# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import bpy
import subprocess
import os
import sys
import time
import math
from math import atan, pi, degrees, sqrt

import platform as pltfrm
if pltfrm.architecture()[0] == '64bit':
    bitness = 64
else:
    bitness = 32

##############################SF###########################
##############find image texture 
def splitExt(path):
    dotidx = path.rfind('.')
    if dotidx == -1:
        return path, ''
    else:
        return (path[dotidx:]).upper().replace('.','')

def imageFormat(imgF):
    ext = ""
    ext_orig = splitExt(imgF)
    if ext_orig == 'JPG' or ext_orig == 'JPEG': ext='jpeg'
    if ext_orig == 'GIF': ext = 'gif'
    if ext_orig == 'TGA': ext = 'tga'
    if ext_orig == 'IFF': ext = 'iff'
    if ext_orig == 'PPM': ext = 'ppm'
    if ext_orig == 'PNG': ext = 'png'
    if ext_orig == 'SYS': ext = 'sys' 
    if ext_orig in ('TIFF', 'TIF'): ext = 'tiff'
    if ext_orig == 'EXR': ext = 'exr'#POV3.7 Only! 
    if ext_orig == 'HDR': ext = 'hdr'#POV3.7 Only! --MR
    print(imgF)
    if not ext: print(' WARNING: texture image  format not supported ') # % (imgF , '')) #(ext_orig)))
    return ext

def imgMap(ts):
    image_map=''
    if ts.mapping=='FLAT':image_map= ' map_type 0 ' 
    if ts.mapping=='SPHERE':image_map= ' map_type 1 '# map_type 7 in megapov
    if ts.mapping=='TUBE':image_map= ' map_type 2 '
    #if ts.mapping=='?':image_map= ' map_type 3 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0)
    #if ts.mapping=='?':image_map= ' map_type 4 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0)
    if ts.texture.use_interpolation: image_map+= " interpolate 2 "
    if ts.texture.extension == 'CLIP': image_map+=' once '
    #image_map+='}'
    #if ts.mapping=='CUBE':image_map+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?)
    #if image_map=='': print(' No texture image  found ')
    return image_map

def imgMapBG(wts):
    image_mapBG=''
    if wts.texture_coords== 'VIEW':image_mapBG= ' map_type 0 ' #texture_coords refers to the mapping of world textures
    if wts.texture_coords=='ANGMAP':image_mapBG= ' map_type 1 '
    if wts.texture_coords=='TUBE':image_mapBG= ' map_type 2 '
    if wts.texture.use_interpolation: image_mapBG+= " interpolate 2 "
    if wts.texture.extension == 'CLIP': image_mapBG+=' once '
    #image_mapBG+='}'
    #if wts.mapping=='CUBE':image_mapBG+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?)
    #if image_mapBG=='': print(' No background texture image  found ')
    return image_mapBG

def splitFile(path):
    idx = path.rfind('/')
    if idx == -1:
        idx = path.rfind('\\')
    return path[idx:].replace("/", "").replace("\\", "")

def splitPath(path):
    idx = path.rfind('/')
    if idx == -1:
        return path, ''
    else:
        return path[:idx]

def findInSubDir(filename, subdirectory=''):
    pahFile=''
    if subdirectory:
        path = subdirectory
    else:
        path = os.getcwd()
    try:
        for root, dirs, names in os.walk(path):
            if filename in names:
                pahFile = os.path.join(root, filename)
        return pahFile
    except: #OSError: #was that the proper error type?
        return '' 

def path_image(image):
    import os
    fn = bpy.path.abspath(image)
    fn_strip = os.path.basename(fn)
    if not os.path.isfile(fn):
        fn=(findInSubDir(splitFile(fn),splitPath(bpy.data.filepath)))
        ()
    return fn

##############end find image texture 


##############safety string name material
def safety(name):
    try:
        if int(name) > 0: prefix='shader'
    except: prefix=''
    prefix='shader_'
    return prefix+name

def safety0(name): #used for 0 of specular map
    try:
        if int(name) > 0: prefix='shader'
    except: prefix=''
    prefix='shader_'
    return prefix+name+'0'

def safety1(name): #used for 1 of specular map
    try:
        if int(name) > 0: prefix='shader'
    except: prefix=''
    prefix='shader_'
    return prefix+name+'1'
##############end safety string name material
##############################EndSF###########################

def write_pov(filename, scene=None, info_callback=None):
    file = open(filename, 'w')

    # Only for testing
    if not scene:
        scene = bpy.data.scenes[0]

    render = scene.render
    world = scene.world

    def uniqueName(name, nameSeq):

        if name not in nameSeq:
            return name

        name_orig = name
        i = 1
        while name in nameSeq:
            name = '%s_%.3d' % (name_orig, i)
            i += 1

        return name

    def writeMatrix(matrix):
        file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))

    def writeObjectMaterial(material):
        if material: #and material.transparency_method == 'RAYTRACE':#Commented out: always write IOR to be able to use it for SSS, Fresnel reflections...
            #But there can be only one!
            if material.subsurface_scattering.use:#SSS IOR get highest priority
                file.write('\tinterior { ior %.6f\n' % material.subsurface_scattering.ior)
            elif material.pov_mirror_use_IOR:#Then the raytrace IOR taken from raytrace transparency properties and used for reflections if IOR Mirror option is checked
                file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior)
            else:
                file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior)



