From f3070e7ed17bb2afa6037f259e853df9eb394101 Mon Sep 17 00:00:00 2001
From: Campbell Barton <ideasman42@gmail.com>
Date: Thu, 6 Oct 2011 00:05:27 +0000
Subject: [PATCH] removng curve utils, Id like to keep working on this but
 currently its not used anywhere.

---
 modules/curve_utils.py | 994 -----------------------------------------
 1 file changed, 994 deletions(-)
 delete mode 100644 modules/curve_utils.py

diff --git a/modules/curve_utils.py b/modules/curve_utils.py
deleted file mode 100644
index 529ddd0c0..000000000
--- a/modules/curve_utils.py
+++ /dev/null
@@ -1,994 +0,0 @@
-# ##### BEGIN GPL LICENSE BLOCK #####
-#
-#  This program is free software; you can redistribute it and/or
-#  modify it under the terms of the GNU General Public License
-#  as published by the Free Software Foundation; either version 2
-#  of the License, or (at your option) any later version.
-#
-#  This program is distributed in the hope that it will be useful,
-#  but WITHOUT ANY WARRANTY; without even the implied warranty of
-#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-#  GNU General Public License for more details.
-#
-#  You should have received a copy of the GNU General Public License
-#  along with this program; if not, write to the Free Software Foundation,
-#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
-#
-# ##### END GPL LICENSE BLOCK #####
-
-# <pep8 compliant>
-
-import bpy
-
-
-def vis_curve_object():
-    scene = bpy.data.scenes[0]  # weak!
-    cu = bpy.data.curves.new(name="Line", type='CURVE')
-    ob = bpy.data.objects.new(name="Test", object_data=cu)
-    ob.layers = [True] * 20
-    base = scene.objects.link(ob)
-    return ob
-
-
-def vis_curve_spline(p1, h1, p2, h2):
-    ob = vis_curve_object()
-    spline = ob.data.splines.new(type='BEZIER')
-    spline.bezier_points.add(1)
-    spline.bezier_points[0].co = p1.to_3d()
-    spline.bezier_points[1].co = p2.to_3d()
-
-    spline.bezier_points[0].handle_right = h1.to_3d()
-    spline.bezier_points[1].handle_left = h2.to_3d()
-
-
-def vis_circle_object(co, rad=1.0):
-    import math
-    scene = bpy.data.scenes[0]  # weak!
-    ob = bpy.data.objects.new(name="Circle", object_data=None)
-    ob.rotation_euler.x = math.pi / 2
-    ob.location = co.to_3d()
-    ob.empty_draw_size = rad
-    ob.layers = [True] * 20
-    base = scene.objects.link(ob)
-    return ob
-
-
-def visualize_line(p1, p2, p3=None, rad=None):
-    pair = p1.to_3d(), p2.to_3d()
-
-    ob = vis_curve_object()
-    spline = ob.data.splines.new(type='POLY')
-    spline.points.add(1)
-    for co, v in zip((pair), spline.points):
-        v.co.xyz = co
-
-    if p3:
-        spline = ob.data.splines.new(type='POLY')
-        spline.points[0].co.xyz = p3.to_3d()
-        if rad is not None:
-            vis_circle_object(p3, rad)
-
-
-def treat_points(points,
-                 double_limit=0.0001,
-                 ):
-
-    # first remove doubles
-    tot_len = 0.0
-    if double_limit != 0.0:
-        i = len(points) - 1
-        while i > 0:
-            length = (points[i] - points[i - 1]).length
-            if length < double_limit:
-                del points[i]
-                if i >= len(points):
-                    i -= 1
-            else:
-                tot_len += length
-                i -= 1
-    return tot_len
-
-
-def solve_curvature(p1, p2, n1, n2, fac, fallback):
-    """ Add a nice circular curvature on
-    """
-    from mathutils.geometry import (intersect_line_line,
-                                    )
-
-    p1_a = p1 + n1
-    p2_a = p2 - n2
-
-    isect = intersect_line_line(p1,
-                                p1_a,
