diff --git a/add_mesh_archimedean_solids.py b/add_mesh_archimedean_solids.py
new file mode 100644
index 0000000000000000000000000000000000000000..b21cf2f8bf7acc7469f38dc8246101ca63710c1e
--- /dev/null
+++ b/add_mesh_archimedean_solids.py
@@ -0,0 +1,566 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+#  This program is free software; you can redistribute it and/or
+#  modify it under the terms of the GNU General Public License
+#  as published by the Free Software Foundation; either version 2
+#  of the License, or (at your option) any later version.
+#
+#  This program is distributed in the hope that it will be useful,
+#  but WITHOUT ANY WARRANTY; without even the implied warranty of
+#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+#  GNU General Public License for more details.
+#
+#  You should have received a copy of the GNU General Public License
+#  along with this program; if not, write to the Free Software Foundation,
+#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+bl_addon_info = {
+    'name': 'Add Mesh: Archimedean Solids',
+    'author': 'Buerbaum Martin (Pontiac)',
+    'version': '0.1',
+    'blender': (2, 5, 3),
+    'location': 'View3D > Add > Mesh > Archimedean Solids',
+    'description': 'Adds various archimedean solids to the Add Mesh menu',
+    'url':
+    'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \
+        'Scripts/Add_Mesh/',  # @todo Create wiki page and fix this link.
+    'category': 'Add Mesh'}
+
+import bpy
+from math import sqrt
+from mathutils import *
+from bpy.props import *
+
+
+# Stores the values of a list of properties and the
+# operator id in a property group ('recall_op') inside the object.
+# Could (in theory) be used for non-objects.
+# Note: Replaces any existing property group with the same name!
+# ob ... Object to store the properties in.
+# op ... The operator that should be used.
+# op_args ... A dictionary with valid Blender
+#             properties (operator arguments/parameters).
+def store_recall_properties(ob, op, op_args):
+    if ob and op and op_args:
+        recall_properties = {}
+
+        # Add the operator identifier and op parameters to the properties.
+        recall_properties['op'] = op.bl_idname
+        recall_properties['args'] = op_args
+
+        # Store new recall properties.
+        ob['recall'] = recall_properties
+
+
+# Apply view rotation to objects if "Align To" for
+# new objects was set to "VIEW" in the User Preference.
+def apply_object_align(context, ob):
+    obj_align = bpy.context.user_preferences.edit.object_align
+
+    if (context.space_data.type == 'VIEW_3D'
+        and obj_align == 'VIEW'):
+            view3d = context.space_data
+            region = view3d.region_3d
+            viewMatrix = region.view_matrix
+            rot = viewMatrix.rotation_part()
+            ob.rotation_euler = rot.invert().to_euler()
+
+
+# Create a new mesh (object) from verts/edges/faces.
+# verts/edges/faces ... List of vertices/edges/faces for the
+#                       new mesh (as used in from_pydata).
+# name ... Name of the new mesh (& object).
+# edit ... Replace existing mesh data.
+# Note: Using "edit" will destroy/delete existing mesh data.
+def create_mesh_object(context, verts, edges, faces, name, edit):
+    scene = context.scene
+    obj_act = scene.objects.active
+
+    # Can't edit anything, unless we have an active obj.
+    if edit and not obj_act:
+        return None
+
+    # Create new mesh
+    mesh = bpy.data.meshes.new(name)
+
+    # Make a mesh from a list of verts/edges/faces.
+    mesh.from_pydata(verts, edges, faces)
+
+    # Update mesh geometry after adding stuff.
+    mesh.update()
+
+    # Deselect all objects.
+    bpy.ops.object.select_all(action='DESELECT')
+
+    if edit:
+        # Replace geometry of existing object
+
+        # Use the active obj and select it.
+        ob_new = obj_act
+        ob_new.selected = True
+
+        if obj_act.mode == 'OBJECT':
+            # Get existing mesh datablock.
+            old_mesh = ob_new.data
+
+            # Set object data to nothing
+            ob_new.data = None
+
+            # Clear users of existing mesh datablock.
+            old_mesh.user_clear()
+
+            # Remove old mesh datablock if no users are left.
