plane
+    m = mathutils.Vector([normal[0]+1.0, normal[1], normal[2]])
+    p = m - (m.dot(normal) * normal)
+    if p.dot(p) == 0.0:
+        m = mathutils.Vector([normal[0], normal[1]+1.0, normal[2]])
+        p = m - (m.dot(normal) * normal)
+    q = p.cross(normal)
+    
+    # change to 2d coordinates using perpendicular projection
+    locs_2d = []
+    for loc, vert in verts_projected:
+        vloc = loc - com
+        x = p.dot(vloc) / p.dot(p)
+        y = q.dot(vloc) / q.dot(q)
+        locs_2d.append([x, y, vert])
+    
+    return(locs_2d, p, q)
+
+
+# calculate a best-fit circle to the 2d locations on the plane
+def circle_calculate_best_fit(locs_2d):
+    # initial guess
+    x0 = 0.0
+    y0 = 0.0
+    r = 1.0
+    
+    # calculate center and radius (non-linear least squares solution)
+    for iter in range(500):
+        jmat = []
+        k = []
+        for v in locs_2d:
+            d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
+            jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
+            k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
+        jmat2 = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], \
+            [0.0, 0.0, 0.0]])
+        k2 = mathutils.Vector([0.0, 0.0, 0.0])
+        for i in range(len(jmat)):
+            k2 += mathutils.Vector(jmat[i])*k[i]
+            jmat2[0][0] += jmat[i][0]**2
+            jmat2[0][1] += jmat[i][0]*jmat[i][1]
+            jmat2[0][2] += jmat[i][0]*jmat[i][2]
+            jmat2[1][1] += jmat[i][1]**2
+            jmat2[1][2] += jmat[i][1]*jmat[i][2]
+            jmat2[2][2] += jmat[i][2]**2
+        jmat2[1][0] = jmat2[0][1]
+        jmat2[2][0] = jmat2[0][2]
+        jmat2[2][1] = jmat2[1][2]
+        try:
+            jmat2.invert()
+        except:
+            pass
+        dx0, dy0, dr = k2 * jmat2
+        x0 += dx0
+        y0 += dy0
+        r += dr
+        # stop iterating if we're close enough to optimal solution
+        if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
+            break
+    
+    # return center of circle and radius
+    return(x0, y0, r)
+
+
+# calculate circle so no vertices have to be moved away from the center
+def circle_calculate_min_fit(locs_2d):
+    # center of circle
+    x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
+    y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
+    center = mathutils.Vector([x0, y0])
+    # radius of circle
+    r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
+    
+    # return center of circle and radius
+    return(x0, y0, r)
+
+
+# calculate the new locations of the vertices that need to be moved
+def circle_calculate_verts(flatten, mesh_mod, locs_2d, com, p, q, normal):
+    # changing 2d coordinates back to 3d coordinates
+    locs_3d = []
+    for loc in locs_2d:
+        locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
+    
+    if flatten: # flat circle
+        return(locs_3d)
+    
+    else: # project the locations on the existing mesh
+        vert_edges = dict_vert_edges(mesh_mod)
+        vert_faces = dict_vert_faces(mesh_mod)
+        faces = [f for f in mesh_mod.faces if not f.hide]
+        rays = [normal, -normal]
+        new_locs = []
+        for loc in locs_3d:
+            projection = False
+            if mesh_mod.vertices[loc[0]].co == loc[1]: # vertex hasn't moved
+                projection = loc[1]
+            else:
+                dif = normal.angle(loc[1]-mesh_mod.vertices[loc[0]].co)
+                if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
+                    # original location is already along projection normal
+                    projection = mesh_mod.vertices[loc[0]].co
+                else:
+                    # quick search through adjacent faces
+                    for face in vert_faces[loc[0]]:
+                        verts = [mesh_mod.vertices[v].co for v in \
+                            mesh_mod.faces[face].vertices]
+                        if len(verts) == 3: # triangle
+                            v1, v2, v3 = verts
+                            v4 = False
+                        else: # quad
+                            v1, v2, v3, v4 = verts
+                        for ray in rays:
+                            intersect = mathutils.geometry.\
+                            intersect_ray_tri(v1, v2, v3, ray, loc[1])
+                            if intersect:
+                                projection = intersect
+                                break
+                            elif v4:
+                                intersect = mathutils.geometry.\
+                                intersect_ray_tri(v1, v3, v4, ray, loc[1])
+                                if intersect:
+                                    projection = intersect
+                                    break
+                        if projection:
+                            break
+            if not projection:
+                # check if projection is on adjacent edges
+                for edgekey in vert_edges[loc[0]]:
+                    line1 = mesh_mod.vertices[edgekey[0]].co
+                    line2 = mesh_mod.vertices[edgekey[1]].co
+                    intersect, dist = mathutils.geometry.intersect_point_line(\
+                        loc[1], line1, line2)
+                    if 1e-6 < dist < 1 - 1e-6:
+                        projection = intersect
+                        break
+            if not projection:
+                # full search through the entire mesh
+                hits = []
+                for face in faces:
+                    verts = [mesh_mod.vertices[v].co for v in face.vertices]
+                    if len(verts) == 3: # triangle
+                        v1, v2, v3 = verts
+                        v4 = False
+                    else: # quad
+                        v1, v2, v3, v4 = verts
+                    for ray in rays:
+                        intersect = mathutils.geometry.intersect_ray_tri(\
+                            v1, v2, v3, ray, loc[1])
+                        if intersect:
+                            hits.append([(loc[1] - intersect).length,
+                                intersect])
+                            break
+                        elif v4:
+                            intersect = mathutils.geometry.intersect_ray_tri(\
+                                v1, v3, v4, ray, loc[1])
+                            if intersect:
+                                hits.append([(loc[1] - intersect).length,
+                                    intersect])
+                                break
+                if len(hits) >= 1:
+                    # if more than 1 hit with mesh, closest hit is new loc
+                    hits.sort()
+                    projection = hits[0][1]
+            if not projection:
+                # nothing to project on, remain at flat location
+                projection = loc[1]
+            new_locs.append([loc[0], projection])
+        
+        # return new positions of projected circle
+        return(new_locs)
+
+
+# check loops and only return valid ones
+def circle_check_loops(single_loops, loops, mapping, mesh_mod):
+    valid_single_loops = {}
+    valid_loops = []
+    for i, [loop, circular] in enumerate(loops):
+        # loop needs to have at least 3 vertices
+        if len(loop) < 3:
+            continue
+        # loop needs at least 1 vertex in the original, non-mirrored mesh
+        if mapping:
+            all_virtual = True
+            for vert in loop:
+                if mapping[vert] > -1:
+                    all_virtual = False
+                    break
+            if all_virtual:
+                continue
+        # loop has to be non-collinear
+        collinear = True
+        loc0 = mathutils.Vector(mesh_mod.vertices[loop[0]].co[:])
+        loc1 = mathutils.Vector(mesh_mod.vertices[loop[1]].co[:])
+        for v in loop[2:]:
+            locn = mathutils.Vector(mesh_mod.vertices[v].co[:])
+            if loc0 == loc1 or loc1 == locn:
+                loc0 = loc1
+                loc1 = locn
+                continue
+            d1 = loc1-loc0
+            d2 = locn-loc1
+            if -1e-6 < d1.angle(d2, 0) < 1e-6:
+                loc0 = loc1
+                loc1 = locn
+                continue
+            collinear = False
+            break
+        if collinear:
+            continue
+        # passed all tests, loop is valid
+        valid_loops.append([loop, circular])
+        valid_single_loops[len(valid_loops)-1] = single_loops[i]
+    
+    return(valid_single_loops, valid_loops)
+
+
+# calculate the location of single input vertices that need to be flattened
+def circle_flatten_singles(mesh_mod, com, p, q, normal, single_loop):
+    new_locs = []
+    for vert in single_loop:
+        loc = mathutils.Vector(mesh_mod.vertices[vert].co[:])
+        new_locs.append([vert,  loc - (loc-com).dot(normal)*normal])
+    
+    return(new_locs)
+
+
+# calculate input loops
+def circle_get_input(object, mesh, scene):
+    # get mesh with modifiers applied
+    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
+    
+    # create list of edge-keys based on selection state
+    faces = False
+    for face in mesh.faces:
+        if face.select and not face.hide:
+            faces = True
+            break
+    if faces:
+        # get selected, non-hidden , non-internal edge-keys
+        eks_selected = [key for keys in [face.edge_keys for face in \