-                                p2,
-                                p2_a,
-                                )
-
-    if isect:
-        corner = isect[0].lerp(isect[1], 0.5)
-    else:
-        corner = None
-
-    if corner:
-        p1_first_order = p1.lerp(corner, fac)
-        p2_first_order = corner.lerp(p2, fac)
-        co = p1_first_order.lerp(p2_first_order, fac)
-
-        return co
-    else:
-        # cant interpolate. just return interpolated value
-        return fallback.copy()  # p1.lerp(p2, fac)
-
-
-def points_to_bezier(points_orig,
-                     double_limit=0.0001,
-                     kink_tolerance=0.25,
-                     bezier_tolerance=0.05,  # error distance, scale dependant
-                     subdiv=8,
-                     angle_span=0.95,  # 1.0 tries to evaluate splines of 180d
-                     ):
-
-    import math
-    from mathutils import Vector
-
-    class Point(object):
-        __slots__ = ("co",
-                     "angle",
-                     "no",
-                     "is_joint",
-                     "next",
-                     "prev",
-                     )
-
-        def __init__(self, co):
-            self.co = co
-            self.is_joint = False
-
-        def calc_angle(self):
-            if self.prev is None or self.next is None:
-                self.angle = 0.0
-            else:
-                va = self.co - self.prev.co
-                vb = self.next.co - self.co
-                self.angle = va.angle(vb, 0.0)
-
-        def angle_diff(self):
-            """ use for detecting joints, detect difference in angle from
-                surrounding points.
-            """
-            if self.prev is None or self.next is None:
-                return 0.0
-            else:
-                if (self.angle > self.prev.angle and
-                            self.angle > self.next.angle):
-                    return abs(self.angle - self.prev.angle) / math.pi
-                else:
-                    return 0.0
-
-        def calc_normal(self):
-            v1 = v2 = None
-            if self.prev and not self.prev.is_joint:
-                v1 = (self.co - self.prev.co).normalized()
-            if self.next and not self.next.is_joint:
-                v2 = (self.next.co - self.co).normalized()
-
-            if v1 and v2:
-                self.no = (v1 + v2).normalized()
-            elif v1:
-                self.no = v1
-            elif v2:
-                self.no = v2
-            else:
-                print("Warning, assigning dummy normal")
-                self.no = Vector((0.0, 1, 0.0))
-
-    class Spline(object):
-        __slots__ = ("points",
-                     "handle_left",
-                     "handle_right",
-                     "next",
-                     "prev",
-                     )
-
-        def __init__(self, points):
-            self.points = points
-
-        def link_points(self):
-
-            if hasattr(self.points[0], "prev"):
-                raise Exception("already linked")
-
-            p_prev = None
-            for p in self.points:
-                p.prev = p_prev
-                p_prev = p
-
-            p_prev = None
-            for p in reversed(self.points):
-                p.next = p_prev
-                p_prev = p
-
-        def split(self, i, is_joint=False):
-            prev = self.prev
-            next = self.next
-
-            if is_joint:
-                self.points[i].is_joint = True
-
-            # share a point
-            spline_a = Spline(self.points[:i + 1])
-            spline_b = Spline(self.points[i:])
-
-            # invalidate self, dont reuse!
