# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import subprocess import os import sys import time import math from math import atan, pi, degrees, sqrt import platform as pltfrm if pltfrm.architecture()[0] == '64bit': bitness = 64 else: bitness = 32 ##############################SF########################### ##############find image texture def splitExt(path): dotidx = path.rfind('.') if dotidx == -1: return path, '' else: return (path[dotidx:]).upper().replace('.','') def imageFormat(imgF): ext = "" ext_orig = splitExt(imgF) if ext_orig == 'JPG' or ext_orig == 'JPEG': ext='jpeg' if ext_orig == 'GIF': ext = 'gif' if ext_orig == 'TGA': ext = 'tga' if ext_orig == 'IFF': ext = 'iff' if ext_orig == 'PPM': ext = 'ppm' if ext_orig == 'PNG': ext = 'png' if ext_orig == 'SYS': ext = 'sys' if ext_orig in ('TIFF', 'TIF'): ext = 'tiff' if ext_orig == 'EXR': ext = 'exr'#POV3.7 Only! if ext_orig == 'HDR': ext = 'hdr'#POV3.7 Only! --MR print(imgF) if not ext: print(' WARNING: texture image format not supported ') # % (imgF , '')) #(ext_orig))) return ext def imgMap(ts): image_map='' if ts.mapping=='FLAT':image_map= ' map_type 0 ' if ts.mapping=='SPHERE':image_map= ' map_type 1 '# map_type 7 in megapov if ts.mapping=='TUBE':image_map= ' map_type 2 ' #if ts.mapping=='?':image_map= ' map_type 3 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) #if ts.mapping=='?':image_map= ' map_type 4 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) if ts.texture.use_interpolation: image_map+= " interpolate 2 " if ts.texture.extension == 'CLIP': image_map+=' once ' #image_map+='}' #if ts.mapping=='CUBE':image_map+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_map=='': print(' No texture image found ') return image_map def imgMapBG(wts): image_mapBG='' if wts.texture_coords== 'VIEW':image_mapBG= ' map_type 0 ' #texture_coords refers to the mapping of world textures if wts.texture_coords=='ANGMAP':image_mapBG= ' map_type 1 ' if wts.texture_coords=='TUBE':image_mapBG= ' map_type 2 ' if wts.texture.use_interpolation: image_mapBG+= " interpolate 2 " if wts.texture.extension == 'CLIP': image_mapBG+=' once ' #image_mapBG+='}' #if wts.mapping=='CUBE':image_mapBG+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_mapBG=='': print(' No background texture image found ') return image_mapBG def splitFile(path): idx = path.rfind('/') if idx == -1: idx = path.rfind('\\') return path[idx:].replace("/", "").replace("\\", "") def splitPath(path): idx = path.rfind('/') if idx == -1: return path, '' else: return path[:idx] def findInSubDir(filename, subdirectory=''): pahFile='' if subdirectory: path = subdirectory else: path = os.getcwd() try: for root, dirs, names in os.walk(path): if filename in names: pahFile = os.path.join(root, filename) return pahFile except: #OSError: #was that the proper error type? return '' def path_image(image): import os fn = bpy.path.abspath(image) fn_strip = os.path.basename(fn) if not os.path.isfile(fn): fn=(findInSubDir(splitFile(fn),splitPath(bpy.data.filepath))) () return fn ##############end find image texture ##############safety string name material def safety(name): try: if int(name) > 0: prefix='shader' except: prefix='' prefix='shader_' return prefix+name def safety0(name): #used for 0 of specular map try: if int(name) > 0: prefix='shader' except: prefix='' prefix='shader_' return prefix+name+'0' def safety1(name): #used for 1 of specular map try: if int(name) > 0: prefix='shader' except: prefix='' prefix='shader_' return prefix+name+'1' ##############end safety string name material ##############################EndSF########################### def write_pov(filename, scene=None, info_callback=None): file = open(filename, 'w') # Only for testing if not scene: scene = bpy.data.scenes[0] render = scene.render world = scene.world def uniqueName(name, nameSeq): if name not in nameSeq: return name name_orig = name i = 1 while name in nameSeq: name = '%s_%.3d' % (name_orig, i) i += 1 return name def writeMatrix(matrix): file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2])) def writeObjectMaterial(material): if material: #and material.transparency_method == 'RAYTRACE':#Commented out: always write IOR to be able to use it for SSS, Fresnel reflections... #But there can be only one! if material.subsurface_scattering.use:#SSS IOR get highest priority file.write('\tinterior { ior %.6f\n' % material.subsurface_scattering.ior) elif material.pov_mirror_use_IOR:#Then the raytrace IOR taken from raytrace transparency properties and used for reflections if IOR Mirror option is checked file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior) else: file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior) #If only Raytrace transparency is set, its IOR will be used for refraction, but user can set up "un-physical" fresnel reflections in raytrace mirror parameters. #Last, if none of the above is specified, user can set up "un-physical" fresnel reflections in raytrace mirror parameters. And pov IOR defaults to 1. if material.pov_caustics_enable: if material.pov_fake_caustics: file.write('\tcaustics %.3g\n' % material.pov_fake_caustics_power) if material.pov_photons_refraction: file.write('\tdispersion %.3g\n' % material.pov_photons_dispersion) #Default of 1 means no dispersion #TODO # Other interior args # fade_distance 2 # fade_power [Value] # fade_color # (variable) dispersion_samples (constant count for now) file.write('\t}\n') if material.pov_photons_refraction or material.pov_photons_reflection: file.write('\tphotons{\n') file.write('\t\ttarget\n') if material.pov_photons_refraction: file.write('\t\trefraction on\n') if material.pov_photons_reflection: file.write('\t\treflection on\n') file.write('\t}\n') materialNames = {} DEF_MAT_NAME = 'Default' def writeMaterial(material): # Assumes only called once on each material if material: name_orig = material.name else: name_orig = DEF_MAT_NAME name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames) file.write('#declare %s = finish {\n' % safety0(name)) if material: #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency) frontDiffuse=material.diffuse_intensity backDiffuse=material.translucency #But the conserve energy keyword does not keep their sum realistic in pov #we can add this feature before the script writes their values to pov scene if material.pov_conserve_energy: #Total of spec + diff should not go above one if (frontDiffuse + backDiffuse) <= 1.0: pass elif frontDiffuse==backDiffuse: frontDiffuse = backDiffuse = 0.5 # Try to respect the user's "intention" by comparing the two values but bringing the total back to one elif frontDiffuse>backDiffuse: # Let the highest value stay the highest value backDiffuse = 1-(1-frontDiffuse) else: frontDiffuse = 1-(1-backDiffuse) # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) ## scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) #####################################Diffuse Shader###################################### if material.diffuse_shader == 'OREN_NAYAR': file.write('\tbrilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray if material.diffuse_shader == 'TOON': file.write('\tbrilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25)) frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray if material.diffuse_shader == 'MINNAERT': #file.write('\taoi %.3g\n' % material.darkness) #not real syntax, aoi is a pattern. pass # Have to put this in texture since AOI and slope map are patterns if material.diffuse_shader == 'FRESNEL': #file.write('\taoi %.3g\n' % material.diffuse_fresnel_factor) #not real syntax, aoi is a pattern. pass # Have to put this in texture since AOI and slope map are patterns if material.diffuse_shader == 'LAMBERT': file.write('\tbrilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value ######################################################################################### file.write('\tdiffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse)) file.write('\tspecular 0\n') file.write('\tambient %.3g\n' % material.ambient) #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value file.write('\temission %.3g\n' % material.emit) #New in povray 3.7 if material.pov_conserve_energy: file.write('\tconserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice. # 'phong 70.0 ' if material.subsurface_scattering.use: subsurface_scattering = material.subsurface_scattering file.write('\tsubsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2])) if material.pov_irid_enable: file.write('\tirid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence)) file.write('}\n') ##################Plain version of the finish (previous ones are variations for specular/Mirror texture channel map with alternative finish of 0 specular and no mirror reflection### file.write('#declare %s = finish {\n' % safety(name)) if material: #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency) frontDiffuse=material.diffuse_intensity backDiffuse=material.translucency if material.pov_conserve_energy: #Total should not go above one if (frontDiffuse + backDiffuse) <= 1.0: pass elif frontDiffuse==backDiffuse: frontDiffuse = backDiffuse = 0.5 # Try to respect the user's "intention" by comparing the two values but bringing the total back to one elif frontDiffuse>backDiffuse: # Let the highest value stay the highest value backDiffuse = 1-(1-frontDiffuse) else: frontDiffuse = 1-(1-backDiffuse) # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) ## scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) #####################################Diffuse Shader###################################### if material.diffuse_shader == 'OREN_NAYAR': file.write('\tbrilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray if material.diffuse_shader == 'TOON': file.write('\tbrilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25)) frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray if material.diffuse_shader == 'MINNAERT': #file.write('\taoi %.3g\n' % material.darkness) pass #let's keep things simple for now if material.diffuse_shader == 'FRESNEL': #file.write('\taoi %.3g\n' % material.diffuse_fresnel_factor) pass #let's keep things simple for now if material.diffuse_shader == 'LAMBERT': file.write('\tbrilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value ####################################Specular Shader###################################### if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa! file.write('\tphong %.3g\n' % (material.specular_intensity)) file.write('\tphong_size %.3g\n'% (material.specular_hardness / 2 + 0.25)) if material.specular_shader == 'BLINN':#Povray "specular" keyword corresponds to a Blinn model, without the ior. file.write('\tspecular %.3g\n' % (material.specular_intensity * (material.specular_ior/4))) #Use blender Blinn's IOR just as some factor for spec intensity file.write('\troughness %.3g\n' % roughness) #Could use brilliance 2(or varying around 2 depending on ior or factor) too. if material.specular_shader == 'TOON': file.write('\tphong %.3g\n' % (material.specular_intensity * 2)) file.write('\tphong_size %.3g\n' % (0.1+material.specular_toon_smooth / 2)) #use extreme phong_size if material.specular_shader == 'WARDISO': file.write('\tspecular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values. file.write('\troughness %.4g\n' % (0.0005+material.specular_slope/10)) #find best suited default constant for brilliance Use both phong and specular for some