+            if (old_mesh.users == 0):
+                bpy.data.meshes.remove(old_mesh)
+
+            # Assign new mesh datablock.
+            ob_new.data = mesh
+
+    else:
+        # Create new object
+        ob_new = bpy.data.objects.new(name, mesh)
+
+        # Link new object to the given scene and select it.
+        scene.objects.link(ob_new)
+        ob_new.selected = True
+
+        # Place the object at the 3D cursor location.
+        ob_new.location = scene.cursor_location
+
+        apply_object_align(context, ob_new)
+
+    if obj_act and obj_act.mode == 'EDIT':
+        if not edit:
+            # We are in EditMode, switch to ObjectMode.
+            bpy.ops.object.mode_set(mode='OBJECT')
+
+            # Select the active object as well.
+            obj_act.selected = True
+
+            # Apply location of new object.
+            scene.update()
+
+            # Join new object into the active.
+            bpy.ops.object.join()
+
+            # Switching back to EditMode.
+            bpy.ops.object.mode_set(mode='EDIT')
+
+            ob_new = obj_act
+
+    else:
+        # We are in ObjectMode.
+        # Make the new object the active one.
+        scene.objects.active = ob_new
+
+    return ob_new
+
+
+# A very simple "bridge" tool.
+# Connects two equally long vertex rows with faces.
+# Returns a list of the new faces (list of  lists)
+#
+# vertIdx1 ... First vertex list (list of vertex indices).
+# vertIdx2 ... Second vertex list (list of vertex indices).
+# closed ... Creates a loop (first & last are closed).
+# flipped ... Invert the normal of the face(s).
+#
+# Note: You can set vertIdx1 to a single vertex index to create
+#       a fan/star of faces.
+# Note: If both vertex idx list are the same length they have
+#       to have at least 2 vertices.
+def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
+    faces = []
+
+    if not vertIdx1 or not vertIdx2:
+        return None
+
+    if len(vertIdx1) < 2 and len(vertIdx2) < 2:
+        return None
+
+    fan = False
+    if (len(vertIdx1) != len(vertIdx2)):
+        if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
+            fan = True
+        else:
+            return None
+
+    total = len(vertIdx2)
+
+    if closed:
+        # Bridge the start with the end.
+        if flipped:
+            face = [
+                vertIdx1[0],
+                vertIdx2[0],
+                vertIdx2[total - 1]]
+            if not fan:
+                face.append(vertIdx1[total - 1])
+            faces.append(face)
+
+        else:
+            face = [vertIdx2[0], vertIdx1[0]]
+            if not fan:
+                face.append(vertIdx1[total - 1])
+            face.append(vertIdx2[total - 1])
+            faces.append(face)
+
+    # Bridge the rest of the faces.
+    for num in range(total - 1):
+        if flipped:
+            if fan:
+                face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
+            else:
+                face = [vertIdx2[num], vertIdx1[num],
+                    vertIdx1[num + 1], vertIdx2[num + 1]]
+            faces.append(face)
+        else:
+            if fan:
+                face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
+            else:
+                face = [vertIdx1[num], vertIdx2[num],
+                    vertIdx2[num + 1], vertIdx1[num + 1]]
+            faces.append(face)
+
+    return faces
+
+