-            self.points = None
-
-            spline_a.next = spline_b
-            spline_b.prev = spline_a
-
-            spline_a.prev = prev
-            spline_b.next = next
-            if prev:
-                prev.next = spline_a
-            if next:
-                next.prev = spline_b
-
-            return spline_a, spline_b
-
-        def calc_angle(self):
-            for p in self.points:
-                p.calc_angle()
-
-        def calc_normal(self):
-            for p in self.points:
-                p.calc_normal()
-
-        def calc_all(self):
-            self.link_points()
-            self.calc_angle()
-            self.calc_normal()
-
-        #~ def total_angle(self):
-            #~ return abs(sum((p.angle for p in self.points)))
-
-        def redistribute(self, segment_length, smooth=False):
-            if len(self.points) == 1:
-                return
-
-            from mathutils.geometry import intersect_line_sphere
-
-            p_line = p = self.points[0]
-            points = [(p.co.copy(), p.co.copy())]
-            p = p.next
-
-            def point_add(co, p=None):
-                co = co.copy()
-                co_smooth = co.copy()
-
-                if smooth:
-                    if p is None:
-                        pass  # works ok but no smoothing
-                    elif (p.prev.no - p.no).length < 0.001:
-                        pass  # normals are too similar, paralelle
-                    elif (p.angle > 0.0) != (p.prev.angle > 0.0):
-                        pass
-                    else:
-                        # visualize_line(p.co, p.co + p.no)
-
-                        # this assumes co is on the line
-                        fac = ((p.prev.co - co).length /
-                               (p.prev.co - p.co).length)
-
-                        assert(fac >= 0.0 and fac <= 1.0)
-
-                        co_smooth = solve_curvature(p.prev.co,
-                                                    p.co,
-                                                    p.prev.no,
-                                                    p.no,
-                                                    fac,
-                                                    co,
-                                                    )
-
-                points.append((co, co_smooth))
-
-            def point_step(p):
-                if p.is_joint or p.next is None:
-                    point_add(p.co)
-                    return None
-                else:
-                    return p.next
-
-            print("START")
-            while p:
-                # we want the first pont past the segment size
-
-                #if p.is_joint:
-                #    vis_circle_object(p.co)
-
-                length = (points[-1][0] - p.co).length
-
-                if abs(length - segment_length) < 0.00001:
-                    # close enough to be considered on the circle bounds
-                    point_add(p.co)
-                    p_line = p
-                    p = point_step(p)
-                elif length < segment_length:
-                    p = point_step(p)
-                else:
-                    # the point is further then the segment width
-                    p_start = points[-1][0] if p.prev is p_line else p.prev.co
-
-                    if (p_start - points[-1][0]).length > segment_length:
-                        raise Exception("eek2")
-                    if (p.co - points[-1][0]).length < segment_length:
-                        raise Exception("eek3")
-
-                    # print(p_start, p.co, points[-1][0], segment_length)
-                    i1, i2 = intersect_line_sphere(p_start,
-                                                   p.co,
-                                                   points[-1][0],
-                                                   segment_length,
-                                                   )
-                    # print()
-                    # print(i1, i2)
-                    # assert(i1 is not None)
-                    if i1 is not None:
-                        point_add(i1, p)
-                        p_line = p.prev
-                    elif i2:
-                        raise Exception("err")
-
-                    elif i1 is None and i2 is None:
-                        visualize_line(p_start,
-                                       p.co,
-                                       points[-1][0],
-                                       segment_length,
-                                       )
-
-                        # XXX FIXME
-                        # raise Exception("BAD!s")
-                        point_add(p.co)
-                        p_line = p
-                        p = point_step(p)
-
-            joint = self.points[0].is_joint, self.points[-1].is_joint
-
-            self.points = [Point(p[1]) for p in points]
-
-            self.points[0].is_joint, self.points[-1].is_joint = joint
-
-            self.calc_all()
-            # raise Exception("END")
-
-        def intersect_line(self, l1, l2, reverse=False):
-            """ Spectial kind of intersection, works in 3d on the plane
-                defimed by the points normal and the line.