values. file.write('\tbrilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values. ######################################################################################### file.write('\tdiffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse)) file.write('\tambient %.3g\n' % material.ambient) #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value file.write('\temission %.3g\n' % material.emit) #New in povray 3.7 #file.write('\troughness %.3g\n' % roughness) #povray just ignores roughness if there's no specular keyword if material.pov_conserve_energy: file.write('\tconserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice. # 'phong 70.0 ' if material.raytrace_mirror.use: raytrace_mirror = material.raytrace_mirror if raytrace_mirror.reflect_factor: file.write('\treflection {\n') file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color)) if material.pov_mirror_metallic: file.write('\t\tmetallic %.3g' % (raytrace_mirror.reflect_factor)) if material.pov_mirror_use_IOR: #WORKING ? file.write('\t\tfresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice file.write('\t\tfalloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor)) if material.subsurface_scattering.use: subsurface_scattering = material.subsurface_scattering file.write('\tsubsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2])) if material.pov_irid_enable: file.write('\tirid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence)) file.write('}\n') ##################Full specular version of the finish an increased roughness seems necessary here to perceive anything### file.write('#declare %s = finish {\n' % safety1(name)) if material: #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency) frontDiffuse=material.diffuse_intensity backDiffuse=material.translucency if material.pov_conserve_energy: #Total should not go above one if (frontDiffuse + backDiffuse) <= 1.0: pass elif frontDiffuse==backDiffuse: frontDiffuse = backDiffuse = 0.5 # Try to respect the user's "intention" by comparing the two values but bringing the total back to one elif frontDiffuse>backDiffuse: # Let the highest value stay the highest value backDiffuse = 1-(1-frontDiffuse) else: frontDiffuse = 1-(1-backDiffuse) # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) ## scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) ####################################Specular Shader###################################### if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa! file.write('\tphong %.3g\n' % (material.specular_intensity*3))#Multiplied for max value of Textured Spec. file.write('\tphong_size %.3g\n'% (material.specular_hardness /100 + 0.0005)) # /2-->/500; 0.25-->0.0025 Larger highlight for max value of Textured Spec. if material.specular_shader == 'BLINN':#Povray "specular" keyword corresponds to a Blinn model, hmhmmmm... file.write('\tspecular %.3g\n' % (material.specular_intensity * 5)) #Multiplied for max value of Textured Spec. file.write('\troughness %.3g\n' % (roughness*10)) #Multiplied for max value of Textured Spec. if material.specular_shader == 'TOON': file.write('\tphong %.3g\n' % (material.specular_intensity*3))#Multiplied for max value of Textured Spec. file.write('\tphong_size %.3g\n' % (0.1+material.specular_toon_smooth / 10)) #use extreme phong_size if material.specular_shader == 'WARDISO': file.write('\tspecular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values. file.write('\troughness %.4g\n' % (0.0005+material.specular_slope*5)) #Multiplied for max value of Textured Spec. file.write('\tbrilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values. ######################################################################################### file.write('\tdiffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse)) file.write('\tambient %.3g\n' % material.ambient) #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value file.write('\temission %.3g\n' % material.emit) #New in povray 3.7 if material.pov_conserve_energy: file.write('\tconserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice. # 'phong 70.0 ' if material.raytrace_mirror.use: raytrace_mirror = material.raytrace_mirror if raytrace_mirror.reflect_factor: file.write('\treflection {\n') file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color)) if material.pov_mirror_metallic: file.write('\t\tmetallic %.3g' % (raytrace_mirror.reflect_factor)) if material.pov_mirror_use_IOR: #WORKING ? file.write('\t\tfresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice file.write('\t\tfalloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor)) if material.subsurface_scattering.use: subsurface_scattering = material.subsurface_scattering file.write('\tsubsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2])) ##sqrt(subsurface_scattering.radius[1] above is just some non linear relation to keep "proportions" between blender presets values and povray. The following paper has samples of sigma numbers we can put directly into pov to get good results: ##http://graphics.stanford.edu/papers/bssrdf/bssrdf.pdf ##Whereas Blender probably uses That: ##http://graphics.stanford.edu/papers/fast_bssrdf/fast_bssrdf.pdf if material.pov_irid_enable: file.write('\tirid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence)) else: file.write('\tdiffuse 0.8\n') file.write('\tphong 70.0\n') #file.write('\tspecular 0.2\n') # This is written into the object ''' if material and material.transparency_method=='RAYTRACE': 'interior { ior %.3g} ' % material.raytrace_transparency.ior ''' #file.write('\t\t\tcrand 1.0\n') # Sand granyness #file.write('\t\t\tmetallic %.6f\n' % material.spec) #file.write('\t\t\tphong %.6f\n' % material.spec) #file.write('\t\t\tphong_size %.6f\n' % material.spec) #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness file.write('}\n') def