+            mesh_mod.faces if face.select and not face.hide] for key in keys]
+        edge_count = {}
+        for ek in eks_selected:
+            if ek in edge_count:
+                edge_count[ek] += 1
+            else:
+                edge_count[ek] = 1
+        edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
+            and not edge.hide and edge_count.get(edge.key, 1)==1]
+    else:
+        # no faces, so no internal edges either
+        edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
+            and not edge.hide]
+    
+    # add edge-keys around single vertices
+    verts_connected = dict([[vert, 1] for edge in [edge for edge in \
+        mesh_mod.edges if edge.select and not edge.hide] for vert in edge.key])
+    single_vertices = [vert.index for vert in mesh_mod.vertices if \
+        vert.select and not vert.hide and not \
+        verts_connected.get(vert.index, False)]
+    
+    if single_vertices and len(mesh.faces)>0:
+        vert_to_single = dict([[v.index, []] for v in mesh_mod.vertices \
+            if not v.hide])
+        for face in [face for face in mesh_mod.faces if not face.select \
+        and not face.hide]:
+            for vert in face.vertices:
+                if vert in single_vertices:
+                    for ek in face.edge_keys:
+                        if not vert in ek:
+                            edge_keys.append(ek)
+                            if vert not in vert_to_single[ek[0]]:
+                                vert_to_single[ek[0]].append(vert)
+                            if vert not in vert_to_single[ek[1]]:
+                                vert_to_single[ek[1]].append(vert)
+                    break
+    
+    # sort edge-keys into loops
+    loops = get_connected_selections(edge_keys)
+    
+    # find out to which loops the single vertices belong
+    single_loops = dict([[i, []] for i in range(len(loops))])
+    if single_vertices and len(mesh.faces)>0:
+        for i, [loop, circular] in enumerate(loops):
+            for vert in loop:
+                if vert_to_single[vert]:
+                    for single in vert_to_single[vert]:
+                        if single not in single_loops[i]:
+                            single_loops[i].append(single)
+    
+    return(derived, mesh_mod, single_vertices, single_loops, loops)
+
+
+# recalculate positions based on the influence of the circle shape
+def circle_influence_locs(locs_2d, new_locs_2d, influence):
+    for i in range(len(locs_2d)):
+        oldx, oldy, j = locs_2d[i]
+        newx, newy, k = new_locs_2d[i]
+        altx = newx*(influence/100)+ oldx*((100-influence)/100)
+        alty = newy*(influence/100)+ oldy*((100-influence)/100)
+        locs_2d[i] = [altx, alty, j]
+    
+    return(locs_2d)
+
+
+# project 2d locations on circle, respecting distance relations between verts
+def circle_project_non_regular(locs_2d, x0, y0, r):
+    for i in range(len(locs_2d)):
+        x, y, j = locs_2d[i]
+        loc = mathutils.Vector([x-x0, y-y0])
+        loc.length = r
+        locs_2d[i] = [loc[0], loc[1], j]
+    
+    return(locs_2d)
+
+
+# project 2d locations on circle, with equal distance between all vertices
+def circle_project_regular(locs_2d, x0, y0, r):
+    # find offset angle and circling direction
+    x, y, i = locs_2d[0]
+    loc = mathutils.Vector([x-x0, y-y0])
+    loc.length = r
+    offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
+    loca = mathutils.Vector([x-x0, y-y0, 0.0])
+    if loc[1] < -1e-6:
+        offset_angle *= -1
+    x, y, j = locs_2d[1]
+    locb = mathutils.Vector([x-x0, y-y0, 0.0])
+    if loca.cross(locb)[2] >= 0:
+        ccw = 1
+    else:
+        ccw = -1
+    # distribute vertices along the circle
+    for i in range(len(locs_2d)):
+        t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
+        x = math.cos(t) * r
+        y = math.sin(t) * r
+        locs_2d[i] = [x, y, locs_2d[i][2]]
+    
+    return(locs_2d)
+
+
+# shift loop, so the first vertex is closest to the center
+def circle_shift_loop(mesh_mod, loop, com):
+    verts, circular = loop
+    distances = [[(mesh_mod.vertices[vert].co - com).length, i] \
+        for i, vert in enumerate(verts)]
+    distances.sort()
+    shift = distances[0][1]
+    loop = [verts[shift:] + verts[:shift], circular]
+    
+    return(loop)
+
+
+##########################################
+####### Curve functions ##################
+##########################################
+
+# create lists with knots and points, all correctly sorted
+def curve_calculate_knots(loop, verts_selected):
+    knots = [v for v in loop[0] if v in verts_selected]
+    points = loop[0][:]
+    # circular loop, potential for weird splines
+    if loop[1]:
+        offset = int(len(loop[0]) / 4)
+        kpos = []
+        for k in knots:
+            kpos.append(loop[0].index(k))
+        kdif = []
+        for i in range(len(kpos) - 1):
+            kdif.append(kpos[i+1] - kpos[i])
+        kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
+        kadd = []
+        for k in kdif:
+            if k > 2 * offset:
+                kadd.append([kdif.index(k), True])
+            # next 2 lines are optional, they insert
+            # an extra control point in small gaps
+            #elif k > offset:
+            #   kadd.append([kdif.index(k), False])
+        kins = []
+        krot = False
+        for k in kadd: # extra knots to be added
+            if k[1]: # big gap (break circular spline)
+                kpos = loop[0].index(knots[k[0]]) + offset
+                if kpos > len(loop[0]) - 1:
+                    kpos -= len(loop[0])
+                kins.append([knots[k[0]], loop[0][kpos]])
+                kpos2 = k[0] + 1
+                if kpos2 > len(knots)-1:
+                    kpos2 -= len(knots)
+                kpos2 = loop[0].index(knots[kpos2]) - offset
+                if kpos2 < 0:
+                    kpos2 += len(loop[0])
+                kins.append([loop[0][kpos], loop[0][kpos2]])
+                krot = loop[0][kpos2]
+            else: # small gap (keep circular spline)
+                k1 = loop[0].index(knots[k[0]])
+                k2 = k[0] + 1
+                if k2 > len(knots)-1:
+                    k2 -= len(knots)
+                k2 = loop[0].index(knots[k2])
+                if k2 < k1:
+                    dif = len(loop[0]) - 1 - k1 + k2
+                else:
+                    dif = k2 - k1
+                kn = k1 + int(dif/2)
+                if kn > len(loop[0]) - 1:
+                    kn -= len(loop[0])
+                kins.append([loop[0][k1], loop[0][kn]])
+        for j in kins: # insert new knots
+            knots.insert(knots.index(j[0]) + 1, j[1])
+        if not krot: # circular loop
+            knots.append(knots[0])
+            points = loop[0][loop[0].index(knots[0]):]
+            points += loop[0][0:loop[0].index(knots[0]) + 1]
+        else: # non-circular loop (broken by script)
+            krot = knots.index(krot)
+            knots = knots[krot:] + knots[0:krot]
+            if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
+                points = loop[0][loop[0].index(knots[0]):]
+                points += loop[0][0:loop[0].index(knots[-1])+1]
+            else:
+                points = loop[0][loop[0].index(knots[0]):\
+                    loop[0].index(knots[-1]) + 1]
+    # non-circular loop, add first and last point as knots
+    else:
+        if loop[0][0] not in knots:
+            knots.insert(0, loop[0][0])
+        if loop[0][-1] not in knots:
+            knots.append(loop[0][-1])
+    
+    return(knots, points)
+
+
+# calculate relative positions compared to first knot
+def curve_calculate_t(mesh_mod, knots, points, pknots, regular, circular):
+    tpoints = []
+    loc_prev = False
+    len_total = 0
+    
+    for p in points:
+        if p in knots:
+            loc = pknots[knots.index(p)] # use projected knot location
+        else:
+            loc = mathutils.Vector(mesh_mod.vertices[p].co[:])
+        if not loc_prev:
+            loc_prev = loc
+        len_total += (loc-loc_prev).length
+        tpoints.append(len_total)
+        loc_prev = loc
+    tknots = []
+    for p in points:
+        if p in knots:
+            tknots.append(tpoints[points.index(p)])
+    if circular:
+        tknots[-1] = tpoints[-1]
+    
+    # regular option
+    if regular:
+        tpoints_average = tpoints[-1] / (len(tpoints) - 1)
+        for i in range(1, len(tpoints) - 1):
+            tpoints[i] = i * tpoints_average
+        for i in range(len(knots)):
+            tknots[i] = tpoints[points.index(knots[i])]
+        if circular:
+            tknots[-1] = tpoints[-1]
+    
+    
+    return(tknots, tpoints)
+
+
+# change the location of non-selected points to their place on the spline
+def curve_calculate_vertices(mesh_mod, knots, tknots, points, tpoints, splines,
+interpolation, restriction):
+    newlocs = {}
+    move = []
+    
+    for p in points:
+        if p in knots:
+            continue
+        m = tpoints[points.index(p)]
+        if m in tknots:
+            n = tknots.index(m)
+        else:
+            t = tknots[:]
+            t.append(m)
+            t.sort()
+            n = t.index(m) - 1
+        if n > len(splines) - 1:
+            n = len(splines) - 1
+        elif n < 0:
+            n = 0
+        
+        if interpolation == 'cubic':
+            ax, bx, cx, dx, tx = splines[n][0]