            #If only Raytrace transparency is set, its IOR will be used for refraction, but user can set up "un-physical" fresnel reflections in raytrace mirror parameters. 
            #Last, if none of the above is specified, user can set up "un-physical" fresnel reflections in raytrace mirror parameters. And pov IOR defaults to 1. 
            if material.pov_caustics_enable:
                if material.pov_fake_caustics:
                    file.write('\tcaustics %.3g\n' % material.pov_fake_caustics_power)
                if material.pov_photons_refraction:
                    file.write('\tdispersion %.3g\n' % material.pov_photons_dispersion) #Default of 1 means no dispersion
            #TODO        
            # Other interior args
            # fade_distance 2
            # fade_power [Value]
            # fade_color

            # (variable) dispersion_samples (constant count for now)
            file.write('\t}\n')
            if material.pov_photons_refraction or material.pov_photons_reflection:
                file.write('\tphotons{\n')
                file.write('\t\ttarget\n')
                if material.pov_photons_refraction:
                    file.write('\t\trefraction on\n')
                if material.pov_photons_reflection:
                    file.write('\t\treflection on\n')
                file.write('\t}\n')
                
    materialNames = {}
    DEF_MAT_NAME = 'Default'

    def writeMaterial(material):
        # Assumes only called once on each material

        if material:
            name_orig = material.name
        else:
            name_orig = DEF_MAT_NAME

        name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames)


        ##################Several versions of the finish: Level conditions are variations for specular/Mirror texture channel map with alternative finish of 0 specular and no mirror reflection
        def povHasnoSpecularMaps():
            if Level == 2:
                file.write('#declare %s = finish {\n' % safety(name))
            elif Level == 1:
                file.write('#declare %s = finish {\n' % safety0(name))
            elif Level == 3:
                file.write('#declare %s = finish {\n' % safety1(name))


            if material:
                #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency)
                frontDiffuse=material.diffuse_intensity
                backDiffuse=material.translucency
                
            
                if material.pov_conserve_energy:

                    #Total should not go above one
                    if (frontDiffuse + backDiffuse) <= 1.0:
                        pass
                    elif frontDiffuse==backDiffuse:
                        frontDiffuse = backDiffuse = 0.5 # Try to respect the user's "intention" by comparing the two values but bringing the total back to one
                    elif frontDiffuse>backDiffuse:       # Let the highest value stay the highest value
                        backDiffuse = 1-(1-frontDiffuse)
                    else:
                        frontDiffuse = 1-(1-backDiffuse)
                    

                # map hardness between 0.0 and 1.0
                roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
                ## scale from 0.0 to 0.1
                roughness *= 0.1 
                # add a small value because 0.0 is invalid
                roughness += (1 / 511.0)

                #####################################Diffuse Shader######################################
                if material.diffuse_shader == 'OREN_NAYAR':
                    file.write('\tbrilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray

                if material.diffuse_shader == 'TOON':
                    file.write('\tbrilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25))
                    frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray
                
                if material.diffuse_shader == 'MINNAERT':
                    #file.write('\taoi %.3g\n' % material.darkness)
                    pass #let's keep things simple for now
                if material.diffuse_shader == 'FRESNEL':
                    #file.write('\taoi %.3g\n' % material.diffuse_fresnel_factor)
                    pass #let's keep things simple for now
                if material.diffuse_shader == 'LAMBERT':
                    file.write('\tbrilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value

                if Level == 2:   
                    ####################################Specular Shader######################################
                    if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa!
                        file.write('\tphong %.3g\n' % (material.specular_intensity))
                        file.write('\tphong_size %.3g\n'% (material.specular_hardness / 2 + 0.25)) 

                    if material.specular_shader == 'BLINN':#Povray "specular" keyword corresponds to a Blinn model, without the ior.
                        file.write('\tspecular %.3g\n' % (material.specular_intensity * (material.specular_ior/4))) #Use blender Blinn's IOR just as some factor for spec intensity
                        file.write('\troughness %.3g\n' % roughness) 
                        #Could use brilliance 2(or varying around 2 depending on ior or factor) too.


                    if material.specular_shader == 'TOON':
                        file.write('\tphong %.3g\n' % (material.specular_intensity * 2))
                        file.write('\tphong_size %.3g\n' % (0.1+material.specular_toon_smooth / 2)) #use extreme phong_size


                    if material.specular_shader == 'WARDISO':
                        file.write('\tspecular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values.
                        file.write('\troughness %.4g\n' % (0.0005+material.specular_slope/10)) #find best suited default constant for brilliance Use both phong and specular for some values.
                        file.write('\tbrilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values.
                        

                    
                    #########################################################################################
                elif Level == 1:
                    file.write('\tspecular 0\n')
                elif Level == 3:
                    file.write('\tspecular 1\n')
                
                file.write('\tdiffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse))


                file.write('\tambient %.3g\n' % material.ambient)
                #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
                file.write('\temission %.3g\n' % material.emit) #New in povray 3.7
                
                #file.write('\troughness %.3g\n' % roughness) #povray just ignores roughness if there's no specular keyword
                
                if material.pov_conserve_energy:
                    file.write('\tconserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice.