exportCamera(): camera = scene.camera matrix = camera.matrix_world focal_point = camera.data.dof_distance # compute resolution Qsize = float(render.resolution_x) / float(render.resolution_y) file.write('#declare camLocation = <%.6f, %.6f, %.6f>;\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) file.write('#declare camLookAt = <%.6f, %.6f, %.6f>;\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) file.write('camera {\n') file.write('\tlocation <0, 0, 0>\n') file.write('\tlook_at <0, 0, -1>\n') file.write('\tright <%s, 0, 0>\n' % - Qsize) file.write('\tup <0, 1, 0>\n') file.write('\tangle %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi)) file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) if focal_point != 0: file.write('\taperture 0.25\n') # fixed blur amount for now to do, add slider a button? file.write('\tblur_samples 96 128\n') file.write('\tvariance 1/10000\n') file.write('\tfocal_point <0, 0, %f>\n' % focal_point) file.write('}\n') def exportLamps(lamps): # Get all lamps for ob in lamps: lamp = ob.data matrix = ob.matrix_world color = tuple([c * lamp.energy *2 for c in lamp.color]) # Colour is modified by energy #muiltiplie by 2 for a better match --Maurice file.write('light_source {\n') file.write('\t< 0,0,0 >\n') file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color) if lamp.type == 'POINT': # Point Lamp pass elif lamp.type == 'SPOT': # Spot file.write('\tspotlight\n') # Falloff is the main radius from the centre line file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend))) # Blender does not have a tightness equivilent, 0 is most like blender default. file.write('\ttightness 0\n') # 0:10f file.write('\tpoint_at <0, 0, -1>\n') elif lamp.type == 'SUN': file.write('\tparallel\n') file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel' elif lamp.type == 'AREA': file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) ) file.write('\tfade_power %d\n' % 2) # Area lights have no falloff type, so always use blenders lamp quad equivalent for those? size_x = lamp.size samples_x = lamp.shadow_ray_samples_x if lamp.shape == 'SQUARE': size_y = size_x samples_y = samples_x else: size_y = lamp.size_y samples_y = lamp.shadow_ray_samples_y file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED': if lamp.jitter: file.write('\tjitter\n') else: file.write('\tadaptive 1\n') file.write('\tjitter\n') if lamp.type == 'HEMI':#HEMI never has any shadow attribute file.write('\tshadowless\n') elif lamp.shadow_method == 'NOSHADOW': file.write('\tshadowless\n') if lamp.type != 'SUN' and lamp.type!='AREA' and lamp.type!='HEMI':#Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they are put to type 2 attenuation a little higher above. file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) ) if lamp.falloff_type == 'INVERSE_SQUARE': file.write('\tfade_power %d\n' % 2) # Use blenders lamp quad equivalent elif lamp.falloff_type == 'INVERSE_LINEAR': file.write('\tfade_power %d\n' % 1) # Use blenders lamp linear elif lamp.falloff_type == 'CONSTANT': #Supposing using no fade power keyword would default to constant, no attenuation. pass elif lamp.falloff_type == 'CUSTOM_CURVE': #Using Custom curve for fade power 3 for now. file.write('\tfade_power %d\n' % 4) writeMatrix(matrix) file.write('}\n') ################################################################################################################################## #Wip to be Used for fresnel, but not tested yet. ################################################################################################################################## ## lampLocation=[0,0,0] ## lampRotation=[0,0,0] ## lampDistance=0.00 ## averageLampLocation=[0,0,0] ## averageLampRotation=[0,0,0] ## averageLampDistance=0.00 ## lamps=[] ## for l in scene.objects: ## if l.type == 'LAMP':#get all lamps ## lamps += [l] ## for ob in lamps: ## lamp = ob.data ## lampLocation[0]+=ob.location[0] ## lampLocation[1]+=ob.location[1] ## lampLocation[2]+=ob.location[2] ## lampRotation[0]+=ob.rotation_euler[0] ## lampRotation[1]+=ob.rotation_euler[1] ## lampRotation[2]+=ob.rotation_euler[2] ## lampDistance+=ob.data.distance ## averageLampRotation[0]=lampRotation[0] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[1]=lampRotation[1] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[2]=lampRotation[2] / len(lamps)#create an average direction for all lamps. ## ## averageLampLocation[0]=lampLocation[0] / len(lamps)#create an average position for all lamps. ## averageLampLocation[1]=lampLocation[1] / len(lamps)#create an average position for all lamps. ## averageLampLocation[2]=lampLocation[2] / len(lamps)#create an average position for all lamps. ## ## averageLampDistance=lampDistance / len(lamps)#create an average distance for all lamps. ## file.write('\n#declare lampTarget= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);' % (-(averageLampLocation[0]-averageLampDistance), -(averageLampLocation[1]-averageLampDistance), -(averageLampLocation[2]-averageLampDistance), averageLampRotation[0], averageLampRotation[1], averageLampRotation[2])) ## #v(A,B) rotates vector A about origin by vector B. ## #################################################################################################################################### def exportMeta(metas): # TODO - blenders 'motherball' naming is not supported. for ob in metas: meta = ob.data file.write('blob {\n') file.write('\t\tthreshold %.4g\n' % meta.threshold) try: material = meta.materials[0] # lame! - blender cant do enything else. except: material = None for elem in meta.elements: if elem.type not in ('BALL', 'ELLIPSOID'): continue # Not supported loc = elem.co stiffness = elem.stiffness if elem.use_negative: stiffness = - stiffness if elem.type == 