-            """
-
-            from mathutils.geometry import (intersect_point_line,
-                                            )
-
-            if reverse:
-                p_first = self.points[-1]
-                no = -self.points[-1].no
-                point_iter = reversed(self.points[:-1])
-            else:
-                p_first = self.points[0]
-                no = self.points[0].no
-                point_iter = self.points[1:]
-
-            # calculate the line right angles to the line
-            bi_no = (no - no.project(l2 - l1)).normalized()
-
-            bi_l1 = p_first.co
-            bi_l2 = p_first.co + bi_no
-
-            for p_apex in point_iter:
-                ix, fac = intersect_point_line(p_apex.co, bi_l1, bi_l2)
-
-                if fac < 0.0001:
-
-                    if reverse:
-                        p_apex_other = p_apex.next
-                    else:
-                        p_apex_other = p_apex.prev
-
-                    # find the exact point on the line between the apex and
-                    # the middle
-                    p_test_1 = intersect_point_line(p_apex.co,
-                                                    l1,
-                                                    l2)[0]
-                    p_test_2 = intersect_point_line(p_apex_other.co,
-                                                    l1,
-                                                    l2)[0]
-
-                    w1 = (p_test_1 - p_apex.co).length
-                    w2 = (p_test_2 - p_apex_other.co).length
-
-                    #assert(w1 + w2 != 0)
-                    try:
-                        fac = w1 / (w1 + w2)
-                    except ZeroDivisionError:
-                        fac = 0.5
-                    assert(fac >= 0.0 and fac <= 1.0)
-
-                    p_apex_co = p_apex.co.lerp(p_apex_other.co, fac)
-                    p_apex_no = p_apex.no.lerp(p_apex_other.no, fac)
-                    p_apex_no.normalize()
-
-                    # visualize_line(p_mid.to_3d(), corner.to_3d())
-                    # visualize_line(p_apex.co.to_3d(), p_apex_co.to_3d())
-
-                    return p_apex_co, p_apex_no, p_apex
-
-            # intersection not found
-            return None, None, None
-
-
-        @staticmethod
-        def bez_solve(p0, p1, p2, p3, u, v):
-            ui = 1.0 - u
-            vi = 1.0 - v
-            u_p3 = u * u * u
-            v_p3 = v * v * v
-            ui_p3 = ui * ui * ui
-            vi_p3 = vi * vi * vi
-
-            a = 3.0 * ui * ui * u
-            b = 3.0 * ui * u * u
-            c = 3.0 * vi * vi * v
-            d = 3.0 * vi * v * v
-            det = a * d - b * c
-
-            if det == 0.0:
-                assert(0)
-                return 0
-
-            q1 = p1 - (ui_p3 * p0 + u_p3 * p3)
-            q2 = p2 - (vi_p3 * p0 + v_p3 * p3)
-
-            return ((d * q1 - b * q2) / det,
-                    (-c * q1 + a * q2) / det
-                    )
-
-        def bezier_solve__math1(self):
-            """ Calculate bezier handles,
-                assume the splines have been broken up.
-
-                http://polymathprogrammer.com/
-            """
-
-            def get(f, min=0.0, max=1.0):
-                f = (f * (max - min) + min)
-                return self.points[int((len(self.points) - 1) * f)].co
-            
-            
-            p1 = get(0.0)
-            p2 = get(1.0)
-            i1 = get(1/3)
-            i2 = get(2/3)
-
-            pos = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
-            self.handle_left = self.points[0].co + (pos[0] - self.points[0].co)
-            self.handle_right = self.points[-1].co + (pos[1] - self.points[-1].co)
-        
-        def bezier_solve__math2(self):
-
-            def get(f, min=0.0, max=1.0):
-                f = (f * (max - min) + min)
-                return self.points[int((len(self.points) - 1) * f)].co
-
-            p1 = get(0.0, min=0.0, max=0.5)
-            p2 = get(1.0, min=0.0, max=0.5)
-            i1 = get(1/3, min=0.0, max=0.5)
-            i2 = get(2/3, min=0.0, max=0.5)
-            
-            pos_a = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
-            
-            p1 = get(0.0, min=0.5, max=1.0)
-            p2 = get(1.0, min=0.5, max=1.0)
-            i1 = get(1/3, min=0.5, max=1.0)
-            i2 = get(2/3, min=0.5, max=1.0)
-            
-            pos_b = __class__.bez_solve(p1, i1, i2, p2, 1.0 / 3.0, 2.0 / 3.0)
-
-            self.handle_left = self.points[0].co + (pos_a[0] - self.points[0].co) * 2
-            self.handle_right = self.points[-1].co + (pos_b[1] - self.points[-1].co) * 2
-
-        def bezier_solve__inkscape(self):
-                        
-            # static void
-            # estimate_bi(Point bezier[4], unsigned const ei,
-            #             Point const data[], double const u[], unsigned const len)