                # 'phong 70.0 '
                if Level != 1:
                    if material.raytrace_mirror.use:
                        raytrace_mirror = material.raytrace_mirror
                        if raytrace_mirror.reflect_factor:
                            file.write('\treflection {\n')
                            file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
                            if material.pov_mirror_metallic:
                                file.write('\t\tmetallic %.3g' % (raytrace_mirror.reflect_factor))
                            if material.pov_mirror_use_IOR: #WORKING ?
                                file.write('\t\tfresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice
                            file.write('\t\tfalloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor))

                if material.subsurface_scattering.use:
                    subsurface_scattering = material.subsurface_scattering
                    file.write('\tsubsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2]))

                if material.pov_irid_enable:
                    file.write('\tirid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence))

            else:
                file.write('\tdiffuse 0.8\n')
                file.write('\tphong 70.0\n')
                
                #file.write('\tspecular 0.2\n')


            # This is written into the object
            '''
            if material and material.transparency_method=='RAYTRACE':
                'interior { ior %.3g} ' % material.raytrace_transparency.ior
            '''

            #file.write('\t\t\tcrand 1.0\n') # Sand granyness
            #file.write('\t\t\tmetallic %.6f\n' % material.spec)
            #file.write('\t\t\tphong %.6f\n' % material.spec)
            #file.write('\t\t\tphong_size %.6f\n' % material.spec)
            #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness

            file.write('}\n')

        Level=1
        povHasnoSpecularMaps()

        Level=2
        povHasnoSpecularMaps()
        
        Level=3
        povHasnoSpecularMaps()

    def exportCamera():
        camera = scene.camera
        matrix = camera.matrix_world
        focal_point = camera.data.dof_distance

        # compute resolution
        Qsize = float(render.resolution_x) / float(render.resolution_y)
        file.write('#declare camLocation  = <%.6f, %.6f, %.6f>;\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
        file.write('#declare camLookAt = <%.6f, %.6f, %.6f>;\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))

        file.write('camera {\n')
        file.write('\tlocation  <0, 0, 0>\n')
        file.write('\tlook_at  <0, 0, -1>\n')
        file.write('\tright <%s, 0, 0>\n' % - Qsize)
        file.write('\tup <0, 1, 0>\n')
        file.write('\tangle  %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))

        file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
        file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
        if focal_point != 0:
            file.write('\taperture 0.25\n') # fixed blur amount for now to do, add slider a button? 
            file.write('\tblur_samples 96 128\n')
            file.write('\tvariance 1/10000\n')
            file.write('\tfocal_point <0, 0, %f>\n' % focal_point)
        file.write('}\n')

    def exportLamps(lamps):
        # Get all lamps
        for ob in lamps:
            lamp = ob.data

            matrix = ob.matrix_world

            color = tuple([c * lamp.energy *2 for c in lamp.color]) # Colour is modified by energy #muiltiplie by 2 for a better match --Maurice

            file.write('light_source {\n')
            file.write('\t< 0,0,0 >\n')
            file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)

            if lamp.type == 'POINT': # Point Lamp
                pass
            elif lamp.type == 'SPOT': # Spot
                file.write('\tspotlight\n')

                # Falloff is the main radius from the centre line
                file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
                file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))

                # Blender does not have a tightness equivilent, 0 is most like blender default.
                file.write('\ttightness 0\n') # 0:10f

                file.write('\tpoint_at  <0, 0, -1>\n')
            elif lamp.type == 'SUN':
                file.write('\tparallel\n')
                file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'

            elif lamp.type == 'AREA':
                file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) )
                file.write('\tfade_power %d\n' % 2) #  Area lights have no falloff type, so always use blenders lamp quad equivalent for those?
                size_x = lamp.size
                samples_x = lamp.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.shadow_ray_samples_y

                file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
                if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
                    if lamp.jitter:
                        file.write('\tjitter\n')
                else:
                    file.write('\tadaptive 1\n')
                    file.write('\tjitter\n')

            if lamp.type == 'HEMI':#HEMI never has any shadow attribute
                file.write('\tshadowless\n')
            elif lamp.shadow_method == 'NOSHADOW':
                    file.write('\tshadowless\n')

            if lamp.type != 'SUN' and lamp.type!='AREA' and lamp.type!='HEMI':#Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they are put to type 2 attenuation a little higher above.
                file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) )
                if lamp.falloff_type == 'INVERSE_SQUARE':
                    file.write('\tfade_power %d\n' % 2) # Use blenders lamp quad equivalent
                elif lamp.falloff_type == 'INVERSE_LINEAR':
                    file.write('\tfade_power %d\n' % 1) # Use blenders lamp linear
                elif lamp.falloff_type == 'CONSTANT': #Supposing using no fade power keyword would default to constant, no attenuation.
                    pass
                elif lamp.falloff_type == 'CUSTOM_CURVE': #Using Custom curve for fade power 3 for now.
                    file.write('\tfade_power %d\n' % 4)

            writeMatrix(matrix)