+def add_rhombicuboctahedron(quad_size=sqrt(2.0) / (1.0 + sqrt(2) / 2.0)):
+    faces = []
+    verts = []
+
+    size = 2.0
+
+    # Top & bottom faces (quads)
+    face_top = []
+    face_bot = []
+    for z, up in [(size / 2.0, True), (-size / 2.0, False)]:
+        face = []
+        face.append(len(verts))
+        verts.append(Vector(quad_size / 2.0, quad_size / 2.0, z))
+        face.append(len(verts))
+        verts.append(Vector(quad_size / 2.0, -quad_size / 2.0, z))
+        face.append(len(verts))
+        verts.append(Vector(-quad_size / 2.0, -quad_size / 2.0, z))
+        face.append(len(verts))
+        verts.append(Vector(-quad_size / 2.0, quad_size / 2.0, z))
+
+        if up:
+            # Top face (quad)
+            face_top = face
+        else:
+            # Bottom face (quad)
+            face_bot = face
+
+    edgeloop_up = []
+    edgeloop_low = []
+    for z, up in [(quad_size / 2.0, True), (-quad_size / 2.0, False)]:
+        edgeloop = []
+
+        edgeloop.append(len(verts))
+        verts.append(Vector(size / 2.0, quad_size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(size / 2.0, -quad_size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(quad_size / 2.0, -size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(-quad_size / 2.0, -size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(-size / 2.0, -quad_size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(-size / 2.0, quad_size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(-quad_size / 2.0, size / 2.0, z))
+        edgeloop.append(len(verts))
+        verts.append(Vector(quad_size / 2.0, size / 2.0, z))
+
+        if up:
+            # Upper 8-sider
+            edgeloop_up = edgeloop
+        else:
+            # Lower 8-sider
+            edgeloop_low = edgeloop
+
+    face_top_idx = len(faces)
+    faces.append(face_top)
+    faces.append(face_bot)
+    faces_middle = createFaces(edgeloop_low, edgeloop_up, closed=True)
+    faces.extend(faces_middle)
+
+    # Upper Quads
+    faces.append([edgeloop_up[0], face_top[0], face_top[1], edgeloop_up[1]])
+    faces.append([edgeloop_up[2], face_top[1], face_top[2], edgeloop_up[3]])
+    faces.append([edgeloop_up[4], face_top[2], face_top[3], edgeloop_up[5]])
+    faces.append([edgeloop_up[6], face_top[3], face_top[0], edgeloop_up[7]])
+
+    # Upper Tris
+    faces.append([face_top[0], edgeloop_up[0], edgeloop_up[7]])
+    faces.append([face_top[1], edgeloop_up[2], edgeloop_up[1]])
+    faces.append([face_top[2], edgeloop_up[4], edgeloop_up[3]])
+    faces.append([face_top[3], edgeloop_up[6], edgeloop_up[5]])
+
+    # Lower Quads
+    faces.append([edgeloop_low[0], edgeloop_low[1], face_bot[1], face_bot[0]])
+    faces.append([edgeloop_low[2], edgeloop_low[3], face_bot[2], face_bot[1]])
+    faces.append([edgeloop_low[4], edgeloop_low[5], face_bot[3], face_bot[2]])
+    faces.append([edgeloop_low[6], edgeloop_low[7], face_bot[0], face_bot[3]])
+
+    # Lower Tris
+    faces.append([face_bot[0], edgeloop_low[7], edgeloop_low[0]])
+    faces.append([face_bot[1], edgeloop_low[1], edgeloop_low[2]])
+    faces.append([face_bot[2], edgeloop_low[3], edgeloop_low[4]])
+    faces.append([face_bot[3], edgeloop_low[5], edgeloop_low[6]])
+
+    # Invert face normal
+    f = faces[face_top_idx]
+    faces[face_top_idx] = [f[0]] + list(reversed(f[1:]))
+
+    return verts, faces
+
+
+# Returns the middle location of a _regular_ polygon.