-            def estimate_bi(bezier, ei, data, u):
-
-                def B0(u): return ( ( 1.0 - u )  *  ( 1.0 - u )  *  ( 1.0 - u ) )
-                def B1(u): return ( 3 * u  *  ( 1.0 - u )  *  ( 1.0 - u ) )
-                def B2(u): return ( 3 * u * u  *  ( 1.0 - u ) )
-                def B3(u): return ( u * u * u )
-
-                # assert( not (1 <= ei and ei <= 2))
-                oi = 3 - ei
-                num = [0.0, 0.0, 0.0]
-                den = 0.0
-                
-                for i in range(len(data)):
-                    ui = u[i];
-                    b = [
-                        B0(ui),
-                        B1(ui),
-                        B2(ui),
-                        B3(ui)
-                    ]
-
-                    for d in range(3):
-                        num[d] += (b[ei] * (b[0]  * bezier[0][d] +
-                                           b[oi] * bezier[oi][d] +
-                                           b[3]  * bezier[3][d] +
-                                           - data[i][d]))
-
-                    den -= b[ei] * b[ei]
-
-                if den:
-                    for d in range(3):
-                        bezier[ei][d] = num[d] / den
-                else:
-                    bezier[ei] = (oi * bezier[0] + ei * bezier[3]) / 3.0
-            bezier = [
-                self.points[0].co,
-                self.points[0].co.lerp(self.points[-1].co, 1/3),
-                self.points[0].co.lerp(self.points[-1].co, 2/3),
-                self.points[-1].co,
-            ]
-            data = [p.co for p in self.points]
-            u = [i / len(self.points) for i in range(len(self.points))]
-            estimate_bi(bezier, 1, data, u)
-            estimate_bi(bezier, 2, data, u)
-            estimate_bi(bezier, 1, data, u)
-            estimate_bi(bezier, 2, data, u)
-            estimate_bi(bezier, 1, data, u)
-            estimate_bi(bezier, 2, data, u)
-            estimate_bi(bezier, 1, data, u)
-            estimate_bi(bezier, 2, data, u)
-            
-            self.handle_left = bezier[1]
-            self.handle_right = bezier[2]
-
-        def bezier_solve_ideasman42(self):
-            from mathutils.geometry import (intersect_point_line,
-                                            intersect_line_line,
-                                            )
-
-            # get a line
-            p1 = self.points[0]
-            p2 = self.points[-1]
-
-            # ------
-            # take 2
-            p_vec = (p2.co - p1.co).normalized()
-
-            # vector between line and point directions
-            l1_no = (p1.no + p_vec).normalized()
-            l2_no = ((-p2.no) - p_vec).normalized()
-
-            l1_co = p1.co + l1_no
-            l2_co = p2.co + l2_no
-
-            # visualize_line(p1.co, l1_co)
-            # visualize_line(p2.co, l2_co)
-
-            line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
-                    self.intersect_line(p1.co,
-                                        l1_co,
-                                        )
-            line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
-                    self.intersect_line(p2.co,
-                                        l2_co,
-                                        reverse=True,
-                                        )
-            if line_ix_p1_co is None:
-                line_ix_p1_co, line_ix_p1_no, line_ix_p1 = \
-                        p1.next.co, p1.next.no, p1.next
-            if line_ix_p2_co is None:
-                line_ix_p2_co, line_ix_p2_no, line_ix_p2 = \
-                        p2.prev.co, p2.prev.no, p2.prev
-
-            # vis_circle_object(line_ix_p1_co)
-            # vis_circle_object(line_ix_p2_co)
-
-            l1_max = 0.0
-            p1_apex_co = None
-            p = self.points[1]
-            while p and (not p.is_joint) and p != line_ix_p1:
-                ix = intersect_point_line(p.co, p1.co, l1_co)[0]
-                length = (ix - p.co).length
-                if length > l1_max:
-                    l1_max = length
-                    p1_apex_co = p.co
-                p = p.next
-
-            l2_max = 0.0
-            p2_apex_co = None
-            p = self.points[-2]
-            while p and (not p.is_joint) and p != line_ix_p2:
-                ix = intersect_point_line(p.co, p2.co, l2_co)[0]
-                length = (ix - p.co).length
-                if length > l2_max:
-                    l2_max = length
-                    p2_apex_co = p.co
-                p = p.prev
-
-            if p1_apex_co is None:
-                p1_apex_co = p1.next.co
-            if p2_apex_co is None:
-                p2_apex_co = p2.prev.co
-
-            l1_tan = (p1.no - p1.no.project(l1_no)).normalized()
-            l2_tan = -(p2.no - p2.no.project(l2_no)).normalized()
-
-            # values are good!