            file.write('}\n')
##################################################################################################################################
#Wip to be Used for fresnel, but not tested yet.
##################################################################################################################################
##    lampLocation=[0,0,0]
##    lampRotation=[0,0,0]
##    lampDistance=0.00
##    averageLampLocation=[0,0,0]
##    averageLampRotation=[0,0,0]
##    averageLampDistance=0.00
##    lamps=[]
##    for l in scene.objects:
##        if l.type == 'LAMP':#get all lamps
##            lamps += [l]
##    for ob in lamps:
##        lamp = ob.data
##        lampLocation[0]+=ob.location[0]
##        lampLocation[1]+=ob.location[1]
##        lampLocation[2]+=ob.location[2]
##        lampRotation[0]+=ob.rotation_euler[0]
##        lampRotation[1]+=ob.rotation_euler[1]
##        lampRotation[2]+=ob.rotation_euler[2]
##        lampDistance+=ob.data.distance
##        averageLampRotation[0]=lampRotation[0] / len(lamps)#create an average direction for all lamps.
##        averageLampRotation[1]=lampRotation[1] / len(lamps)#create an average direction for all lamps.
##        averageLampRotation[2]=lampRotation[2] / len(lamps)#create an average direction for all lamps.
##
##        averageLampLocation[0]=lampLocation[0] / len(lamps)#create an average position for all lamps.
##        averageLampLocation[1]=lampLocation[1] / len(lamps)#create an average position for all lamps.
##        averageLampLocation[2]=lampLocation[2] / len(lamps)#create an average position for all lamps.
##        
##        averageLampDistance=lampDistance / len(lamps)#create an average distance for all lamps.
##    file.write('\n#declare lampTarget= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);' % (-(averageLampLocation[0]-averageLampDistance), -(averageLampLocation[1]-averageLampDistance), -(averageLampLocation[2]-averageLampDistance), averageLampRotation[0], averageLampRotation[1], averageLampRotation[2]))
##    #v(A,B) rotates vector A about origin by vector B.    
##
####################################################################################################################################

    def exportMeta(metas):

        # TODO - blenders 'motherball' naming is not supported.

        for ob in metas:
            meta = ob.data

            file.write('blob {\n')
            file.write('\t\tthreshold %.4g\n' % meta.threshold)

            try:
                material = meta.materials[0] # lame! - blender cant do enything else.
            except:
                material = None

            for elem in meta.elements:

                if elem.type not in ('BALL', 'ELLIPSOID'):
                    continue # Not supported

                loc = elem.co

                stiffness = elem.stiffness
                if elem.use_negative:
                    stiffness = - stiffness

                if elem.type == 'BALL':

                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))

                    # After this wecould do something simple like...
                    # 	"pigment {Blue} }"
                    # except we'll write the color

                elif elem.type == 'ELLIPSOID':
                    # location is modified by scale
                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
                    file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))

                if material:
                    diffuse_color = material.diffuse_color

                    if material.use_transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                    file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))

                else:
                    file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.

            writeObjectMaterial(material)

            writeMatrix(ob.matrix_world)

            file.write('}\n')

    def exportMeshs(scene, sel):

        ob_num = 0

        for ob in sel:
            ob_num += 1

            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
                continue

            me = ob.data
            me_materials = me.materials

            me = ob.create_mesh(scene, True, 'RENDER')

            if not me or not me.faces:
                continue

            if info_callback:
                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))

            #if ob.type!='MESH':
            #	continue
            # me = ob.data

            matrix = ob.matrix_world
            try:
                uv_layer = me.uv_textures.active.data
            except:
                uv_layer = None

            try:
                vcol_layer = me.vertex_colors.active.data
            except:
                vcol_layer = None

            faces_verts = [f.vertices[:] for f in me.faces]
            faces_normals = [tuple(f.normal) for f in me.faces]
            verts_normals = [tuple(v.normal) for v in me.vertices]

            # quads incur an extra face
            quadCount = sum(1 for f in faces_verts if len(f) == 4)

            file.write('mesh2 {\n')
            file.write('\tvertex_vectors {\n')
            file.write('\t\t%s' % (len(me.vertices))) # vert count
            for v in me.vertices:
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
            file.write('\n  }\n')


            # Build unique Normal list
            uniqueNormals = {}
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                # [-1] is a dummy index, use a list so we can modify in place
                if f.use_smooth: # Use vertex normals
                    for v in fv:
                        key = verts_normals[v]
                        uniqueNormals[key] = [-1]
                else: # Use face normal
                    key = faces_normals[fi]
                    uniqueNormals[key] = [-1]

            file.write('\tnormal_vectors {\n')
            file.write('\t\t%d' % len(uniqueNormals)) # vert count
            idx = 0
            for no, index in uniqueNormals.items():
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
                index[0] = idx
                idx += 1
            file.write('\n  }\n')


            # Vertex colours
            vertCols = {} # Use for material colours also.

            if uv_layer:
                # Generate unique UV's
                uniqueUVs = {}

                for fi, uv in enumerate(uv_layer):

                    if len(faces_verts[fi]) == 4:
                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
                    else:
                        uvs = uv.uv1, uv.uv2, uv.uv3

                    for uv in uvs:
                        uniqueUVs[tuple(uv)] = [-1]

                file.write('\tuv_vectors {\n')
                #print unique_uvs
                file.write('\t\t%s' % (len(uniqueUVs))) # vert count
                idx = 0
                for uv, index in uniqueUVs.items():
                    file.write(',\n\t\t<%.6f, %.6f>' % uv)
                    index[0] = idx
                    idx += 1
                '''
                else:
                    # Just add 1 dummy vector, no real UV's
                    file.write('\t\t1') # vert count
                    file.write(',\n\t\t<0.0, 0.0>')
                '''
                file.write('\n  }\n')


            if me.vertex_colors:

                for fi, f in enumerate(me.faces):
                    material_index = f.material_index
                    material = me_materials[material_index]

                    if material and material.use_vertex_color_paint:

                        col = vcol_layer[fi]

                        if len(faces_verts[fi]) == 4:
                            cols = col.color1, col.color2, col.color3, col.color4
                        else:
                            cols = col.color1, col.color2, col.color3