+            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+            ay, by, cy, dy, ty = splines[n][1]
+            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+            az, bz, cz, dz, tz = splines[n][2]
+            z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
+            newloc = mathutils.Vector([x,y,z])
+        else: # interpolation == 'linear'
+            a, d, t, u = splines[n]
+            newloc = ((m-t)/u)*d + a
+
+        if restriction != 'none': # vertex movement is restricted
+            newlocs[p] = newloc
+        else: # set the vertex to its new location
+            move.append([p, newloc])
+        
+    if restriction != 'none': # vertex movement is restricted
+        for p in points:
+            if p in newlocs:
+                newloc = newlocs[p]
+            else:
+                move.append([p, mesh_mod.vertices[p].co])
+                continue
+            oldloc = mesh_mod.vertices[p].co
+            normal = mesh_mod.vertices[p].normal
+            dloc = newloc - oldloc
+            if dloc.length < 1e-6:
+                move.append([p, newloc])
+            elif restriction == 'extrude': # only extrusions
+                if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
+                    move.append([p, newloc])
+            else: # restriction == 'indent' only indentations
+                if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
+                    move.append([p, newloc])
+
+    return(move)
+
+
+# trim loops to part between first and last selected vertices (including)
+def curve_cut_boundaries(mesh_mod, loops):
+    cut_loops = []
+    for loop, circular in loops:
+        if circular:
+            # don't cut
+            cut_loops.append([loop, circular])
+            continue
+        selected = [mesh_mod.vertices[v].select for v in loop]
+        first = selected.index(True)
+        selected.reverse()
+        last = -selected.index(True)
+        if last == 0:
+            cut_loops.append([loop[first:], circular])
+        else:
+            cut_loops.append([loop[first:last], circular])
+    
+    return(cut_loops)
+
+
+# calculate input loops
+def curve_get_input(object, mesh, boundaries, scene):
+    # get mesh with modifiers applied
+    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
+    
+    # vertices that still need a loop to run through it
+    verts_unsorted = [v.index for v in mesh_mod.vertices if \
+        v.select and not v.hide]
+    # necessary dictionaries
+    vert_edges = dict_vert_edges(mesh_mod)
+    edge_faces = dict_edge_faces(mesh_mod)
+    correct_loops = []
+    
+    # find loops through each selected vertex
+    while len(verts_unsorted) > 0:
+        loops = curve_vertex_loops(mesh_mod, verts_unsorted[0], vert_edges,
+            edge_faces)
+        verts_unsorted.pop(0)
+        
+        # check if loop is fully selected
+        search_perpendicular = False
+        i = -1
+        for loop, circular in loops:
+            i += 1
+            selected = [v for v in loop if mesh_mod.vertices[v].select]
+            if len(selected) < 2:
+                # only one selected vertex on loop, don't use
+                loops.pop(i)
+                continue
+            elif len(selected) == len(loop):
+                search_perpendicular = loop
+                break
+        # entire loop is selected, find perpendicular loops
+        if search_perpendicular:
+            for vert in loop:
+                if vert in verts_unsorted:
+                    verts_unsorted.remove(vert)
+            perp_loops = curve_perpendicular_loops(mesh_mod, loop,
+                vert_edges, edge_faces)
+            for perp_loop in perp_loops:
+                correct_loops.append(perp_loop)
+        # normal input
+        else:
+            for loop, circular in loops:
+                correct_loops.append([loop, circular])
+    
+    # boundaries option
+    if boundaries:
+        correct_loops = curve_cut_boundaries(mesh_mod, correct_loops)
+    
+    return(derived, mesh_mod, correct_loops)
+
+
+# return all loops that are perpendicular to the given one
+def curve_perpendicular_loops(mesh_mod, start_loop, vert_edges, edge_faces):
+    # find perpendicular loops
+    perp_loops = []
+    for start_vert in start_loop:
+        loops = curve_vertex_loops(mesh_mod, start_vert, vert_edges,
+            edge_faces)
+        for loop, circular in loops:
+            selected = [v for v in loop if mesh_mod.vertices[v].select]
+            if len(selected) == len(loop):
+                continue
+            else:
+                perp_loops.append([loop, circular, loop.index(start_vert)])
+    
+    # trim loops to same lengths
+    shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
+        if not loop[1]]
+    if not shortest:
+        # all loops are circular, not trimming
+        return([[loop[0], loop[1]] for loop in perp_loops])
+    else:
+        shortest = min(shortest)
+    shortest_start = perp_loops[shortest[1]][2]
+    before_start = shortest_start
+    after_start = shortest[0] - shortest_start - 1
+    bigger_before = before_start > after_start
+    trimmed_loops = []
+    for loop in perp_loops:
+        # have the loop face the same direction as the shortest one
+        if bigger_before:
+            if loop[2] < len(loop[0]) / 2:
+                loop[0].reverse()
+                loop[2] = len(loop[0]) - loop[2] - 1
+        else:
+            if loop[2] > len(loop[0]) / 2:
+                loop[0].reverse()
+                loop[2] = len(loop[0]) - loop[2] - 1
+        # circular loops can shift, to prevent wrong trimming
+        if loop[1]:
+            shift = shortest_start - loop[2]
+            if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
+                loop[0] = loop[0][-shift:] + loop[0][:-shift]
+            loop[2] += shift
+            if loop[2] < 0:
+                loop[2] += len(loop[0])
+            elif loop[2] > len(loop[0]) -1:
+                loop[2] -= len(loop[0])
+        # trim
+        start = max(0, loop[2] - before_start)
+        end = min(len(loop[0]), loop[2] + after_start + 1)
+        trimmed_loops.append([loop[0][start:end], False])
+    
+    return(trimmed_loops)
+
+
+# project knots on non-selected geometry
+def curve_project_knots(mesh_mod, verts_selected, knots, points, circular):
+    # function to project vertex on edge
+    def project(v1, v2, v3):
+        # v1 and v2 are part of a line
+        # v3 is projected onto it
+        v2 -= v1
+        v3 -= v1
+        p = v3.project(v2)
+        return(p + v1)
+    
+    if circular: # project all knots
+        start = 0
+        end = len(knots)
+        pknots = []
+    else: # first and last knot shouldn't be projected
+        start = 1
+        end = -1
+        pknots = [mathutils.Vector(mesh_mod.vertices[knots[0]].co[:])]
+    for knot in knots[start:end]:
+        if knot in verts_selected:
+            knot_left = knot_right = False
+            for i in range(points.index(knot)-1, -1*len(points), -1):
+                if points[i] not in knots:
+                    knot_left = points[i]
+                    break
+            for i in range(points.index(knot)+1, 2*len(points)):
+                if i > len(points) - 1:
+                    i -= len(points)
+                if points[i] not in knots:
+                    knot_right = points[i]
+                    break
+            if knot_left and knot_right and knot_left != knot_right:
+                knot_left = mathutils.Vector(\
+                    mesh_mod.vertices[knot_left].co[:])
+                knot_right = mathutils.Vector(\
+                    mesh_mod.vertices[knot_right].co[:])
+                knot = mathutils.Vector(mesh_mod.vertices[knot].co[:])
+                pknots.append(project(knot_left, knot_right, knot))
+            else:
+                pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
+        else: # knot isn't selected, so shouldn't be changed
+            pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
+    if not circular:
+        pknots.append(mathutils.Vector(mesh_mod.vertices[knots[-1]].co[:]))
+    
+    return(pknots)
+
+
+# find all loops through a given vertex
+def curve_vertex_loops(mesh_mod, start_vert, vert_edges, edge_faces):
+    edges_used = []
+    loops = []
+        
+    for edge in vert_edges[start_vert]:
+        if edge in edges_used:
+            continue
+        loop = []
+        circular = False
+        for vert in edge:
+            active_faces = edge_faces[edge]
+            new_vert = vert
+            growing = True
+            while growing:
+                growing = False
+                new_edges = vert_edges[new_vert]
+                loop.append(new_vert)
+                if len(loop) > 1:
+                    edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
+                if len(new_edges) < 3 or len(new_edges) > 4:
+                    # pole
+                    break
+                else:
+                    # find next edge
+                    for new_edge in new_edges:
+                        if new_edge in edges_used:
+                            continue
+                        eliminate = False
+                        for new_face in edge_faces[new_edge]:
+                            if new_face in active_faces:
+                                eliminate = True
+                                break
+                        if eliminate:
+                            continue