+def get_polygon_center(verts, ngons):
+    faces = []
+
+    for f in ngons:
+        loc = Vector(0.0, 0.0, 0.0)
+
+        for vert_idx in f:
+            loc = loc + Vector(verts[vert_idx])
+
+        loc = loc / len(f)
+
+        vert_idx_new = len(verts)
+        verts.append(loc)
+
+        face_star = createFaces([vert_idx_new], f, closed=True)
+        faces.extend(face_star)
+
+    return verts, faces
+
+
+def subdivide_edge_2_cuts(v1, v2, edgelength_middle):
+    v1 = Vector(v1)
+    v2 = Vector(v2)
+
+    length = (v2 - v1).length
+    vn = (v2 - v1).normalize()
+
+    edgelength_1a_b2 = (length - edgelength_middle) / 2.0
+
+    va = v1 + vn * edgelength_1a_b2
+    vb = v1 + vn * (edgelength_1a_b2 + edgelength_middle)
+
+    return (va, vb)
+
+
+def add_truncated_tetrahedron(hexagon_side=2.0 * sqrt(2.0) / 3.0,
+    star_ngons=False):
+    verts = []
+    faces = []
+
+    # Vertices of a simple Tetrahedron
+    verts_tet = [
+        (1.0, 1.0, -1.0),    # tip 0
+        (-1.0, 1.0, 1.0),    # tip 1
+        (1.0, -1.0, 1.0),    # tip 2
+        (-1.0, -1.0, -1.0)]  # tip 3
+
+    # Calculate truncated vertices
+    tri0 = []
+    tri1 = []
+    tri2 = []
+    tri3 = []
+
+    va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[1], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri0.append(va_idx)
+    tri1.append(vb_idx)
+    va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[2], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri0.append(va_idx)
+    tri2.append(vb_idx)
+    va, vb = subdivide_edge_2_cuts(verts_tet[0], verts_tet[3], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri0.append(va_idx)
+    tri3.append(vb_idx)
+    va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[2], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri1.append(va_idx)
+    tri2.append(vb_idx)
+    va, vb = subdivide_edge_2_cuts(verts_tet[1], verts_tet[3], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri1.append(va_idx)
+    tri3.append(vb_idx)
+    va, vb = subdivide_edge_2_cuts(verts_tet[2], verts_tet[3], hexagon_side)
+    va_idx, vb_idx = len(verts), len(verts) + 1
+    verts.extend([va, vb])
+    tri2.append(va_idx)
+    tri3.append(vb_idx)
+
+    # Hexagon polygons (n-gons)
+    ngon012 = [tri0[1], tri0[0], tri1[0], tri1[1], tri2[1], tri2[0]]
+    ngon031 = [tri0[0], tri0[2], tri3[0], tri3[1], tri1[2], tri1[0]]
+    ngon023 = [tri0[2], tri0[1], tri2[0], tri2[2], tri3[2], tri3[0]]
+    ngon132 = [tri1[1], tri1[2], tri3[1], tri3[2], tri2[2], tri2[1]]
+
+    if star_ngons:
+        # Create stars from hexagons
+        verts, faces_star = get_polygon_center(verts,
+            [ngon012, ngon031, ngon023, ngon132])
+        faces.extend(faces_star)
+
+    else:
+        # Create quads from hexagons
+        (quad1, quad2) = (
+            [ngon012[0], ngon012[1], ngon012[2], ngon012[3]],
+            [ngon012[0], ngon012[3], ngon012[4], ngon012[5]])
+        faces.extend([quad1, quad2])
+        (quad1, quad2) = (
+            [ngon031[0], ngon031[1], ngon031[2], ngon031[3]],
+            [ngon031[0], ngon031[3], ngon031[4], ngon031[5]])
+        faces.extend([quad1, quad2])
+        (quad1, quad2) = (
+            [ngon023[0], ngon023[1], ngon023[2], ngon023[3]],
+            [ngon023[0], ngon023[3], ngon023[4], ngon023[5]])
+        faces.extend([quad1, quad2])
+        (quad1, quad2) = (
+            [ngon132[0], ngon132[1], ngon132[2], ngon132[3]],
+            [ngon132[0], ngon132[3], ngon132[4], ngon132[5]])
+        faces.extend([quad1, quad2])
+
+    # Invert face normals
+    tri1 = [tri1[0]] + list(reversed(tri1[1:]))
+    tri3 = [tri3[0]] + list(reversed(tri3[1:]))
+
+    # Tri faces
+    faces.extend([tri0, tri1, tri2, tri3])
+
+    return verts, faces
+
+
+class AddRhombicuboctahedron(bpy.types.Operator):
+    '''Add a mesh for a thombicuboctahedron.'''
+    bl_idname = 'mesh.primitive_thombicuboctahedron_add'
+    bl_label = 'Add Rhombicuboctahedron'
+    bl_description = 'Create a mesh for a thombicuboctahedron.'
+    bl_options = {'REGISTER', 'UNDO'}
+
+    # edit - Whether to add or update.