                        for col in cols:
                            key = col[0], col[1], col[2], material_index # Material index!
                            vertCols[key] = [-1]

                    else:
                        if material:
                            diffuse_color = tuple(material.diffuse_color)
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
                            vertCols[key] = [-1]


            else:
                # No vertex colours, so write material colours as vertex colours
                for i, material in enumerate(me_materials):

                    if material:
                        diffuse_color = tuple(material.diffuse_color)
                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
                        vertCols[key] = [-1]


            # Vert Colours
            file.write('\ttexture_list {\n')
            file.write('\t\t%s' % (len(vertCols))) # vert count
            idx = 0
            for col, index in vertCols.items():

                if me_materials:
                    material = me_materials[col[3]]
                    material_finish = materialNames[material.name]

                    if material.use_transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                else:
                    material_finish = DEF_MAT_NAME # not working properly,
                    trans = 0.0

                ##############SF
                texturesDif=''
                texturesSpec=''
                texturesNorm=''
                texturesAlpha=''
                for t in material.texture_slots:
                    if t and t.texture.type == 'IMAGE' and t.use and t.texture.image: 
                        image_filename = path_image(t.texture.image.filepath)
                        if image_filename:
                            if t.use_map_color_diffuse: 
                                texturesDif = image_filename
                                colvalue = t.default_value
                                t_dif = t
                            if t.use_map_specular or t.use_map_raymir: 
                                texturesSpec = image_filename
                                colvalue = t.default_value
                                t_spec = t
                            if t.use_map_normal: 
                                texturesNorm = image_filename
                                colvalue = t.normal_factor * 10.0
                                #textNormName=t.texture.image.name + '.normal'
                                #was the above used? --MR
                                t_nor = t
                            if t.use_map_alpha: 
                                texturesAlpha = image_filename
                                colvalue = t.alpha_factor * 10.0
                                #textDispName=t.texture.image.name + '.displ'
                                #was the above used? --MR
                                t_alpha = t




                ##############################################################################################################
                file.write('\n\t\ttexture {') #THIS AREA NEEDS TO LEAVE THE TEXTURE OPEN UNTIL ALL MAPS ARE WRITTEN DOWN.   --MR                      


                ##############################################################################################################
                if material.diffuse_shader == 'MINNAERT':
                    file.write('\n\t\t\taoi')
                    file.write('\n\t\t\ttexture_map {')
                    file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.darkness/2), (2-material.darkness)))
                    file.write('\n\t\t\t\t[%.3g' % (1-(material.darkness/2)))
######TO OPTIMIZE? or present a more elegant way? At least make it work!##################################################################
                #If Fresnel gets removed from 2.5, why bother?
                if material.diffuse_shader == 'FRESNEL':
                    
######END of part TO OPTIMIZE? or present a more elegant way?##################################################################

##                        #lampLocation=lamp.position
##                        lampRotation=
##                        a=lamp.Rotation[0]
##                        b=lamp.Rotation[1]
##                        c=lamp.Rotation[2]
##                        lampLookAt=tuple (x,y,z)
##                        lampLookAt[3]= 0.0 #Put "target" of the lamp on the floor plane to elimianate one unknown value
##                                   degrees(atan((lampLocation - lampLookAt).y/(lampLocation - lampLookAt).z))=lamp.rotation[0]
##                                   degrees(atan((lampLocation - lampLookAt).z/(lampLocation - lampLookAt).x))=lamp.rotation[1]
##                                   degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2]
##                        degrees(atan((lampLocation - lampLookAt).y/(lampLocation.z))=lamp.rotation[0]
##                        degrees(atan((lampLocation.z/(lampLocation - lampLookAt).x))=lamp.rotation[1]
##                        degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2]
                     

                                #color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy                        
                        

                    file.write('\n\t\t\tslope { lampTarget }')
                    file.write('\n\t\t\ttexture_map {')
                    file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.diffuse_fresnel/2), (2-material.diffuse_fresnel_factor)))
                    file.write('\n\t\t\t\t[%.3g' % (1-(material.diffuse_fresnel/2)))
              
                
                #if material.diffuse_shader == 'FRESNEL': pigment pattern aoi pigment and texture map above, the rest below as one of its entry
                ##########################################################################################################################            
                if texturesSpec !='':
                    file.write('\n\t\t\t\tpigment_pattern {')
                    mappingSpec = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_spec.offset.x / 10 ,t_spec.offset.y / 10 ,t_spec.offset.z / 10, t_spec.scale.x / 2.25, t_spec.scale.y / 2.25, t_spec.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                    file.write('\n\t\t\t\t\tuv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesSpec) ,texturesSpec ,imgMap(t_spec),mappingSpec))
                    file.write('\n\t\t\t\t\t\ttexture_map {')
                    file.write('\n\t\t\t\t\t\t\t[0 ')

                if texturesDif == '':
                    if texturesAlpha !='':
                        mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha))
                        file.write('\n\t\t\t\t\tpigment_map {')
                        file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]')
                        file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))
                        file.write('\n\t\t\t\t}')

                    else:

                        file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))

                    if texturesSpec !='':
                        file.write('finish {%s}' % (safety0(material_finish)))
                        
                    else:
                        file.write('finish {%s}' % (safety(material_finish)))

                else:
                    mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 

                    if texturesAlpha !='':
                        mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha))
                        file.write('\n\t\t\t\t\tpigment_map {\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]')
                        file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif))
                        file.write('\n\t\t\t\t}')

                    else:
                        file.write("\n\t\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif))

                    if texturesSpec !='':
                        file.write('finish {%s}' % (safety0(material_finish)))
                            
                    else:
                        file.write('finish {%s}' % (safety(material_finish)))