'BALL': file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness)) # After this wecould do something simple like... # "pigment {Blue} }" # except we'll write the color elif elem.type == 'ELLIPSOID': # location is modified by scale file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness)) file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z)) if material: diffuse_color = material.diffuse_color if material.use_transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \ (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name])) else: file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last. writeObjectMaterial(material) writeMatrix(ob.matrix_world) file.write('}\n') def exportMeshs(scene, sel): ob_num = 0 for ob in sel: ob_num += 1 if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'): continue me = ob.data me_materials = me.materials me = ob.create_mesh(scene, True, 'RENDER') if not me or not me.faces: continue if info_callback: info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) #if ob.type!='MESH': # continue # me = ob.data matrix = ob.matrix_world try: uv_layer = me.uv_textures.active.data except: uv_layer = None try: vcol_layer = me.vertex_colors.active.data except: vcol_layer = None faces_verts = [f.vertices[:] for f in me.faces] faces_normals = [tuple(f.normal) for f in me.faces] verts_normals = [tuple(v.normal) for v in me.vertices] # quads incur an extra face quadCount = sum(1 for f in faces_verts if len(f) == 4) file.write('mesh2 {\n') file.write('\tvertex_vectors {\n') file.write('\t\t%s' % (len(me.vertices))) # vert count for v in me.vertices: file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count file.write('\n }\n') # Build unique Normal list uniqueNormals = {} for fi, f in enumerate(me.faces): fv = faces_verts[fi] # [-1] is a dummy index, use a list so we can modify in place if f.use_smooth: # Use vertex normals for v in fv: key = verts_normals[v] uniqueNormals[key] = [-1] else: # Use face normal key = faces_normals[fi] uniqueNormals[key] = [-1] file.write('\tnormal_vectors {\n') file.write('\t\t%d' % len(uniqueNormals)) # vert count idx = 0 for no, index in uniqueNormals.items(): file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count index[0] = idx idx += 1 file.write('\n }\n') # Vertex colours vertCols = {} # Use for material colours also. if uv_layer: # Generate unique UV's uniqueUVs = {} for fi, uv in enumerate(uv_layer): if len(faces_verts[fi]) == 4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for uv in uvs: uniqueUVs[tuple(uv)] = [-1] file.write('\tuv_vectors {\n') #print unique_uvs file.write('\t\t%s' % (len(uniqueUVs))) # vert count idx = 0 for uv, index in uniqueUVs.items(): file.write(',\n\t\t<%.6f, %.6f>' % uv) index[0] = idx idx += 1 ''' else: # Just add 1 dummy vector, no real UV's file.write('\t\t1') # vert count file.write(',\n\t\t<0.0, 0.0>') ''' file.write('\n }\n') if me.vertex_colors: for fi, f in enumerate(me.faces): material_index = f.material_index material = me_materials[material_index] if material and material.use_vertex_color_paint: col = vcol_layer[fi] if len(faces_verts[fi]) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 for col in cols: key = col[0], col[1], col[2], material_index # Material index! vertCols[key] = [-1] else: if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index vertCols[key] = [-1] else: # No vertex colours, so write material colours as vertex colours for i, material in enumerate(me_materials): if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat vertCols[key] = [-1] # Vert Colours file.write('\ttexture_list {\n') file.write('\t\t%s' % (len(vertCols))) # vert count idx = 0 for col, index in vertCols.items(): if me_materials: material = me_materials[col[3]] material_finish = materialNames[material.name] if material.use_transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 else: material_finish = DEF_MAT_NAME # not working properly, trans = 0.0 ##############SF texturesDif='' texturesSpec='' texturesNorm='' texturesAlpha='' for t in material.texture_slots: if t and t.texture.type == 'IMAGE' and t.use and t.texture.image: image_filename = path_image(t.texture.image.filepath) if image_filename: if t.use_map_color_diffuse: texturesDif = image_filename colvalue = t.default_value t_dif = t if t.use_map_specular or t.use_map_raymir: texturesSpec = image_filename colvalue = t.default_value t_spec = t if t.use_map_normal: texturesNorm = image_filename colvalue = t.normal_factor * 10.0 #textNormName=t.texture.image.name + '.normal' #was the above used? --MR t_nor = t if t.use_map_alpha: texturesAlpha = image_filename colvalue = t.alpha_factor * 10.0 #textDispName=t.texture.image.name + '.displ' #was the above used? --MR t_alpha = t ############################################################################################################## file.write('\n\t\ttexture {') #THIS AREA NEEDS TO LEAVE THE TEXTURE OPEN UNTIL ALL MAPS ARE WRITTEN DOWN. --MR ############################################################################################################## if material.diffuse_shader == 'MINNAERT': file.write('\n\t\t\taoi') file.write('\n\t\t\ttexture_map {') file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.darkness/2), (2-material.darkness))) file.write('\n\t\t\t\t[%.3g' % (1-(material.darkness/2))) ######TO OPTIMIZE? or present a more elegant way? At least make it work!################################################################## #If Fresnel gets removed from 2.5, why bother? if material.diffuse_shader == 'FRESNEL': ######END of part TO OPTIMIZE? or present a more elegant way?