+                        # found correct new edge
+                        active_faces = edge_faces[new_edge]
+                        v1, v2 = new_edge
+                        if v1 != new_vert:
+                            new_vert = v1
+                        else:
+                            new_vert = v2
+                        if new_vert == loop[0]:
+                            circular = True
+                        else:
+                            growing = True
+                        break
+            if circular:
+                break
+            loop.reverse()
+        loops.append([loop, circular])
+    
+    return(loops)
+
+
+##########################################
+####### Flatten functions ################
+##########################################
+
+# sort input into loops
+def flatten_get_input(mesh):
+    vert_verts = dict_vert_verts([edge.key for edge in mesh.edges \
+        if edge.select and not edge.hide])
+    verts = [v.index for v in mesh.vertices if v.select and not v.hide]
+    
+    # no connected verts, consider all selected verts as a single input
+    if not vert_verts:
+        return([[verts, False]])
+    
+    loops = []
+    while len(verts) > 0:
+        # start of loop
+        loop = [verts[0]]
+        verts.pop(0)
+        if loop[-1] in vert_verts:
+            to_grow = vert_verts[loop[-1]]
+        else:
+            to_grow = []
+        # grow loop
+        while len(to_grow) > 0:
+            new_vert = to_grow[0]
+            to_grow.pop(0)
+            if new_vert in loop:
+                continue
+            loop.append(new_vert)
+            verts.remove(new_vert)
+            to_grow += vert_verts[new_vert]
+        # add loop to loops
+        loops.append([loop, False])
+    
+    return(loops)
+
+
+# calculate position of vertex projections on plane
+def flatten_project(mesh, loop, com, normal):
+    verts = [mesh.vertices[v] for v in loop[0]]
+    verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
+        (mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
+    
+    return(verts_projected)
+
+
+##########################################
+####### Relax functions ##################
+##########################################
+
+# create lists with knots and points, all correctly sorted
+def relax_calculate_knots(loops):
+    all_knots = []
+    all_points = []
+    for loop, circular in loops:
+        knots = [[], []]
+        points = [[], []]
+        if circular:
+            if len(loop)%2 == 1: # odd
+                extend = [False, True, 0, 1, 0, 1]
+            else: # even
+                extend = [True, False, 0, 1, 1, 2]
+        else:
+            if len(loop)%2 == 1: # odd
+                extend = [False, False, 0, 1, 1, 2]
+            else: # even
+                extend = [False, False, 0, 1, 1, 2]
+        for j in range(2):
+            if extend[j]:
+                loop = [loop[-1]] + loop + [loop[0]]
+            for i in range(extend[2+2*j], len(loop), 2):
+                knots[j].append(loop[i])
+            for i in range(extend[3+2*j], len(loop), 2):
+                if loop[i] == loop[-1] and not circular:
+                    continue
+                if len(points[j]) == 0:
+                    points[j].append(loop[i])
+                elif loop[i] != points[j][0]:
+                    points[j].append(loop[i])
+            if circular:
+                if knots[j][0] != knots[j][-1]:
+                    knots[j].append(knots[j][0])
+        if len(points[1]) == 0:
+            knots.pop(1)
+            points.pop(1)
+        for k in knots:
+            all_knots.append(k)
+        for p in points:
+            all_points.append(p)
+    
+    return(all_knots, all_points)
+
+
+# calculate relative positions compared to first knot
+def relax_calculate_t(mesh_mod, knots, points, regular):
+    all_tknots = []
+    all_tpoints = []
+    for i in range(len(knots)):
+        amount = len(knots[i]) + len(points[i])
+        mix  = []
+        for j in range(amount):
+            if j%2 == 0:
+                mix.append([True, knots[i][round(j/2)]])
+            elif j == amount-1:
+                mix.append([True, knots[i][-1]])
+            else:
+                mix.append([False, points[i][int(j/2)]])
+        len_total = 0
+        loc_prev = False
+        tknots = []
+        tpoints = []
+        for m in mix:
+            loc = mathutils.Vector(mesh_mod.vertices[m[1]].co[:])
+            if not loc_prev:
+                loc_prev = loc
+            len_total += (loc - loc_prev).length
+            if m[0]:
+                tknots.append(len_total)
+            else:
+                tpoints.append(len_total)
+            loc_prev = loc
+        if regular:
+            tpoints = []
+            for p in range(len(points[i])):
+                tpoints.append((tknots[p] + tknots[p+1]) / 2)
+        all_tknots.append(tknots)
+        all_tpoints.append(tpoints)
+    
+    return(all_tknots, all_tpoints)
+
+
+# change the location of the points to their place on the spline
+def relax_calculate_verts(mesh_mod, interpolation, tknots, knots, tpoints,
+points, splines):
+    change = []
+    move = []
+    for i in range(len(knots)):
+        for p in points[i]:
+            m = tpoints[i][points[i].index(p)]
+            if m in tknots[i]:
+                n = tknots[i].index(m)
+            else:
+                t = tknots[i][:]
+                t.append(m)
+                t.sort()
+                n = t.index(m)-1
+            if n > len(splines[i]) - 1:
+                n = len(splines[i]) - 1
+            elif n < 0:
+                n = 0
+            
+            if interpolation == 'cubic':
+                ax, bx, cx, dx, tx = splines[i][n][0]
+                x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+                ay, by, cy, dy, ty = splines[i][n][1]
+                y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+                az, bz, cz, dz, tz = splines[i][n][2]
+                z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
+                change.append([p, mathutils.Vector([x,y,z])])
+            else: # interpolation == 'linear'
+                a, d, t, u = splines[i][n]
+                if u == 0:
+                    u = 1e-8
+                change.append([p, ((m-t)/u)*d + a])
+    for c in change:
+        move.append([c[0], (mesh_mod.vertices[c[0]].co + c[1]) / 2])
+    
+    return(move)
+
+
+##########################################
+####### Space functions ##################
+##########################################
+
+# calculate relative positions compared to first knot
+def space_calculate_t(mesh_mod, knots):
+    tknots = []
+    loc_prev = False
+    len_total = 0
+    for k in knots:
+        loc = mathutils.Vector(mesh_mod.vertices[k].co[:])
+        if not loc_prev:
+            loc_prev = loc
+        len_total += (loc - loc_prev).length
+        tknots.append(len_total)
+        loc_prev = loc
+    amount = len(knots)
+    t_per_segment = len_total / (amount - 1)
+    tpoints = [i * t_per_segment for i in range(amount)]
+    
+    return(tknots, tpoints)
+
+
+# change the location of the points to their place on the spline
+def space_calculate_verts(mesh_mod, interpolation, tknots, tpoints, points,
+splines):
+    move = []
+    for p in points:
+        m = tpoints[points.index(p)]
+        if m in tknots:
+            n = tknots.index(m)
+        else:
+            t = tknots[:]
+            t.append(m)
+            t.sort()
+            n = t.index(m) - 1
+        if n > len(splines) - 1:
+            n = len(splines) - 1
+        elif n < 0:
+            n = 0
+        
+        if interpolation == 'cubic':
+            ax, bx, cx, dx, tx = splines[n][0]
+            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
+            ay, by, cy, dy, ty = splines[n][1]
+            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
+            az, bz, cz, dz, tz = splines[n][2]
+            z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
+            move.append([p, mathutils.Vector([x,y,z])])
+        else: # interpolation == 'linear'
+            a, d, t, u = splines[n]
+            move.append([p, ((m-t)/u)*d + a])
+    
+    return(move)
+
+
+##########################################
+####### Operators ########################
+##########################################
+
+# bridge operator
+class Bridge(bpy.types.Operator):
+    bl_idname = 'mesh.looptools_bridge'
+    bl_label = "Bridge / Loft"
+    bl_description = "Bridge two, or loft several, loops of vertices"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    cubic_strength = bpy.props.FloatProperty(name = "Strength",
+        description = "Higher strength results in more fluid curves",
+        default = 1.0,
+        soft_min = -3.0,
+        soft_max = 3.0)
+    interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
+        items = (('cubic', "Cubic", "Gives curved results"),
+            ('linear', "Linear", "Basic, fast, straight interpolation")),
+        description = "Interpolation mode: algorithm used when creating "\
+            "segments",
+        default = 'cubic')
+    loft = bpy.props.BoolProperty(name = "Loft",
+        description = "Loft multiple loops, instead of considering them as "\
+            "a multi-input for bridging",
+        default = False)
+    loft_loop = bpy.props.BoolProperty(name = "Loop",