                    ## scale 1 rotate y*0
                    #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif)))
                    #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish)))
                    #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish)))
                if texturesNorm !='':
                    ## scale 1 rotate y*0
                    mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25))
                    #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor)))
                    #We were not using the above maybe we should?
                    file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s  bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor))
                if texturesSpec !='':                
                    file.write('\n\t\t\t\t\t\t\t]')
                ################################Second index for mapping specular max value##################################################################################################
                    file.write('\n\t\t\t\t\t\t\t[1 ')

                if texturesDif == '':
                    if texturesAlpha !='':
                        mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha))
                        file.write('\n\t\t\t\t\tpigment_map {')
                        file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]')
                        file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))
                        file.write('\n\t\t\t\t}')

                    else:
                        file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))

                    if texturesSpec !='':
                        file.write('finish {%s}' % (safety1(material_finish)))
                        
                    else:
                        file.write('finish {%s}' % (safety(material_finish)))

                else:
                    mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 

                    if texturesAlpha !='':
                        mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha))
                        file.write('\n\t\t\t\tpigment_map {\n\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]')
                        file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif))
                        file.write('\n\t\t\t\t}')

                    else:
                        file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif))
                    if texturesSpec !='':
                        file.write('finish {%s}' % (safety1(material_finish)))
                    else:
                        file.write('finish {%s}' % (safety(material_finish)))

                    ## scale 1 rotate y*0
                    #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif)))
                    #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish)))
                    #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish)))
                if texturesNorm !='':
                    ## scale 1 rotate y*0
                    mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25))
                    #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor)))
                    #We were not using the above maybe we should?
                    file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s  bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor))
                if texturesSpec !='':                
                    file.write('\n\t\t\t\t\t\t\t]')

                    file.write('\n\t\t\t\t}') 

                #End of slope/ior texture_map
                if material.diffuse_shader == 'MINNAERT' or material.diffuse_shader == 'FRESNEL':
                    file.write('\n\t\t\t\t]')
                    file.write('\n\t\t\t}')                          
                file.write('\n\t\t}') #THEN IT CAN CLOSE IT   --MR
                

                ############################################################################################################

                index[0] = idx
                idx += 1

            file.write('\n\t}\n')

            # Face indicies
            file.write('\tface_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                material_index = f.material_index
                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                if vcol_layer:
                    col = vcol_layer[fi]

                    if len(fv) == 4:
                        cols = col.color1, col.color2, col.color3, col.color4
                    else:
                        cols = col.color1, col.color2, col.color3


                if not me_materials or me_materials[material_index] is None: # No materials
                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
                else:
                    material = me_materials[material_index]
                    for i1, i2, i3 in indicies:
                        if me.vertex_colors and material.use_vertex_color_paint:
                            # Colour per vertex - vertex colour

                            col1 = cols[i1]
                            col2 = cols[i2]
                            col3 = cols[i3]

                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
                        else:
                            # Colour per material - flat material colour
                            diffuse_color = material.diffuse_color
                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]

                        file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count


            file.write('\n  }\n')

            # normal_indices indicies
            file.write('\tnormal_indices {\n')
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
            for fi, fv in enumerate(faces_verts):

                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                for i1, i2, i3 in indicies:
                    if f.use_smooth:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueNormals[verts_normals[fv[i1]]][0],\
                         uniqueNormals[verts_normals[fv[i2]]][0],\
                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
                    else:
                        idx = uniqueNormals[faces_normals[fi]][0]
                        file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count

            file.write('\n  }\n')

            if uv_layer:
                file.write('\tuv_indices {\n')
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
                for fi, fv in enumerate(faces_verts):

                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)

                    uv = uv_layer[fi]
                    if len(faces_verts[fi]) == 4:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
                    else:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)

                    for i1, i2, i3 in indicies:
                        file.write(',\n\t\t<%d,%d,%d>' %\
                        (uniqueUVs[uvs[i1]][0],\
                         uniqueUVs[uvs[i2]][0],\
                         uniqueUVs[uvs[i3]][0]))
                file.write('\n  }\n')

            if me.materials:
                try:
                    material = me.materials[0] # dodgy
                    writeObjectMaterial(material)
                except IndexError:
                    print(me)

            writeMatrix(matrix)
            file.write('}\n')

            bpy.data.meshes.remove(me)

    def exportWorld(world):
        render = scene.render
        camera = scene.camera
        matrix = camera.matrix_world
        if not world:
            return
        #############Maurice#################################### 
        #These lines added to get sky gradient (visible with PNG output)
        if world:
            #For simple flat background:
            if not world.use_sky_blend:
                #Non fully transparent background could premultiply alpha and avoid anti-aliasing display issue: 
                if render.alpha_mode == 'PREMUL' or render.alpha_mode == 'PREMUL' :
                    file.write('background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n' % (tuple(world.horizon_color)))
                #Currently using no alpha with Sky option:
                elif render.alpha_mode == 'SKY':
                    file.write('background {rgbt<%.3g, %.3g, %.3g, 0>}\n' % (tuple(world.horizon_color)))
                #StraightAlpha:
                else:
                    file.write('background {rgbt<%.3g, %.3g, %.3g, 1>}\n' % (tuple(world.horizon_color)))

                    