################################################################## ## #lampLocation=lamp.position ## lampRotation= ## a=lamp.Rotation[0] ## b=lamp.Rotation[1] ## c=lamp.Rotation[2] ## lampLookAt=tuple (x,y,z) ## lampLookAt[3]= 0.0 #Put "target" of the lamp on the floor plane to elimianate one unknown value ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation - lampLookAt).z))=lamp.rotation[0] ## degrees(atan((lampLocation - lampLookAt).z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation.z))=lamp.rotation[0] ## degrees(atan((lampLocation.z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] #color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy file.write('\n\t\t\tslope { lampTarget }') file.write('\n\t\t\ttexture_map {') file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.diffuse_fresnel/2), (2-material.diffuse_fresnel_factor))) file.write('\n\t\t\t\t[%.3g' % (1-(material.diffuse_fresnel/2))) #if material.diffuse_shader == 'FRESNEL': pigment pattern aoi pigment and texture map above, the rest below as one of its entry ########################################################################################################################## if texturesSpec !='': file.write('\n\t\t\t\tpigment_pattern {') mappingSpec = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_spec.offset.x / 10 ,t_spec.offset.y / 10 ,t_spec.offset.z / 10, t_spec.scale.x / 2.25, t_spec.scale.y / 2.25, t_spec.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\t\tuv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesSpec) ,texturesSpec ,imgMap(t_spec),mappingSpec)) file.write('\n\t\t\t\t\t\ttexture_map {') file.write('\n\t\t\t\t\t\t\t[0 ') if texturesDif == '': if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {') file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) file.write('\n\t\t\t\t}') else: file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': file.write('finish {%s}' % (safety0(material_finish))) else: file.write('finish {%s}' % (safety(material_finish))) else: mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) file.write('\n\t\t\t\t}') else: file.write("\n\t\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) if texturesSpec !='': file.write('finish {%s}' % (safety0(material_finish))) else: file.write('finish {%s}' % (safety(material_finish))) ## scale 1 rotate y*0 #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif))) #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish))) #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': file.write('\n\t\t\t\t\t\t\t]') ################################Second index for mapping specular max value################################################################################################## file.write('\n\t\t\t\t\t\t\t[1 ') if texturesDif == '': if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {') file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) file.write('\n\t\t\t\t}') else: file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': file.write('finish {%s}' % (safety1(material_finish))) else: file.write('finish {%s}' % (safety(material_finish))) else: mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\tpigment_map {\n\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) file.write('\n\t\t\t\t}') else: file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) if texturesSpec !='': file.write('finish {%s}' % (safety1(material_finish))) else: file.write('finish {%s}' % (safety(material_finish))) ## scale 1 rotate y*0 #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif))) #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish))) #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': file.write('\n\t\t\t\t\t\t\t]') file.write('\n\t\t\t\t}') #End of slope/ior texture_map if material.diffuse_shader == 'MINNAERT' or material.diffuse_shader == 'FRESNEL': file.write('\n\t\t\t\t]') file.write('\n\t\t\t}') file.write('\n\t\t}') #THEN IT CAN CLOSE IT --MR ############################################################################################################ index[0] = idx idx += 1 file.write('\n\t}\n') # Face indicies file.write('\tface_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] material_index = f.material_index if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) if vcol_layer: col = vcol_layer[fi] if len(fv) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 if not me_materials or me_materials[material_index] is None: # No materials for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count else: material = me_materials[material_index] for i1, i2, i3 in indicies: if me.vertex_colors and material.use_vertex_color_paint: # Colour per vertex - vertex colour col1 = cols[i1] col2 = cols[i2] col3 = cols[i3] ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] else: # Colour per material - flat material colour diffuse_color = material.diffuse_color ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count file.write('\n }\n') # normal_indices indicies file.write('\tnormal_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) for i1, i2, i3 in indicies: if f.use_smooth: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueNormals[verts_normals[fv[i1]]][0],\ uniqueNormals[verts_normals[fv[i2]]][0],\ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count else: idx = uniqueNormals[faces_normals[fi]][0] file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count file.write('\n }\n') if uv_layer: file.write('\tuv_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) uv = uv_layer[fi] if len(faces_verts[fi]) == 4: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4) else: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3) for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueUVs[uvs[i1]][0],\ uniqueUVs[uvs[i2]][0],\ uniqueUVs[uvs[i3]][0])) file.write('\n }\n') if me.materials: try: material = me.materials[0] # dodgy writeObjectMaterial(material) except