+        description = "Connect the first and the last loop with each other",
+        default = False)
+    min_width = bpy.props.IntProperty(name = "Minimum width",
+        description = "Segments with an edge smaller than this are merged "\
+            "(compared to base edge)",
+        default = 0,
+        min = 0,
+        max = 100,
+        subtype = 'PERCENTAGE')
+    mode = bpy.props.EnumProperty(name = "Mode",
+        items = (('basic', "Basic", "Fast algorithm"), ('shortest',
+            "Shortest edge", "Slower algorithm with better vertex matching")),
+        description = "Algorithm used for bridging",
+        default = 'shortest')
+    remove_faces = bpy.props.BoolProperty(name = "Remove faces",
+        description = "Remove faces that are internal after bridging",
+        default = True)
+    reverse = bpy.props.BoolProperty(name = "Reverse",
+        description = "Manually override the direction in which the loops "\
+            "are bridged. Only use if the tool gives the wrong result.",
+        default = False)
+    segments = bpy.props.IntProperty(name = "Segments",
+        description = "Number of segments used to bridge the gap "\
+            "(0 = automatic)",
+        default = 1,
+        min = 0,
+        soft_max = 20)
+    twist = bpy.props.IntProperty(name = "Twist",
+        description = "Twist what vertices are connected to each other",
+        default = 0)
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        #layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
+        
+        # top row
+        col_top = layout.column(align=True)
+        row = col_top.row(align=True)
+        col_left = row.column(align=True)
+        col_right = row.column(align=True)
+        col_right.active = self.segments != 1
+        col_left.prop(self, "segments")
+        col_right.prop(self, "min_width", text="")
+        # bottom row
+        bottom_left = col_left.row()
+        bottom_left.active = self.segments != 1
+        bottom_left.prop(self, "interpolation", text="")
+        bottom_right = col_right.row()
+        bottom_right.active = self.interpolation == 'cubic'
+        bottom_right.prop(self, "cubic_strength")
+        # boolean properties
+        col_top.prop(self, "remove_faces")
+        if self.loft:
+            col_top.prop(self, "loft_loop")
+        
+        # override properties
+        col_top.separator()
+        row = layout.row(align = True)
+        row.prop(self, "twist")
+        row.prop(self, "reverse")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        context.window_manager.looptools.bridge_loft = self.loft
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
+            bridge_initialise(mesh, self.interpolation)
+        settings_write(self)
+        
+        # check cache to see if we can save time
+        input_method = bridge_input_method(self.loft, self.loft_loop)
+        cached, single_loops, loops, derived, mapping = cache_read("Bridge",
+            object, mesh, input_method, False)
+        if not cached:
+            # get loops
+            loops = bridge_get_input(mesh)
+            if loops:
+                # reorder loops if there are more than 2
+                if len(loops) > 2:
+                    if self.loft:
+                        loops = bridge_sort_loops(mesh, loops, self.loft_loop)
+                    else:
+                        loops = bridge_match_loops(mesh, loops)
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Bridge", object, mesh, input_method, False, False,
+                loops, False, False)
+        
+        if loops:
+            # calculate new geometry
+            vertices = []
+            faces = []
+            max_vert_index = len(mesh.vertices)-1
+            for i in range(1, len(loops)):
+                if not self.loft and i%2 == 0:
+                    continue
+                lines = bridge_calculate_lines(mesh, loops[i-1:i+1],
+                    self.mode, self.twist, self.reverse)
+                vertex_normals = bridge_calculate_virtual_vertex_normals(mesh,
+                    lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
+                segments = bridge_calculate_segments(mesh, lines,
+                    loops[i-1:i+1], self.segments)
+                new_verts, new_faces, max_vert_index = \
+                    bridge_calculate_geometry(mesh, lines, vertex_normals,
+                    segments, self.interpolation, self.cubic_strength,
+                    self.min_width, max_vert_index)
+                if new_verts:
+                    vertices += new_verts
+                if new_faces:
+                    faces += new_faces
+            # make sure faces in loops that aren't used, aren't removed
+            if self.remove_faces and old_selected_faces:
+                bridge_save_unused_faces(mesh, old_selected_faces, loops)
+            # create vertices
+            if vertices:
+                bridge_create_vertices(mesh, vertices)
+            # create faces
+            if faces:
+                bridge_create_faces(mesh, faces, self.twist)
+                bridge_select_new_faces(mesh, len(faces), smooth)
+            # edge-data could have changed, can't use cache next run
+            if faces and not vertices:
+                cache_delete("Bridge")
+            # delete internal faces
+            if self.remove_faces and old_selected_faces:
+                bridge_remove_internal_faces(mesh, old_selected_faces)
+            # make sure normals are facing outside
+            bridge_recalculate_normals()
+        
+        terminate(global_undo)
+        return{'FINISHED'}
+
+
+# circle operator
+class Circle(bpy.types.Operator):
+    bl_idname = "mesh.looptools_circle"
+    bl_label = "Circle"
+    bl_description = "Move selected vertices into a circle shape"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    custom_radius = bpy.props.BoolProperty(name = "Radius",
+        description = "Force a custom radius",
+        default = False)
+    fit = bpy.props.EnumProperty(name = "Method",
+        items = (("best", "Best fit", "Non-linear least squares"),
+            ("inside", "Fit inside","Only move vertices towards the center")),
+        description = "Method used for fitting a circle to the vertices",
+        default = 'best')
+    flatten = bpy.props.BoolProperty(name = "Flatten",
+        description = "Flatten the circle, instead of projecting it on the " \
+            "mesh",
+        default = True)
+    influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    radius = bpy.props.FloatProperty(name = "Radius",
+        description = "Custom radius for circle",
+        default = 1.0,
+        min = 0.0,
+        soft_max = 1000.0)
+    regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the " \
+            "circle",
+        default = True)
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column()
+        
+        col.prop(self, "fit")
+        col.separator()
+        
+        col.prop(self, "flatten")
+        row = col.row(align=True)
+        row.prop(self, "custom_radius")
+        row_right = row.row(align=True)
+        row_right.active = self.custom_radius
+        row_right.prop(self, "radius", text="")
+        col.prop(self, "regular")
+        col.separator()
+                
+        col.prop(self, "influence")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        settings_write(self)
+        # check cache to see if we can save time
+        cached, single_loops, loops, derived, mapping = cache_read("Circle",
+            object, mesh, False, False)
+        if cached:
+            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
+        else:
+            # find loops
+            derived, mesh_mod, single_vertices, single_loops, loops = \
+                circle_get_input(object, mesh, context.scene)
+            mapping = get_mapping(derived, mesh, mesh_mod, single_vertices,
+                False, loops)
+            single_loops, loops = circle_check_loops(single_loops, loops,
+                mapping, mesh_mod)
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Circle", object, mesh, False, False, single_loops,
+                loops, derived, mapping)
+        
+        move = []
+        for i, loop in enumerate(loops):
+            # best fitting flat plane
+            com, normal = calculate_plane(mesh_mod, loop)
+            # if circular, shift loop so we get a good starting vertex
+            if loop[1]:
+                loop = circle_shift_loop(mesh_mod, loop, com)
+            # flatten vertices on plane
+            locs_2d, p, q = circle_3d_to_2d(mesh_mod, loop, com, normal)
+            # calculate circle
+            if self.fit == 'best':
+                x0, y0, r = circle_calculate_best_fit(locs_2d)
+            else: # self.fit == 'inside'
+                x0, y0, r = circle_calculate_min_fit(locs_2d)
+            # radius override
+            if self.custom_radius:
+                r = self.radius / p.length
+            # calculate positions on circle
+            if self.regular:
+                new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
+            else:
+                new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
+            # take influence into account
+            locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
+                self.influence)
+            # calculate 3d positions of the created 2d input
+            move.append(circle_calculate_verts(self.flatten, mesh_mod,
