# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy from Mathutils import * from math import * from bpy.props import * bl_addon_info = { 'name': 'Add Mesh: 3D Function Surfaces', 'author': 'Buerbaum Martin (Pontiac)', 'version': '0.3.1', 'blender': (2, 5, 3), 'location': 'View3D > Add > Mesh > Z Function Surface &' \ ' XYZ Function Surface', 'description': 'Create Objects using Math Formulas', 'url': 'http://wiki.blender.org/index.php/Extensions:2.5/Py/' \ 'Scripts/Add_Mesh/Add_3d_Function_Surface', 'category': 'Add Mesh'} # More Links: # http://gitorious.org/blender-scripts/blender-3d-function-surface # http://blenderartists.org/forum/showthread.php?t=179043 __bpydoc__ = """ Z Function Surface This script lets the user create a surface where the z coordinate is a function of the x and y coordinates. z = f(x,y) X,Y,Z Function Surface This script lets the user create a surface where the x, y and z coordinates are defiend by a function. x = f(u,v) y = f(u,v) z = f(u,v) Usage: You have to activated the script in the "Add-Ons" tab (user preferences). The functionality can then be accessed via the "Add Mesh" -> "Z Function Surface" and "Add Mesh" -> "X,Y,Z Function Surface" menu. Version history: v0.3.1 - Use hidden "edit" property for "recall" operator. Bugfix: Z Function was mixing up div_x and div_y v0.3 - X,Y,Z Function Surface (by Ed Mackey & tuga3d). Renamed old function to "Z Function Surface". Align the geometry to the view if the user preference says so. Store recall properties in newly created object. v0.2.3 - Use bl_addon_info for Add-On information. v0.2.2 - Fixed Add-On registration text. v0.2.1 - Fixed some new API stuff. Mainly we now have the register/unregister functions. Also the new() function for objects now accepts a mesh object. Changed the script so it can be managed from the "Add-Ons" tab in the user preferences. Added dummy "PLUGIN" icon. Corrected FSF address. Clean up of tooltips. v0.2 - Added security check for eval() function Check return value of eval() for complex numbers. v0.1.1 - Use 'CANCELLED' return value when failing. Updated web links. v0.1 - Initial revision. """ # List of safe functions for eval() safe_list = ['math', 'acos', 'asin', 'atan', 'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log', 'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh'] # Use the list to filter the local namespace safe_dict = dict([(k, globals().get(k, None)) for k in safe_list]) # Stores the values of a list of properties in a # property group (named like the operator) in the object. # Always replaces any existing property group with the same name! # @todo: Should we do this in EDIT Mode? Sounds dangerous. def obj_store_recall_properties(ob, op, prop_list): if ob and op and prop_list: #print("Storing recall data for operator: " + op.bl_idname) # DEBUG # Store new recall properties. prop_list['recall_op'] = op.bl_idname ob['recall'] = prop_list # Apply view rotation to objects if "Align To" for new objects # was set to "VIEW" in the User Preference. def apply_view_rotation(context, ob): align = bpy.context.user_preferences.edit.object_align if (context.space_data.type == 'VIEW_3D' and align == 'VIEW'): view3d = context.space_data region = view3d.region_3d viewMatrix = region.view_matrix rot = viewMatrix.rotation_part() ob.rotation_euler = rot.invert().to_euler() def createFaces(vertIdx1, vertIdx2, ring): ''' A very simple "bridge" tool. Connects two equally long vertex-loops with faces and returns a list of the new faces. Parameters vertIdx1 ... List of vertex indices of the first loop. vertIdx2 ... List of vertex indices of the second loop. ''' faces = [] if (len(vertIdx1) != len(vertIdx2)) or (len(vertIdx1) < 2): return None total = len(vertIdx1) if (ring): # Bridge the start with the end. faces.append([vertIdx2[0], vertIdx1[0], vertIdx1[total - 1], vertIdx2[total - 1]]) # Bridge the rest of the faces. for num in range(total - 1): faces.append([vertIdx1[num], vertIdx2[num], vertIdx2[num + 1], vertIdx1[num + 1]]) return faces def createObject(context, verts, faces, name, edit): '''Creates Meshes & Objects for the given lists of vertices and faces.''' scene = context.scene # Create new mesh mesh = bpy.data.meshes.new(name) # Add the geometry to the mesh. #mesh.add_geometry(len(verts), 0, len(faces)) #mesh.verts.foreach_set("co", unpack_list(verts)) #mesh.faces.foreach_set("verts_raw", unpack_face_list(faces)) # To quote the documentation: # "Make a mesh from a list of verts/edges/faces Until we have a nicer # way to make geometry, use this." # http://www.blender.org/documentation/250PythonDoc/ # bpy.types.Mesh.html#bpy.types.Mesh.from_pydata mesh.from_pydata(verts, [], faces) # Deselect all objects. bpy.ops.object.select_all(action='DESELECT') # Update mesh geometry after adding stuff. mesh.update() if edit: # Recreate geometry of existing object obj_act = context.active_object ob_new = obj_act bpy.ops.object.mode_set(mode='EDIT') bpy.ops.mesh.select_all(action='SELECT') bpy.ops.mesh.delete(type='VERT') bpy.ops.object.mode_set(mode='OBJECT') ob_new.data = mesh ob_new.selected = True else: # Create new object ob_new = bpy.data.objects.new(name, mesh) # Link new object to the given scene and select it. scene.objects.link(ob_new) ob_new.selected = True # Place the object at the 3D cursor location. ob_new.location = scene.cursor_location obj_act = scene.objects.active apply_view_rotation(context, ob_new) if obj_act and obj_act.mode == 'EDIT': if not edit: # We are in EditMode, switch to ObjectMode. bpy.ops.object.mode_set(mode='OBJECT') # Select the active object as well. obj_act.selected = True # Apply location of new object. scene.update() # Join new object into the active. bpy.ops.object.join() # Switching back to EditMode. bpy.ops.object.mode_set(mode='EDIT') else: # We are in ObjectMode. # Make the new object the active one. scene.objects.active = ob_new return ob_new class AddZFunctionSurface(bpy.types.Operator): '''Add a surface defined defined by a function z=f(x,y)''' bl_idname = "mesh.primitive_z_function_surface" bl_label = "Add Z Function Surface" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) equation = StringProperty(name="Z Equation", description="Equation for z=f(x,y)", default="1 - ( x**2 + y**2 )") div_x = IntProperty(name="X Subdivisions", description="Number of vertices in x direction.", default=16, min=3, max=256) div_y = IntProperty(name="Y Subdivisions", description="Number of vertices in y direction.", default=16, min=3, max=256) size_x = FloatProperty(name="X Size", description="Size of the x axis.", default=2.0, min=0.01, max=100.0, unit="LENGTH") size_y = FloatProperty(name="Y Size", description="Size of the y axis.", default=2.