IndexError: print(me) writeMatrix(matrix) file.write('}\n') bpy.data.meshes.remove(me) def exportWorld(world): render = scene.render camera = scene.camera matrix = camera.matrix_world if not world: return #############Maurice#################################### #These lines added to get sky gradient (visible with PNG output) if world: #For simple flat background: if not world.use_sky_blend: #Non fully transparent background could premultiply alpha and avoid anti-aliasing display issue: if render.alpha_mode == 'PREMUL' or render.alpha_mode == 'PREMUL' : file.write('background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n' % (tuple(world.horizon_color))) #Currently using no alpha with Sky option: elif render.alpha_mode == 'SKY': file.write('background {rgbt<%.3g, %.3g, %.3g, 0>}\n' % (tuple(world.horizon_color))) #StraightAlpha: else: file.write('background {rgbt<%.3g, %.3g, %.3g, 1>}\n' % (tuple(world.horizon_color))) #For Background image textures for t in world.texture_slots: #risk to write several sky_spheres but maybe ok. if t and t.texture.type == 'IMAGE': #and t.use: #No enable checkbox for world textures yet (report it?) image_filename = path_image(t.texture.image.filepath) if t.texture.image.filepath != image_filename: t.texture.image.filepath = image_filename if image_filename != '' and t.use_map_blend: texturesBlend = image_filename #colvalue = t.default_value t_blend = t #commented below was an idea to make the Background image oriented as camera taken here: http://news.povray.org/povray.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.povray.org%3E/ #mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees(atan((camLocation - camLookAt).x/(camLocation - camLookAt).y)) rotate x*degrees(atan((camLocation - camLookAt).y/(camLocation - camLookAt).z)) rotate y*degrees(atan((camLocation - camLookAt).z/(camLocation - camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x ,t_blend.scale.y ,t_blend.scale.z))#replace 4/3 by the ratio of each image found by some custom or existing function #using camera rotation valuesdirectly from blender seems much easier mappingBlend = (" translate <%.4g-0.5,%.4g-0.5,%.4g-0.5> rotate<%.4g,%.4g,%.4g> scale <%.4g,%.4g,%.4g>" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, degrees(camera.rotation_euler[0]), degrees(camera.rotation_euler[1]), degrees(camera.rotation_euler[2]), t_blend.scale.x*0.85 , t_blend.scale.y*0.85 , t_blend.scale.z*0.85 )) #Putting the map on a plane would not introduce the skysphere distortion and allow for better image scale matching but also some waay to chose depth and size of the plane relative to camera. file.write('sky_sphere {\n') file.write('\tpigment {\n') file.write("\t\timage_map{%s \"%s\" %s}\n\t}\n\t%s\n" % (imageFormat(texturesBlend),texturesBlend,imgMapBG(t_blend),mappingBlend)) file.write('}\n') #file.write('\t\tscale 2\n') #file.write('\t\ttranslate -1\n') #For only Background gradient if not t: if world.use_sky_blend: file.write('sky_sphere {\n') file.write('\tpigment {\n') file.write('\t\tgradient z\n')#maybe Should follow the advice of POV doc about replacing gradient for skysphere..5.5 file.write('\t\tcolor_map {\n') if render.alpha_mode == 'STRAIGHT': file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.zenith_color))) elif render.alpha_mode == 'PREMUL': file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.zenith_color))) #aa premult not solved with transmit 1 else: file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.zenith_color))) file.write('\t\t}\n') file.write('\t}\n') file.write('}\n') #sky_sphere alpha (transmit) is not translating into image alpha the same way as "background" if world.light_settings.use_indirect_light: scene.pov_radio_enable=1 #Maybe change the above to scene.pov_radio_enable = world.light_settings.use_indirect_light ? ############################################################### mist = world.mist_settings if mist.use_mist: file.write('fog {\n') file.write('\tdistance %.6f\n' % mist.depth) file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,))) #file.write('\tfog_offset %.6f\n' % mist.start) #file.write('\tfog_alt 5\n') #file.write('\tturbulence 0.2\n') #file.write('\tturb_depth 0.3\n') file.write('\tfog_type 1\n') file.write('}\n') def exportGlobalSettings(scene): file.write('global_settings {\n') file.write('\tmax_trace_level 7\n') if scene.pov_radio_enable: file.write('\tradiosity {\n') file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout) file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample) file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness) file.write("\t\tcount %d\n" % scene.pov_radio_count) file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound) file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold) file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor) file.write("\t\tmedia %d\n" % scene.pov_radio_media) file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse) file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count) file.write("\t\tnormal %d\n" % scene.pov_radio_normal) file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit) file.write('\t}\n') once=1 for material in bpy.data.materials: if material.subsurface_scattering.use and once: file.write("\tmm_per_unit %.6f\n" % (material.subsurface_scattering.scale * (-100) + 15))#In pov, the scale has reversed influence compared to blender. these number should correct that once=0 #In povray, the scale factor for all subsurface shaders needs to be the same if world: file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color)) if material.pov_photons_refraction or material.pov_photons_reflection: file.write("\tphotons {\n") file.write("\t\tspacing 0.003\n") file.write("\t\tmax_trace_level 