+                locs_2d, com, p, q, normal))
+            # flatten single input vertices on plane defined by loop
+            if self.flatten and single_loops:
+                move.append(circle_flatten_singles(mesh_mod, com, p, q,
+                    normal, single_loops[i]))
+        
+        # move vertices to new locations
+        move_verts(mesh, mapping, move, -1)
+        
+        # cleaning up 
+        if derived:
+            bpy.context.blend_data.meshes.remove(mesh_mod)
+        terminate(global_undo)
+        
+        return{'FINISHED'}
+
+
+# curve operator
+class Curve(bpy.types.Operator):
+    bl_idname = "mesh.looptools_curve"
+    bl_label = "Curve"
+    bl_description = "Turn a loop into a smooth curve"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    boundaries = bpy.props.BoolProperty(name = "Boundaries",
+        description = "Limit the tool to work within the boundaries of the "\
+            "selected vertices",
+        default = False)
+    influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Simple and fast linear algorithm")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+    regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the" \
+            "curve",
+        default = True)
+    restriction = bpy.props.EnumProperty(name = "Restriction",
+        items = (("none", "None", "No restrictions on vertex movement"),
+            ("extrude", "Extrude only","Only allow extrusions (no "\
+                "indentations)"),
+            ("indent", "Indent only", "Only allow indentation (no "\
+                "extrusions)")),
+        description = "Restrictions on how the vertices can be moved",
+        default = 'none')
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column()
+        
+        col.prop(self, "interpolation")
+        col.prop(self, "restriction")
+        col.prop(self, "boundaries")
+        col.prop(self, "regular")
+        col.separator()
+        
+        col.prop(self, "influence")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        settings_write(self)
+        # check cache to see if we can save time
+        cached, single_loops, loops, derived, mapping = cache_read("Curve",
+            object, mesh, False, self.boundaries)
+        if cached:
+            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
+        else:
+            # find loops
+            derived, mesh_mod, loops = curve_get_input(object, mesh,
+                self.boundaries, context.scene)
+            mapping = get_mapping(derived, mesh, mesh_mod, False, True, loops)
+            loops = check_loops(loops, mapping, mesh_mod)
+        verts_selected = [v.index for v in mesh_mod.vertices if v.select \
+            and not v.hide]
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Curve", object, mesh, False, self.boundaries, False,
+                loops, derived, mapping)
+        
+        move = []
+        for loop in loops:
+            knots, points = curve_calculate_knots(loop, verts_selected)
+            pknots = curve_project_knots(mesh_mod, verts_selected, knots,
+                points, loop[1])
+            tknots, tpoints = curve_calculate_t(mesh_mod, knots, points,
+                pknots, self.regular, loop[1])
+            splines = calculate_splines(self.interpolation, mesh_mod,
+                tknots, knots)
+            move.append(curve_calculate_vertices(mesh_mod, knots, tknots,
+                points, tpoints, splines, self.interpolation,
+                self.restriction))
+        
+        # move vertices to new locations
+        move_verts(mesh, mapping, move, self.influence)
+        
+        # cleaning up 
+        if derived:
+            bpy.context.blend_data.meshes.remove(mesh_mod)
+        
+        terminate(global_undo)
+        return{'FINISHED'}
+
+
+# flatten operator
+class Flatten(bpy.types.Operator):
+    bl_idname = "mesh.looptools_flatten"
+    bl_label = "Flatten"
+    bl_description = "Flatten vertices on a best-fitting plane"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    plane = bpy.props.EnumProperty(name = "Plane",
+        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
+            ("normal", "Normal", "Derive plane from averaging vertex "\
+            "normals"),
+            ("view", "View", "Flatten on a plane perpendicular to the "\
+            "viewing angle")),
+        description = "Plane on which vertices are flattened",
+        default = 'best_fit')
+    restriction = bpy.props.EnumProperty(name = "Restriction",
+        items = (("none", "None", "No restrictions on vertex movement"),
+            ("bounding_box", "Bounding box", "Vertices are restricted to "\
+            "movement inside the bounding box of the selection")),
+        description = "Restrictions on how the vertices can be moved",
+        default = 'none')
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column()
+        
+        col.prop(self, "plane")
+        #col.prop(self, "restriction")
+        col.separator()
+        
+        col.prop(self, "influence")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        settings_write(self)
+        # check cache to see if we can save time
+        cached, single_loops, loops, derived, mapping = cache_read("Flatten",
+            object, mesh, False, False)
+        if not cached:
+            # order input into virtual loops
+            loops = flatten_get_input(mesh)
+            loops = check_loops(loops, mapping, mesh)
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Flatten", object, mesh, False, False, False, loops,
+                False, False)
+        
+        move = []
+        for loop in loops:
+            # calculate plane and position of vertices on them
+            com, normal = calculate_plane(mesh, loop, method=self.plane,
+                object=object)
+            to_move = flatten_project(mesh, loop, com, normal)
+            if self.restriction == 'none':
+                move.append(to_move)
+            else:
+                move.append(to_move)
+        move_verts(mesh, False, move, self.influence)
+        
+        terminate(global_undo)
+        return{'FINISHED'}
+
+
+# relax operator
+class Relax(bpy.types.Operator):
+    bl_idname = "mesh.looptools_relax"
+    bl_label = "Relax"
+    bl_description = "Relax the loop, so it is smoother"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    input = bpy.props.EnumProperty(name = "Input",
+        items = (("all", "Parallel (all)", "Also use non-selected "\
+                "parallel loops as input"),
+            ("selected", "Selection","Only use selected vertices as input")),
+        description = "Loops that are relaxed",
+        default = 'selected')
+    interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Simple and fast linear algorithm")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+    iterations = bpy.props.EnumProperty(name = "Iterations",
+        items = (("1", "1", "One"),
+            ("3", "3", "Three"),
+            ("5", "5", "Five"),
+            ("10", "10", "Ten"),
+            ("25", "25", "Twenty-five")),
+        description = "Number of times the loop is relaxed",
+        default = "1")
+    regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the" \
+            "loop",
+        default = True)
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column()
+        
+        col.prop(self, "interpolation")
+        col.prop(self, "input")
+        col.prop(self, "iterations")
+        col.prop(self, "regular")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        settings_write(self)
+        # check cache to see if we can save time
+        cached, single_loops, loops, derived, mapping = cache_read("Relax",
+            object, mesh, self.input, False)
+        if cached:
+            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
+        else:
+            # find loops
+            derived, mesh_mod, loops = get_connected_input(object, mesh,
+                context.scene, self.input)
+            mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
+            loops = check_loops(loops, mapping, mesh_mod)
+        knots, points = relax_calculate_knots(loops)
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Relax", object, mesh, self.input, False, False, loops,
+                derived, mapping)
+        
+        for iteration in range(int(self.iterations)):
+            # calculate splines and new positions
+            tknots, tpoints = relax_calculate_t(mesh_mod, knots, points,
+                self.regular)
+            splines = []
+            for i in range(len(knots)):
+                splines.append(calculate_splines(self.interpolation, mesh_mod,
+                    tknots[i], knots[i]))
+            move = [relax_calculate_verts(mesh_mod, self.interpolation,
+                tknots, knots, tpoints, points, splines)]
+            move_verts(mesh, mapping, move, -1)
+        
+        # cleaning up 
+        if derived:
+            bpy.context.blend_data.meshes.remove(mesh_mod)
+        terminate(global_undo)
+        
+        return{'FINISHED'}
+
+
+# space operator
+class Space(bpy.types.Operator):
+    bl_idname = "mesh.looptools_space"
+    bl_label = "Space"
+    bl_description = "Space the vertices in a regular distrubtion on the loop"
+    bl_options = {'REGISTER', 'UNDO'}
+    
+    influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    input = bpy.props.EnumProperty(name = "Input",