            #For Background image textures
            for t in world.texture_slots: #risk to write several sky_spheres but maybe ok.
                if t and t.texture.type == 'IMAGE': #and t.use: #No enable checkbox for world textures yet (report it?)
                    image_filename  = path_image(t.texture.image.filepath)
                    if t.texture.image.filepath != image_filename: t.texture.image.filepath = image_filename
                    if image_filename != '' and t.use_map_blend: 
                        texturesBlend = image_filename
                        #colvalue = t.default_value
                        t_blend = t
                    #commented below was an idea to make the Background image oriented as camera taken here: http://news.povray.org/povray.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.povray.org%3E/
                    #mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees(atan((camLocation - camLookAt).x/(camLocation - camLookAt).y)) rotate x*degrees(atan((camLocation - camLookAt).y/(camLocation - camLookAt).z)) rotate y*degrees(atan((camLocation - camLookAt).z/(camLocation - camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x ,t_blend.scale.y ,t_blend.scale.z))#replace 4/3 by the ratio of each image found by some custom or existing function
                    #using camera rotation valuesdirectly from blender seems much easier
                    mappingBlend = (" translate <%.4g-0.5,%.4g-0.5,%.4g-0.5> rotate<%.4g,%.4g,%.4g>  scale <%.4g,%.4g,%.4g>" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, degrees(camera.rotation_euler[0]), degrees(camera.rotation_euler[1]), degrees(camera.rotation_euler[2]), t_blend.scale.x*0.85 , t_blend.scale.y*0.85 , t_blend.scale.z*0.85 ))
                    #Putting the map on a plane would not introduce the skysphere distortion and allow for better image scale matching but also some waay to chose depth and size of the plane relative to camera.
                    file.write('sky_sphere {\n')            
                    file.write('\tpigment {\n')
                    file.write("\t\timage_map{%s \"%s\" %s}\n\t}\n\t%s\n" % (imageFormat(texturesBlend),texturesBlend,imgMapBG(t_blend),mappingBlend))
                    file.write('}\n')  
                    #file.write('\t\tscale 2\n')
                    #file.write('\t\ttranslate -1\n')
      
            #For only Background gradient        
        
            if not t:
                if world.use_sky_blend:
                    file.write('sky_sphere {\n')            
                    file.write('\tpigment {\n')
                    file.write('\t\tgradient z\n')#maybe Should follow the advice of POV doc about replacing gradient for skysphere..5.5
                    file.write('\t\tcolor_map {\n')
                    if render.alpha_mode == 'STRAIGHT':
                        file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.horizon_color)))
                        file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.zenith_color)))
                    elif render.alpha_mode == 'PREMUL':
                        file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.horizon_color)))
                        file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.zenith_color))) #aa premult not solved with transmit 1
                    else:
                        file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.horizon_color)))
                        file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.zenith_color)))
                    file.write('\t\t}\n')
                    file.write('\t}\n')
                    file.write('}\n')
                    #sky_sphere alpha (transmit) is not translating into image alpha the same way as "background"

            if world.light_settings.use_indirect_light:
                scene.pov_radio_enable=1 
                
            #Maybe change the above to scene.pov_radio_enable = world.light_settings.use_indirect_light ?


        ###############################################################

        mist = world.mist_settings

        if mist.use_mist:
            file.write('fog {\n')
            file.write('\tdistance %.6f\n' % mist.depth)
            file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
            #file.write('\tfog_offset %.6f\n' % mist.start)
            #file.write('\tfog_alt 5\n')
            #file.write('\tturbulence 0.2\n')
            #file.write('\tturb_depth 0.3\n')
            file.write('\tfog_type 1\n')
            file.write('}\n')

    def exportGlobalSettings(scene):

        file.write('global_settings {\n')
        file.write('\tmax_trace_level 7\n')

        if scene.pov_radio_enable:
            file.write('\tradiosity {\n')
            file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
            file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
            file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
            file.write("\t\tcount %d\n" % scene.pov_radio_count)
            file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
            file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
            file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
            file.write("\t\tmedia %d\n" % scene.pov_radio_media)
            file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
            file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
            file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
            file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
            file.write('\t}\n')
        once=1
        for material in bpy.data.materials:
            if material.subsurface_scattering.use and once:
                file.write("\tmm_per_unit %.6f\n" % (material.subsurface_scattering.scale * (-100) + 15))#In pov, the scale has reversed influence compared to blender. these number should correct that
                once=0 #In povray, the scale factor for all subsurface shaders needs to be the same

        if world: 
            file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))

        if material.pov_photons_refraction or material.pov_photons_reflection:
            file.write("\tphotons {\n")
            file.write("\t\tspacing 0.003\n")
            file.write("\t\tmax_trace_level 4\n")
            file.write("\t\tadc_bailout 0.1\n")
            file.write("\t\tgather 30, 150\n")

            
            file.write("\t}\n")

        file.write('}\n')


    # Convert all materials to strings we can access directly per vertex.
    writeMaterial(None) # default material

    for material in bpy.data.materials:
        writeMaterial(material)

    exportCamera()
    #exportMaterials()
    sel = scene.objects
    exportLamps([l for l in sel if l.type == 'LAMP'])
    exportMeta([l for l in sel if l.type == 'META'])
    exportMeshs(scene, sel)
    exportWorld(scene.world)
    exportGlobalSettings(scene)

    file.close()
    


def write_pov_ini(filename_ini, filename_pov, filename_image):
    scene = bpy.data.scenes[0]
    render = scene.render

    x = int(render.resolution_x * render.resolution_percentage * 0.01)
    y = int(render.resolution_y * render.resolution_percentage * 0.01)

    file = open(filename_ini, 'w')

    file.write('Input_File_Name="%s"\n' % filename_pov)
    file.write('Output_File_Name="%s"\n' % filename_image)

    file.write('Width=%d\n' % x)
    file.write('Height=%d\n' % y)