4\n") file.write("\t\tadc_bailout 0.1\n") file.write("\t\tgather 30, 150\n") file.write("\t}\n") file.write('}\n') # Convert all materials to strings we can access directly per vertex. writeMaterial(None) # default material for material in bpy.data.materials: writeMaterial(material) exportCamera() #exportMaterials() sel = scene.objects exportLamps([l for l in sel if l.type == 'LAMP']) exportMeta([l for l in sel if l.type == 'META']) exportMeshs(scene, sel) exportWorld(scene.world) exportGlobalSettings(scene) file.close() def write_pov_ini(filename_ini, filename_pov, filename_image): scene = bpy.data.scenes[0] render = scene.render x = int(render.resolution_x * render.resolution_percentage * 0.01) y = int(render.resolution_y * render.resolution_percentage * 0.01) file = open(filename_ini, 'w') file.write('Input_File_Name="%s"\n' % filename_pov) file.write('Output_File_Name="%s"\n' % filename_image) file.write('Width=%d\n' % x) file.write('Height=%d\n' % y) # Needed for border render. ''' file.write('Start_Column=%d\n' % part.x) file.write('End_Column=%d\n' % (part.x+part.w)) file.write('Start_Row=%d\n' % (part.y)) file.write('End_Row=%d\n' % (part.y+part.h)) ''' file.write('Bounding_method=2\n')#The new automatic BSP is faster in most scenes file.write('Display=1\n')#Activated (turn this back off when better live exchange is done between the two programs (see next comment) file.write('Pause_When_Done=0\n') file.write('Output_File_Type=N\n') # PNG, with POV 3.7, can show background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #file.write('Output_File_Type=T\n') # TGA, best progressive loading file.write('Output_Alpha=1\n') if render.use_antialiasing: aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 2 (recursive) with higher max subdiv forced because no mipmapping in povray needs higher sampling. file.write('Antialias=1\n') file.write('Sampling_Method=2n') file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) file.write('Antialias_Threshold=0.1\n')#rather high settings but necessary. file.write('Jitter=off\n')#prevent animation flicker else: file.write('Antialias=0\n') file.close() class PovrayRender(bpy.types.RenderEngine): bl_idname = 'POVRAY_RENDER' bl_label = "Povray 3.7" DELAY = 0.02 def _export(self, scene): import tempfile self._temp_file_in = tempfile.mktemp(suffix='.pov') self._temp_file_out = tempfile.mktemp(suffix='.png')#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = tempfile.mktemp(suffix='.tga') self._temp_file_ini = tempfile.mktemp(suffix='.ini') ''' self._temp_file_in = '/test.pov' self._temp_file_out = '/test.png'#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = '/test.tga' self._temp_file_ini = '/test.ini' ''' def info_callback(txt): self.update_stats("", "POVRAY 3.7: " + txt) write_pov(self._temp_file_in, scene, info_callback) def _render(self): try: os.remove(self._temp_file_out) # so as not to load the old file except: #OSError: #was that the proper error type? pass write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out) print ("***-STARTING-***") pov_binary = "povray" if sys.platform == 'win32': import winreg regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.7\\Windows') if bitness == 64: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64' else: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine' if 1: # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists try: self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE except OSError: # TODO, report api print("POVRAY 3.7: could not execute '%s', possibly povray isn't installed" % pov_binary) import traceback traceback.print_exc() print ("***-DONE-***") return False else: # This works too but means we have to wait until its done os.system('%s %s' % (pov_binary, self._temp_file_ini)) print ("***-DONE-***") return True def _cleanup(self): for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out): try: os.remove(f) except OSError: #was that the proper error type? pass self.update_stats("", "") def render(self, scene): self.update_stats("", "POVRAY 3.7: Exporting data from Blender") self._export(scene) self.update_stats("", "POVRAY 3.7: Parsing File") if not self._render(): self.update_stats("", "POVRAY 3.7: Not found") return r = scene.render ##WIP output format ## if r.file_format == 'OPENEXR': ## fformat = 'EXR' ## render.color_mode = 'RGBA' ## else: ## fformat = 'TGA' ## r.file_format = 'TARGA' ## r.color_mode = 'RGBA' # compute resolution x = int(r.resolution_x * r.resolution_percentage * 0.01) y = int(r.resolution_y * r.resolution_percentage * 0.01) # Wait for the file to be created while not os.path.exists(self._temp_file_out): if self.test_break(): try: self._process.terminate() except: #OSError: #was that the proper error type? pass break if self._process.poll() != None: self.update_stats("", "POVRAY 3.7: Failed") break time.sleep(self.DELAY) if os.path.exists(self._temp_file_out): self.update_stats("", "POVRAY 3.7: Rendering") prev_size = -1 def update_image(): result = self.begin_result(0, 0, x, y) lay = result.layers[0] # possible the image wont load early on. try: lay.load_from_file(self._temp_file_out) except: #OSError: #was that the proper error type? pass self.end_result(result) # Update while povray renders while True: # test if povray exists if self._process.poll() is not None: update_image() break # user exit if self.test_break(): try: self._process.terminate() except: #OSError: #was that the proper error type? pass break # Would be nice to redirect the output # stdout_value, stderr_value = self._process.communicate() # locks # check if the file updated new_size = os.path.getsize(self._temp_file_out) if new_size != prev_size: update_image() prev_size = new_size time.sleep(self.DELAY) self._cleanup()