+        items = (("all", "Parallel (all)", "Also use non-selected "\
+                "parallel loops as input"),
+            ("selected", "Selection","Only use selected vertices as input")),
+        description = "Loops that are spaced",
+        default = 'selected')
+    interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Vertices are projected on existing edges")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+    
+    @classmethod
+    def poll(cls, context):
+        ob = context.active_object
+        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
+    
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column()
+        
+        col.prop(self, "interpolation")
+        col.prop(self, "input")
+        col.separator()
+        
+        col.prop(self, "influence")
+    
+    def invoke(self, context, event):
+        # load custom settings
+        settings_load(self)
+        return self.execute(context)
+    
+    def execute(self, context):
+        # initialise
+        global_undo, object, mesh = initialise()
+        settings_write(self)
+        # check cache to see if we can save time
+        cached, single_loops, loops, derived, mapping = cache_read("Space",
+            object, mesh, self.input, False)
+        if cached:
+            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
+        else:
+            # find loops
+            derived, mesh_mod, loops = get_connected_input(object, mesh,
+                context.scene, self.input)
+            mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
+            loops = check_loops(loops, mapping, mesh_mod)
+        
+        # saving cache for faster execution next time
+        if not cached:
+            cache_write("Space", object, mesh, self.input, False, False, loops,
+                derived, mapping)
+        
+        move = []
+        for loop in loops:
+            # calculate splines and new positions
+            if loop[1]: # circular
+                loop[0].append(loop[0][0])
+            tknots, tpoints = space_calculate_t(mesh_mod, loop[0][:])
+            splines = calculate_splines(self.interpolation, mesh_mod,
+                tknots, loop[0][:])
+            move.append(space_calculate_verts(mesh_mod, self.interpolation,
+                tknots, tpoints, loop[0][:-1], splines))
+        
+        # move vertices to new locations
+        move_verts(mesh, mapping, move, self.influence)
+        
+        # cleaning up 
+        if derived:
+            bpy.context.blend_data.meshes.remove(mesh_mod)
+        terminate(global_undo)
+        
+        return{'FINISHED'}
+
+
+##########################################
+####### GUI and registration #############
+##########################################
+
+# menu containing all tools
+class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
+    bl_label = "LoopTools"
+    
+    def draw(self, context):
+        layout = self.layout
+        
+        layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
+        layout.operator("mesh.looptools_circle")
+        layout.operator("mesh.looptools_curve")
+        layout.operator("mesh.looptools_flatten")
+        layout.operator("mesh.looptools_bridge", text="Loft").loft = True
+        layout.operator("mesh.looptools_relax")
+        layout.operator("mesh.looptools_space")
+
+
+# panel containing all tools
+class VIEW3D_PT_tools_looptools(bpy.types.Panel):
+    bl_space_type = 'VIEW_3D'
+    bl_region_type = 'TOOLS'
+    bl_context = "mesh_edit"
+    bl_label = "LoopTools"
+
+    def draw(self, context):
+        layout = self.layout
+        col = layout.column(align=True)
+        lt = context.window_manager.looptools
+        
+        # bridge - first line
+        split = col.split(percentage=0.15)
+        if lt.display_bridge:
+            split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_bridge", text="Bridge").loft = False
+        # bridge - settings
+        if lt.display_bridge:
+            box = col.column(align=True).box().column()
+            #box.prop(self, "mode")
+            
+            # top row
+            col_top = box.column(align=True)
+            row = col_top.row(align=True)
+            col_left = row.column(align=True)
+            col_right = row.column(align=True)
+            col_right.active = lt.bridge_segments != 1
+            col_left.prop(lt, "bridge_segments")
+            col_right.prop(lt, "bridge_min_width", text="")
+            # bottom row
+            bottom_left = col_left.row()
+            bottom_left.active = lt.bridge_segments != 1
+            bottom_left.prop(lt, "bridge_interpolation", text="")
+            bottom_right = col_right.row()
+            bottom_right.active = lt.bridge_interpolation == 'cubic'
+            bottom_right.prop(lt, "bridge_cubic_strength")
+            # boolean properties
+            col_top.prop(lt, "bridge_remove_faces")
+            
+            # override properties
+            col_top.separator()
+            row = box.row(align = True)
+            row.prop(lt, "bridge_twist")
+            row.prop(lt, "bridge_reverse")
+        
+        # circle - first line
+        split = col.split(percentage=0.15)
+        if lt.display_circle:
+            split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_circle")
+        # circle - settings
+        if lt.display_circle:
+            box = col.column(align=True).box().column()
+            box.prop(lt, "circle_fit")
+            box.separator()
+            
+            box.prop(lt, "circle_flatten")
+            row = box.row(align=True)
+            row.prop(lt, "circle_custom_radius")
+            row_right = row.row(align=True)
+            row_right.active = lt.circle_custom_radius
+            row_right.prop(lt, "circle_radius", text="")
+            box.prop(lt, "circle_regular")
+            box.separator()
+            
+            box.prop(lt, "circle_influence")
+        
+        # curve - first line
+        split = col.split(percentage=0.15)
+        if lt.display_curve:
+            split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_curve")
+        # curve - settings
+        if lt.display_curve:
+            box = col.column(align=True).box().column()
+            box.prop(lt, "curve_interpolation")
+            box.prop(lt, "curve_restriction")
+            box.prop(lt, "curve_boundaries")
+            box.prop(lt, "curve_regular")
+            box.separator()
+            
+            box.prop(lt, "curve_influence")
+        
+        # flatten - first line
+        split = col.split(percentage=0.15)
+        if lt.display_flatten:
+            split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_flatten")
+        # flatten - settings
+        if lt.display_flatten:
+            box = col.column(align=True).box().column()
+            box.prop(lt, "flatten_plane")
+            #box.prop(lt, "flatten_restriction")
+            box.separator()
+            
+            box.prop(lt, "flatten_influence")
+        
+        # loft - first line
+        split = col.split(percentage=0.15)
+        if lt.display_loft:
+            split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_bridge", text="Loft").loft = True
+        # loft - settings
+        if lt.display_loft:
+            box = col.column(align=True).box().column()
+            #box.prop(self, "mode")
+            
+            # top row
+            col_top = box.column(align=True)
+            row = col_top.row(align=True)
+            col_left = row.column(align=True)
+            col_right = row.column(align=True)
+            col_right.active = lt.bridge_segments != 1
+            col_left.prop(lt, "bridge_segments")
+            col_right.prop(lt, "bridge_min_width", text="")
+            # bottom row
+            bottom_left = col_left.row()
+            bottom_left.active = lt.bridge_segments != 1
+            bottom_left.prop(lt, "bridge_interpolation", text="")
+            bottom_right = col_right.row()
+            bottom_right.active = lt.bridge_interpolation == 'cubic'
+            bottom_right.prop(lt, "bridge_cubic_strength")
+            # boolean properties
+            col_top.prop(lt, "bridge_remove_faces")
+            col_top.prop(lt, "bridge_loft_loop")
+            
+            # override properties
+            col_top.separator()
+            row = box.row(align = True)
+            row.prop(lt, "bridge_twist")
+            row.prop(lt, "bridge_reverse")
+        
+        # relax - first line
+        split = col.split(percentage=0.15)
+        if lt.display_relax:
+            split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_relax")
+        # relax - settings
+        if lt.display_relax:
+            box = col.column(align=True).box().column()
+            box.prop(lt, "relax_interpolation")
+            box.prop(lt, "relax_input")
+            box.prop(lt, "relax_iterations")
+            box.prop(lt, "relax_regular")
+        
+        # space - first line
+        split = col.split(percentage=0.15)
+        if lt.display_space:
+            split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
+        else:
+            split.prop(lt, "display_space", text="", icon='RIGHTARROW')
+        split.operator("mesh.looptools_space")
+        # space - settings
+        if lt.display_space:
+            box = col.column(align=True).box().column()
+            box.prop(lt, "space_interpolation")