+    edit = BoolProperty(name='',
+        description='',
+        default=False,
+        options={'HIDDEN'})
+    quad_size = FloatProperty(name="Quad Size",
+        description="Size of the orthogonal quad faces.",
+        min=0.01,
+        max=1.99,
+        default=sqrt(2.0) / (1.0 + sqrt(2) / 2.0))
+
+    def execute(self, context):
+        props = self.properties
+
+        verts, faces = add_rhombicuboctahedron(props.quad_size)
+
+        obj = create_mesh_object(context, verts, [], faces,
+            'Rhombicuboctahedron', props.edit)
+
+        # Store 'recall' properties in the object.
+        recall_args_list = {
+            'edit': True,
+            'quad_size': props.quad_size}
+        store_recall_properties(obj, self, recall_args_list)
+
+        return {'FINISHED'}
+
+
+class AddTruncatedTetrahedron(bpy.types.Operator):
+    '''Add a mesh for a truncated tetrahedron.'''
+    bl_idname = 'mesh.primitive_truncated_tetrahedron_add'
+    bl_label = 'Add Truncated Tetrahedron'
+    bl_description = 'Create a mesh for a truncated tetrahedron.'
+    bl_options = {'REGISTER', 'UNDO'}
+
+    # edit - Whether to add or update.
+    edit = BoolProperty(name='',
+        description='',
+        default=False,
+        options={'HIDDEN'})
+    hexagon_side = FloatProperty(name='Hexagon Side',
+        description='One length of the hexagon side' \
+            ' (on the original tetrahedron edge).',
+        min=0.01,
+        max=2.0 * sqrt(2.0) - 0.01,
+        default=2.0 * sqrt(2.0) / 3.0)
+    star_ngons = BoolProperty(name='Star N-Gon',
+        description='Create star-shaped hexagons.',
+        default=False)
+
+    def execute(self, context):
+        props = self.properties
+
+        verts, faces = add_truncated_tetrahedron(
+            props.hexagon_side,
+            props.star_ngons)
+
+        obj = create_mesh_object(context, verts, [], faces,
+            'TrTetrahedron', props.edit)
+
+        # Store 'recall' properties in the object.
+        recall_args_list = {
+            'edit': True,
+            'hexagon_side': props.hexagon_side,
+            'star_ngons': props.star_ngons}
+        store_recall_properties(obj, self, recall_args_list)
+
+        return {'FINISHED'}
+
+
+class INFO_MT_mesh_archimedean_solids_add(bpy.types.Menu):
+    # Define the "Archimedean Solids" menu
+    bl_idname = "INFO_MT_mesh_archimedean_solids_add"
+    bl_label = "Archimedean Solids"
+
+    def draw(self, context):
+        layout = self.layout
+        layout.operator_context = 'INVOKE_REGION_WIN'
+        layout.operator("mesh.primitive_truncated_tetrahedron_add",
+            text="Truncated Tetrahedron")
+        layout.operator("mesh.primitive_thombicuboctahedron_add",
+            text="Rhombicuboctahedron")
+
+import space_info
+
+# Define "Archimedean Solids" menu
+menu_func = (lambda self, context: self.layout.menu(
+    "INFO_MT_mesh_archimedean_solids_add", icon="PLUGIN"))
+
+
+def register():
+    # Register the operators/menus.
+    bpy.types.register(AddRhombicuboctahedron)
+    bpy.types.register(AddTruncatedTetrahedron)
+    bpy.types.register(INFO_MT_mesh_archimedean_solids_add)
+
+    # Add "Archimedean Solids" menu to the "Add Mesh" menu
+    space_info.INFO_MT_mesh_add.append(menu_func)
+
+
+def unregister():
+    # Unregister the operators/menus.
+    bpy.types.unregister(AddRhombicuboctahedron)
+    bpy.types.unregister(AddTruncatedTetrahedron)
+    bpy.types.unregister(INFO_MT_mesh_archimedean_solids_add)
+
+    # Remove "Archimedean Solids" menu from the "Add Mesh" menu.
+    space_info.INFO_MT_mesh_add.remove(menu_func)
+
+if __name__ == "__main__":
+    register()