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): edit = self.properties.edit equation = self.properties.equation div_x = self.properties.div_x div_y = self.properties.div_y size_x = self.properties.size_x size_y = self.properties.size_y verts = [] faces = [] delta_x = size_x / float(div_x - 1) delta_y = size_y / float(div_y - 1) start_x = -(size_x / 2.0) start_y = -(size_y / 2.0) edgeloop_prev = [] for row_x in range(div_x): edgeloop_cur = [] for row_y in range(div_y): x = start_x + row_x * delta_x y = start_y + row_y * delta_y z = 0 # Try to evaluate the equation. try: safe_dict['x'] = x safe_dict['y'] = y z = eval(equation, {"__builtins__": None}, safe_dict) except: print("AddZFunctionSurface: " \ "Could not evaluate equation '" + equation + "'\n") return {'CANCELLED'} # Accept only real numbers (no complex types) # @todo: Support for "long" needed? if not (isinstance(z, int) #or isinstance(z, long) or isinstance(z, float)): print("AddZFunctionSurface: " \ "eval() returned unsupported number type '" \ + str(z) + "'\n") return {'CANCELLED'} edgeloop_cur.append(len(verts)) verts.append((x, y, z)) if len(edgeloop_prev) > 0: faces_row = createFaces(edgeloop_prev, edgeloop_cur, False) faces.extend(faces_row) edgeloop_prev = edgeloop_cur obj = createObject(context, verts, faces, "Z Function", edit) # Store 'recall' properties in the object. recall_prop_list = { "edit": True, "equation": equation, "div_x": div_x, "div_y": div_y, "size_x": size_x, "size_y": size_y} obj_store_recall_properties(obj, self, recall_prop_list) return {'FINISHED'} def xyz_function_surface_faces(x_eq, y_eq, z_eq, range_u_min, range_u_max, range_u_step, wrap_u, range_v_min, range_v_max, range_v_step, wrap_v): verts = [] faces = [] uStep = (range_u_max - range_u_min) / range_u_step vStep = (range_v_max - range_v_min) / range_v_step uRange = range_u_step if range_u_step == 0: uRange = uRange + 1 vRange = range_v_step if range_v_step == 0: vRange = vRange + 1 for vN in range(vRange): v = range_v_min + (vN * vStep) for uN in range(uRange): u = range_u_min + (uN * uStep) safe_dict['u'] = u safe_dict['v'] = v # Try to evaluate the equation. try: x = eval(x_eq, {"__builtins__": None}, safe_dict) except: print("AddXYZFunctionSurface: " \ "Could not evaluate x equation '" + x_eq + "'\n") return {'CANCELLED'} try: y = eval(y_eq, {"__builtins__": None}, safe_dict) except: print("AddXYZFunctionSurface: " \ "Could not evaluate y equation '" + y_eq + "'\n") return {'CANCELLED'} try: z = eval(z_eq, {"__builtins__": None}, safe_dict) except: print("AddXYZFunctionSurface: " \ "Could not evaluate z equation '" + z_eq + "'\n") return {'CANCELLED'} # Accept only real numbers (no complex types) # @todo: Support for "long" needed? if not (isinstance(x, int) or isinstance(x, float)): print("AddXYZFunctionSurface: " \ "eval() returned unsupported number type '" \ + str(x) + " for x function.'\n") return {'CANCELLED'} if not (isinstance(y, int) or isinstance(y, float)): print("AddXYZFunctionSurface: " \ "eval() returned unsupported number type '" \ + str(y) + " for y function.'\n") return {'CANCELLED'} if not (isinstance(z, int) or isinstance(z, float)): print("AddXYZFunctionSurface: " \ "eval() returned unsupported number type '" \ + str(z) + " for z function.'\n") return {'CANCELLED'} verts.append((x, y, z)) for vN in range(1, range_v_step + 1): vThis = vN if (vThis >= vRange): if wrap_v: vThis = 0 else: continue for uN in range(1, range_u_step + 1): uThis = uN if (uThis >= uRange): if wrap_u: uThis = 0 else: continue faces.append([(vThis * uRange) + uThis, (vThis * uRange) + uN - 1, ((vN - 1) * uRange) + uN - 1, ((vN - 1) * uRange) + uThis]) return verts, faces # Original Script "Parametric.py" by Ed Mackey. # -> http://www.blinken.com/blender-plugins.php # Partly converted for Blender 2.5 by tuga3d. # # Sphere: # x = sin(2*pi*u)*sin(pi*v) # y = cos(2*pi*u)*sin(pi*v) # z = cos(pi*v) # u_min = v_min = 0 # u_max = v_max = 1 # # "Snail shell" # x = 1.2**v*(sin(u)**2 *sin(v)) # y = 1.2**v*(sin(u)*cos(u)) # z = 1.2**v*(sin(u)**2 *cos(v)) # u_min = 0 # u_max = pi # v_min = -pi/4, # v max = 5*pi/2 class AddXYZFunctionSurface(bpy.types.Operator): '''Add a surface defined defined by 3 functions:''' \ + ''' x=f(u,v), y=f(u,v) and z=f(u,v)''' bl_idname = "mesh.primitive_xyz_function_surface" bl_label = "Add X,Y,Z Function Surface" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) x_eq = StringProperty(name="X Equation", description="Equation for x=f(u,v)", default="1.2**v*(sin(u)**2 *sin(v))") y_eq = StringProperty(name="Y Equation", description="Equation for y=f(u,v)", default="1.2**v*(sin(u)*cos(u))") z_eq = StringProperty(name="Z Equation", description="Equation for z=f(u,v)", default="1.2**v*(sin(u)**2 *cos(v))") range_u_min = FloatProperty(name="U min", description="Minimum U value. Lower boundary of U range.", min=-100.00, max=0.00, default=0.00) range_u_max = FloatProperty(name="U max", description="Maximum U value. Upper boundary of U range.", min=0.00, max=100.00, default=pi) range_u_step = IntProperty(name="U step", description="U Subdivisions", min=1, max=1024, default=32) wrap_u = BoolProperty(name="U wrap", description="U Wrap around", default=True) range_v_min = FloatProperty(name="V min", description="Minimum V value. Lower boundary of V range.", min=-100.00, max=0.00, default=-pi / 4) range_v_max = FloatProperty(name="V max", description="Maximum V value. Upper boundary of V range.", min=0.00, max=100.00, default=5 * pi / 2) range_v_step = IntProperty(name="V step", description="V Subdivisions", min=1, max=1024, default=32) wrap_v = BoolProperty(name="V wrap", description="V Wrap around", default=False) def execute(self, context): props = self.properties verts, faces = xyz_function_surface_faces( props.x_eq, props.y_eq, props.z_eq, props.range_u_min, props.range_u_max, props.range_u_step, props.wrap_u, props.range_v_min, props.range_v_max, props.range_v_step, props.wrap_v) obj = createObject(context, verts, faces, "XYZ Function", props.edit) # Store 'recall' properties in the object. recall_prop_list = { "edit": True, "x_eq": props.x_eq, "y_eq": props.y_eq, "z_eq": props.z_eq, "range_u_min": props.range_u_min, "range_u_max": props.range_u_max, "range_u_step": props.range_u_step, "wrap_u": props.wrap_u, "range_v_min": props.range_v_min, "range_v_max": props.range_v_max, "range_v_step": props.range_v_step, "wrap_v": props.wrap_v} obj_store_recall_properties(obj, self, recall_prop_list) return {'FINISHED'} ################################ import space_info # Define "3D Function Surface" menu menu_func_z = (lambda self, context: self.layout.operator( AddZFunctionSurface.bl_idname, text="Z Function Surface", icon="PLUGIN")) menu_func_xyz = (lambda self, context: self.layout.operator( AddXYZFunctionSurface.bl_idname, text="X,Y,Z Function Surface", icon="PLUGIN")) def register(): # Register the operators/menus. bpy.types.register(AddZFunctionSurface) bpy.types.register(AddXYZFunctionSurface) # Add menus to the "Add Mesh" menu space_info.INFO_MT_mesh_add.append(menu_func_z) space_info.INFO_MT_mesh_add.append(menu_func_xyz) def unregister(): # Unregister the operators/menus. bpy.types.unregister(AddZFunctionSurface) bpy.types.unregister(AddXYZFunctionSurface) # Remove menus from the "Add Mesh" menu. space_info.INFO_MT_mesh_add.remove(menu_func_z) space_info.INFO_MT_mesh_add.remove(menu_func_xyz) if __name__ == "__main__": register()