-            visualize_line(p1.co, p1.co + l1_tan)
-            visualize_line(p2.co, p2.co + l2_tan)
-
-            visualize_line(p1.co, p1.co + l1_no)
-            visualize_line(p2.co, p2.co + l2_no)
-
-            # calculate bias based on the position of the other point allong
-            # the tangent.
-
-            # first need to reflect the second normal for angle comparison
-            # first fist need the reflection normal
-            
-            # angle between - 0 - 1
-            from math import pi
-            no_ref = p_vec.cross(p2.no).cross(p_vec).normalized()
-            l2_no_ref = p2.no.reflect(no_ref).normalized()
-            no_angle = p1.no.angle(l2_no_ref) / pi
-            del no_ref
-
-            # This could be tweaked but seems to work well
-
-            # fac_fac = 1.0
-
-            print("angle", "%.6f" % no_angle)
-
-            fac_1 = intersect_point_line(p2_apex_co,
-                                         p1.co,
-                                         p1.co + l1_tan * (p1.co - p1_apex_co).length,
-                                         )[1] * (1.0 + no_angle)
-            fac_2 = intersect_point_line(p1_apex_co,
-                                         p2.co,
-                                         p2.co + l2_tan * (p2.co - p2_apex_co).length,
-                                         )[1] * (1.0 + no_angle)
-
-            h1_fac = abs(fac_1)
-            h2_fac = abs(fac_2)
-
-            h1 = p1.co + (p1.no * h1_fac)
-            h2 = p2.co - (p2.no * h2_fac)
-
-            self.handle_left = h1
-            self.handle_right = h2
-
-            '''
-            visualize_line(p1.co, p1_apex_co)
-            visualize_line(p1_apex_co, p2_apex_co)
-            visualize_line(p2.co, p2_apex_co)
-            visualize_line(p1.co, p2.co)
-            '''
-
-        def bezier_solve(self):
-            return self.bezier_solve__inkscape()
-
-        def bezier_error(self, error_max=-1.0, test_count=8):
-            from mathutils.geometry import interpolate_bezier
-
-            test_points = interpolate_bezier(self.points[0].co,
-                                             self.handle_left,
-                                             self.handle_right,
-                                             self.points[-1].co,
-                                             test_count,
-                                             )
-
-            from mathutils.geometry import intersect_point_line
-
-            error = 0.0
-
-            # this is a rough method measuring the error but should be ok
-            # TODO. dont test against every single point.