    # Needed for border render.
    '''
    file.write('Start_Column=%d\n' % part.x)
    file.write('End_Column=%d\n' % (part.x+part.w))

    file.write('Start_Row=%d\n' % (part.y))
    file.write('End_Row=%d\n' % (part.y+part.h))
    '''

    file.write('Bounding_method=2\n')#The new automatic BSP is faster in most scenes

    file.write('Display=1\n')#Activated (turn this back off when better live exchange is done between the two programs (see next comment)
    file.write('Pause_When_Done=0\n')
    file.write('Output_File_Type=N\n') # PNG, with POV 3.7, can show background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. 
    #file.write('Output_File_Type=T\n') # TGA, best progressive loading
    file.write('Output_Alpha=1\n')

    if render.use_antialiasing:
        aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 2 (recursive) with higher max subdiv forced because no mipmapping in povray needs higher sampling.
        file.write('Antialias=1\n')
        file.write('Sampling_Method=2n')
        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
        file.write('Antialias_Threshold=0.1\n')#rather high settings but necessary.
        file.write('Jitter=off\n')#prevent animation flicker
 
    else:
        file.write('Antialias=0\n')

    file.close()


class PovrayRender(bpy.types.RenderEngine):
    bl_idname = 'POVRAY_RENDER'
    bl_label = "Povray 3.7"
    DELAY = 0.02

    def _export(self, scene):
        import tempfile

        self._temp_file_in = tempfile.mktemp(suffix='.pov')
        self._temp_file_out = tempfile.mktemp(suffix='.png')#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats.
        #self._temp_file_out = tempfile.mktemp(suffix='.tga')
        self._temp_file_ini = tempfile.mktemp(suffix='.ini')
        '''
        self._temp_file_in = '/test.pov'
        self._temp_file_out = '/test.png'#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats.
        #self._temp_file_out = '/test.tga'
        self._temp_file_ini = '/test.ini'
        '''

        def info_callback(txt):
            self.update_stats("", "POVRAY 3.7: " + txt)

        write_pov(self._temp_file_in, scene, info_callback)

    def _render(self):

        try:
            os.remove(self._temp_file_out) # so as not to load the old file
        except: #OSError: #was that the proper error type?
            pass

        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)

        print ("***-STARTING-***")

        pov_binary = "povray"

        if sys.platform == 'win32':
            import winreg
            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.7\\Windows')

            if bitness == 64:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
            else:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'

        if 1:
            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
            try:
                self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
            except OSError:
                # TODO, report api
                print("POVRAY 3.7: could not execute '%s', possibly povray isn't installed" % pov_binary)
                import traceback
                traceback.print_exc()
                print ("***-DONE-***")
                return False

        else:
            # This works too but means we have to wait until its done
            os.system('%s %s' % (pov_binary, self._temp_file_ini))

        print ("***-DONE-***")
        return True

    def _cleanup(self):
        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
            try:
                os.remove(f)
            except OSError:  #was that the proper error type?
                pass

        self.update_stats("", "")

    def render(self, scene):

        self.update_stats("", "POVRAY 3.7: Exporting data from Blender")
        self._export(scene)
        self.update_stats("", "POVRAY 3.7: Parsing File")

        if not self._render():
            self.update_stats("", "POVRAY 3.7: Not found")
            return

        r = scene.render
##WIP output format 
##        if r.file_format == 'OPENEXR':
##            fformat = 'EXR'
##            render.color_mode = 'RGBA'
##        else:
##            fformat = 'TGA'
##            r.file_format = 'TARGA'            
##            r.color_mode = 'RGBA'

        # compute resolution
        x = int(r.resolution_x * r.resolution_percentage * 0.01)
        y = int(r.resolution_y * r.resolution_percentage * 0.01)

        # Wait for the file to be created
        while not os.path.exists(self._temp_file_out):
            if self.test_break():
                try:
                    self._process.terminate()
                except: #OSError: #was that the proper error type?
                    pass
                break

            if self._process.poll() != None:
                self.update_stats("", "POVRAY 3.7: Failed")
                break

            time.sleep(self.DELAY)

        if os.path.exists(self._temp_file_out):

            self.update_stats("", "POVRAY 3.7: Rendering")

            prev_size = -1

            def update_image():
                result = self.begin_result(0, 0, x, y)
                lay = result.layers[0]
                # possible the image wont load early on.
                try:
                    lay.load_from_file(self._temp_file_out)
                except: #OSError: #was that the proper error type?
                    pass
                self.end_result(result)

            # Update while povray renders
            while True:

                # test if povray exists
                if self._process.poll() is not None:
                    update_image()
                    break

                # user exit
                if self.test_break():
                    try:
                        self._process.terminate()
                    except: #OSError: #was that the proper error type?
                        pass

                    break

                # Would be nice to redirect the output
                # stdout_value, stderr_value = self._process.communicate() # locks


                # check if the file updated
                new_size = os.path.getsize(self._temp_file_out)

                if new_size != prev_size:
                    update_image()
                    prev_size = new_size

                time.sleep(self.DELAY)

        self._cleanup()