+            box.prop(lt, "space_input")
+            box.separator()
+            
+            box.prop(lt, "space_influence")
+
+
+# property group containing all properties for the gui in the panel
+class LoopToolsProps(bpy.types.PropertyGroup):
+    """
+    Fake module like class
+    bpy.context.window_manager.looptools
+    """
+    
+    # general display properties
+    display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
+        description = "Display settings of the Bridge tool",
+        default = False)
+    display_circle = bpy.props.BoolProperty(name = "Circle settings",
+        description = "Display settings of the Circle tool",
+        default = False)
+    display_curve = bpy.props.BoolProperty(name = "Curve settings",
+        description = "Display settings of the Curve tool",
+        default = False)
+    display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
+        description = "Display settings of the Flatten tool",
+        default = False)
+    display_loft = bpy.props.BoolProperty(name = "Loft settings",
+        description = "Display settings of the Loft tool",
+        default = False)
+    display_relax = bpy.props.BoolProperty(name = "Relax settings",
+        description = "Display settings of the Relax tool",
+        default = False)
+    display_space = bpy.props.BoolProperty(name = "Space settings",
+        description = "Display settings of the Space tool",
+        default = False)
+    
+    # bridge properties
+    bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
+        description = "Higher strength results in more fluid curves",
+        default = 1.0,
+        soft_min = -3.0,
+        soft_max = 3.0)
+    bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
+        items = (('cubic', "Cubic", "Gives curved results"),
+            ('linear', "Linear", "Basic, fast, straight interpolation")),
+        description = "Interpolation mode: algorithm used when creating "\
+            "segments",
+        default = 'cubic')
+    bridge_loft = bpy.props.BoolProperty(name = "Loft",
+        description = "Loft multiple loops, instead of considering them as "\
+            "a multi-input for bridging",
+        default = False)
+    bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
+        description = "Connect the first and the last loop with each other",
+        default = False)
+    bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
+        description = "Segments with an edge smaller than this are merged "\
+            "(compared to base edge)",
+        default = 0,
+        min = 0,
+        max = 100,
+        subtype = 'PERCENTAGE')
+    bridge_mode = bpy.props.EnumProperty(name = "Mode",
+        items = (('basic', "Basic", "Fast algorithm"), ('shortest',
+            "Shortest edge", "Slower algorithm with better vertex matching")),
+        description = "Algorithm used for bridging",
+        default = 'shortest')
+    bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
+        description = "Remove faces that are internal after bridging",
+        default = True)
+    bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
+        description = "Manually override the direction in which the loops "\
+            "are bridged. Only use if the tool gives the wrong result.",
+        default = False)
+    bridge_segments = bpy.props.IntProperty(name = "Segments",
+        description = "Number of segments used to bridge the gap "\
+            "(0 = automatic)",
+        default = 1,
+        min = 0,
+        soft_max = 20)
+    bridge_twist = bpy.props.IntProperty(name = "Twist",
+        description = "Twist what vertices are connected to each other",
+        default = 0)
+    
+    # circle properties
+    circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
+        description = "Force a custom radius",
+        default = False)
+    circle_fit = bpy.props.EnumProperty(name = "Method",
+        items = (("best", "Best fit", "Non-linear least squares"),
+            ("inside", "Fit inside","Only move vertices towards the center")),
+        description = "Method used for fitting a circle to the vertices",
+        default = 'best')
+    circle_flatten = bpy.props.BoolProperty(name = "Flatten",
+        description = "Flatten the circle, instead of projecting it on the " \
+            "mesh",
+        default = True)
+    circle_influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    circle_radius = bpy.props.FloatProperty(name = "Radius",
+        description = "Custom radius for circle",
+        default = 1.0,
+        min = 0.0,
+        soft_max = 1000.0)
+    circle_regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the " \
+            "circle",
+        default = True)
+    
+    # curve properties
+    curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
+        description = "Limit the tool to work within the boundaries of the "\
+            "selected vertices",
+        default = False)
+    curve_influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Simple and fast linear algorithm")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+    curve_regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the" \
+            "curve",
+        default = True)
+    curve_restriction = bpy.props.EnumProperty(name = "Restriction",
+        items = (("none", "None", "No restrictions on vertex movement"),
+            ("extrude", "Extrude only","Only allow extrusions (no "\
+                "indentations)"),
+            ("indent", "Indent only", "Only allow indentation (no "\
+                "extrusions)")),
+        description = "Restrictions on how the vertices can be moved",
+        default = 'none')
+    
+    # flatten properties
+    flatten_influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    flatten_plane = bpy.props.EnumProperty(name = "Plane",
+        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
+            ("normal", "Normal", "Derive plane from averaging vertex "\
+            "normals"),
+            ("view", "View", "Flatten on a plane perpendicular to the "\
+            "viewing angle")),
+        description = "Plane on which vertices are flattened",
+        default = 'best_fit')
+    flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
+        items = (("none", "None", "No restrictions on vertex movement"),
+            ("bounding_box", "Bounding box", "Vertices are restricted to "\
+            "movement inside the bounding box of the selection")),
+        description = "Restrictions on how the vertices can be moved",
+        default = 'none')
+    
+    # relax properties
+    relax_input = bpy.props.EnumProperty(name = "Input",
+        items = (("all", "Parallel (all)", "Also use non-selected "\
+                "parallel loops as input"),
+            ("selected", "Selection","Only use selected vertices as input")),
+        description = "Loops that are relaxed",
+        default = 'selected')
+    relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Simple and fast linear algorithm")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+    relax_iterations = bpy.props.EnumProperty(name = "Iterations",
+        items = (("1", "1", "One"),
+            ("3", "3", "Three"),
+            ("5", "5", "Five"),
+            ("10", "10", "Ten"),
+            ("25", "25", "Twenty-five")),
+        description = "Number of times the loop is relaxed",
+        default = "1")
+    relax_regular = bpy.props.BoolProperty(name = "Regular",
+        description = "Distribute vertices at constant distances along the" \
+            "loop",
+        default = True)
+    
+    # space properties
+    space_influence = bpy.props.FloatProperty(name = "Influence",
+        description = "Force of the tool",
+        default = 100.0,
+        min = 0.0,
+        max = 100.0,
+        precision = 1,
+        subtype = 'PERCENTAGE')
+    space_input = bpy.props.EnumProperty(name = "Input",
+        items = (("all", "Parallel (all)", "Also use non-selected "\
+                "parallel loops as input"),
+            ("selected", "Selection","Only use selected vertices as input")),
+        description = "Loops that are spaced",
+        default = 'selected')
+    space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
+        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
+            ("linear", "Linear", "Vertices are projected on existing edges")),
+        description = "Algorithm used for interpolation",
+        default = 'cubic')
+
+
+# draw function for integration in menus
+def menu_func(self, context):
+    self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
+    self.layout.separator()
+
+
+# define classes for registration
+classes = [VIEW3D_MT_edit_mesh_looptools,
+    VIEW3D_PT_tools_looptools,
+    LoopToolsProps,
+    Bridge,
+    Circle,
+    Curve,
+    Flatten,
+    Relax,
+    Space]
+
+
+# registering and menu integration
+def register():
+    for c in classes:
+        bpy.utils.register_class(c)
+    bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
+    bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
+        type = LoopToolsProps)
+
+
+# unregistering and removing menus
+def unregister():
+    for c in classes:
+        bpy.utils.unregister_class(c)
+    bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
+    try:
+        del bpy.types.WindowManager.looptools
+    except:
+        pass
+
+
+if __name__ == "__main__":
+    register()