-            for co in test_points:
-                # initial values
-                co_best = self.points[0].co
-
-                length_best = (co - co_best).length
-                for p in self.points[1:]:
-                    # dist to point
-                    length = (co - p.co).length
-                    if length < length_best:
-                        length_best = length
-                        co_best = p.co
-
-                    p_ix, fac = intersect_point_line(co, p.co, p.prev.co)
-                    p_ix = p_ix
-                    if fac >= 0.0 and fac <= 1.0:
-                        length = (co - p_ix).length
-                        if length < length_best:
-                            length_best = length
-                            co_best = p_ix
-
-                error += length_best / test_count
-
-                if error_max != -1.0 and error > error_max:
-                    return True
-
-            if error_max != -1.0:
-                return False
-            else:
-                return error
-
-    class Curve(object):
-        __slots__ = ("splines",
-                     )
-
-        def __init__(self, splines):
-            self.splines = splines
-
-        def link_splines(self):
-            s_prev = None
-            for s in self.splines:
-                s.prev = s_prev
-                s_perv = s
-
-            s_prev = None
-            for s in reversed(self.splines):
-                s.next = s_prev
-                s_perv = s
-
-        def calc_data(self):
-            for s in self.splines:
-                s.calc_all()
-
-            self.link_splines()
-
-        def split_func_map_point(self, func, is_joint=False):
-            """ func takes a point and returns true on split
-
-                return True if any splits are made.
-            """
-            s_index = 0
-            s = self.splines[s_index]
-            while s:
-                assert(self.splines[s_index] == s)
-
-                for i, p in enumerate(s.points):
-
-                    if i == 0 or i >= len(s.points) - 1:
-                        continue
-
-                    if func(p):
-                        split_pair = s.split(i, is_joint=is_joint)
-                        # keep list in sync
-                        self.splines[s_index:s_index + 1] = split_pair
-
-                        # advance on main while loop
-                        s = split_pair[0]
-                        assert(self.splines[s_index] == s)
-                        break
-
-                s = s.next
-                s_index += 1
-
-        def split_func_spline(self, func, is_joint=False, recursive=False):
-            """ func takes a spline and returns the point index on split or -1
-
-                return True if any splits are made.
-            """
-            s_index = 0
-            s = self.splines[s_index]
-            while s:
-                assert(self.splines[s_index] == s)
-
-                i = func(s)
-
-                if i != -1:
-                    split_pair = s.split(i, is_joint=is_joint)
-                    # keep list in sync
-                    self.splines[s_index:s_index + 1] = split_pair
-
-                    # advance on main while loop
-                    s = split_pair[0]
-                    assert(self.splines[s_index] == s)
-
-                    if recursive:
-                        continue
-
-                s = s.next
-                s_index += 1
-
-        def validate(self):
-            s_prev = None
-            iii = 0
-            for s in self.splines:
-                assert(s.prev == s_prev)
-                if s_prev:
-                    assert(s_prev.next == s)
-                s_prev = s
-                iii += 1
-
-        def redistribute(self, segment_length, smooth=False):
-            for s in self.splines:
-                s.redistribute(segment_length, smooth)
-
-        def to_blend_data(self):
-            """ Points to blender data, debugging only
-            """
-            scene = bpy.data.scenes[0]  # weak!
-            for base in scene.object_bases:
-                base.select = False
-            cu = bpy.data.curves.new(name="Test", type='CURVE')
-            for s in self.splines:
-                spline = cu.splines.new(type='POLY')
-                spline.points.add(len(s.points) - 1)
-                for p, v in zip(s.points, spline.points):
-                    v.co.xyz = p.co
-
-            ob = bpy.data.objects.new(name="Test", object_data=cu)
-            ob.layers = [True] * 20
-            base = scene.objects.link(ob)
-            scene.objects.active = ob
-            base.select = True
-            # base.layers = [True] * 20
-            print(ob, "Done")
-
-        def to_blend_curve(self, cu=None, cu_matrix=None):
-            """ return new bezier spline datablock or add to an existing
-            """
-            if not cu:
-                cu = bpy.data.curves.new(name="Curve", type='CURVE')
-
-            spline = cu.splines.new(type='BEZIER')
-            spline.bezier_points.add(len(self.splines))
-
-            s_prev = None
-            for i, bp in enumerate(spline.bezier_points):
-                if i < len(self.splines):
-                    s = self.splines[i]
-                else:
-                    s = None
-
-                if s_prev and s:
-                    pt = s.points[0]
-                    hl = s_prev.handle_right
-                    hr = s.handle_left
-                elif s:
-                    pt = s.points[0]
-                    hr = s.handle_left
-                    hl = (pt.co + (pt.co - hr))
-                elif s_prev:
-                    pt = s_prev.points[-1]
-                    hl = s_prev.handle_right
-                    hr = (pt.co + (pt.co - hl))
-                else:
-                    assert(0)
-
-                bp.co.xyz = pt.co
-                bp.handle_left.xyz = hl
-                bp.handle_right.xyz = hr
-
-                handle_type = 'FREE'
-
-                if pt.is_joint == False or (s_prev and s) == False:
-
-                    # XXX, this should not happen, but since it can
-                    # at least dont allow allignment to break the curve output
-                    if (pt.co - hl).angle(hr - pt.co, 0.0) < 0.1:
-
-                        handle_type = 'ALIGNED'
-
-                bp.handle_left_type = bp.handle_right_type = handle_type
-                s_prev = s
-
-            scene = bpy.data.scenes[0]  # weak!
-            ob = bpy.data.objects.new(name="Test", object_data=cu)
-            ob.layers = [True] * 20
-            base = scene.objects.link(ob)
-            scene.objects.active = ob
-            base.select = True
-
-            return cu
-
-    points = list(points_orig)
-
-    # remove doubles
-    tot_length = treat_points(points)
-
-    # calculate segment spacing
-    segment_length = (tot_length / len(points)) / subdiv
-
-    curve = Curve([Spline([Point(p) for p in points])])
-
-    curve.calc_data()
-
-    if kink_tolerance != 0.0:
-        pass
-
-    curve.split_func_map_point(lambda p: p.angle_diff() > kink_tolerance,
-                               is_joint=True,
-                               )
-
-    # return
-    # curve.validate()
-
-    # higher quality but not really needed
-    '''
-    curve.redistribute(segment_length / 4.0, smooth=True)
-    curve.redistribute(segment_length, smooth=False)
-    '''
-    curve.redistribute(segment_length, smooth=True)
-
-    # debug only!
-    # to test how good the bezier spline fitting is without corrections
-
-    '''
-    for s in curve.splines:
-        s.bezier_solve()
-    '''
-    
-    '''
-    def angle_point(s):
-        a = 0.0
-        a_best = len(s.points) // 2
-        i = 1
-        for p in s.points[2:-2]:
-            if p.angle > a:
-                a = p.angle
-                a_best = i
-            i += 1
-        return a_best
-    '''
-
-    # or recursively subdivide...
-    curve.split_func_spline(lambda s:
-                                len(s.points) // 2  # angle_point(s)
-                                if ((s.bezier_solve(),
-                                    s.bezier_error(bezier_tolerance))[1]
-                                    and (len(s.points)))
-                                else -1,
-                            recursive=True,
-                            )
-
-    
-    error = 0.0
-    for s in curve.splines:
-        error += s.bezier_error()
-    print("%d :: %.6f" % (len(curve.splines), error))
-
-    # VISUALIZE
-    # curve.to_blend_data()
-    curve.to_blend_curve()
-
-
-if __name__ == "__main__":
-    if 0:
-        bpy.ops.wm.open_mainfile(filepath="/root/curve_test3.blend")
-
-        for c in "Curve Curve.001 Curve.002 Curve.003 Curve.004 Curve.005".split():
-            print("---", c)
-            ob = bpy.data.objects[c]
-            points = [p.co.xyz for s in ob.data.splines for p in s.points]
-
-            print("points_to_bezier 1")
-            points_to_bezier(points)
-            print("points_to_bezier 2")
-    else:
-        bpy.ops.wm.open_mainfile(filepath="/root/curve_test2.blend")
-
-        ob = bpy.data.objects['Curve']
-        points = [p.co.xyz for s in ob.data.splines for p in s.points]
-
-        print("points_to_bezier 1")
-        points_to_bezier(points)
-        print("points_to_bezier 2")
-
-    bpy.ops.wm.save_as_mainfile(filepath="/root/curve_test_edit.blend",
-                                copy=True)
-    print("done!")
-- 
GitLab