# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import bpy
import subprocess
import os
import sys
import time
import math
from math import atan, pi, degrees, sqrt

import platform as pltfrm
if pltfrm.architecture()[0] == '64bit':
    bitness = 64
else:
    bitness = 32

##############################SF###########################
##############find image texture 
def splitExt(path):
    dotidx = path.rfind('.')
    if dotidx == -1:
        return path, ''
    else:
        return (path[dotidx:]).upper().replace('.','')


def imageFormat(imgF):
    ext = ''
    ext_orig = splitExt(imgF)
    if ext_orig == 'JPG' or ext_orig == 'JPEG': ext='jpeg'
    if ext_orig == 'GIF': ext = 'gif'
    if ext_orig == 'TGA': ext = 'tga'
    if ext_orig == 'IFF': ext = 'iff'
    if ext_orig == 'PPM': ext = 'ppm'
    if ext_orig == 'PNG': ext = 'png'
    if ext_orig == 'SYS': ext = 'sys' 
    if ext_orig in ('TIFF', 'TIF'): ext = 'tiff'
    if ext_orig == 'EXR': ext = 'exr'#POV3.7 Only! 
    if ext_orig == 'HDR': ext = 'hdr'#POV3.7 Only! --MR
    print(imgF)
    if not ext: print(' WARNING: texture image  format not supported ') # % (imgF , '')) #(ext_orig)))
    return ext

def imgMap(ts):
    image_map=''
    if ts.mapping=='FLAT':image_map= ' map_type 0 ' 
    if ts.mapping=='SPHERE':image_map= ' map_type 1 '# map_type 7 in megapov
    if ts.mapping=='TUBE':image_map= ' map_type 2 '
    #if ts.mapping=='?':image_map= ' map_type 3 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0)
    #if ts.mapping=='?':image_map= ' map_type 4 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0)
    if ts.texture.use_interpolation: image_map+= ' interpolate 2 '
    if ts.texture.extension == 'CLIP': image_map+=' once '
    #image_map+='}'
    #if ts.mapping=='CUBE':image_map+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?)
    #if image_map=='': print(' No texture image  found ')
    return image_map

def imgMapBG(wts):
    image_mapBG=''
    if wts.texture_coords== 'VIEW':image_mapBG= ' map_type 0 ' #texture_coords refers to the mapping of world textures
    if wts.texture_coords=='ANGMAP':image_mapBG= ' map_type 1 '
    if wts.texture_coords=='TUBE':image_mapBG= ' map_type 2 '
    if wts.texture.use_interpolation: image_mapBG+= ' interpolate 2 '
    if wts.texture.extension == 'CLIP': image_mapBG+=' once '
    #image_mapBG+='}'
    #if wts.mapping=='CUBE':image_mapBG+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?)
    #if image_mapBG=='': print(' No background texture image  found ')
    return image_mapBG

def splitFile(path):
    idx = path.rfind('/')
    if idx == -1:
        idx = path.rfind('\\')
    return path[idx:].replace('/', '').replace('\\', '')

def splitPath(path):
    idx = path.rfind('/')
    if idx == -1:
        return path, ''
    else:
        return path[:idx]

def findInSubDir(filename, subdirectory=''):
    pahFile=''
    if subdirectory:
        path = subdirectory
    else:
        path = os.getcwd()
    try:
        for root, dirs, names in os.walk(path):
            if filename in names:
                pahFile = os.path.join(root, filename)
        return pahFile
    except OSError:
        return '' 

def path_image(image):
    import os
    fn = bpy.path.abspath(image)
    fn_strip = os.path.basename(fn)
    if not os.path.isfile(fn):
        fn=(findInSubDir(splitFile(fn),splitPath(bpy.data.filepath)))
        ()
    return fn

##############end find image texture 

def splitHyphen(name):
    hyphidx = name.find('-')
    if hyphidx == -1:
        return name
    else:
        return (name[hyphidx:]).replace('-','')

##############safety string name material
def safety(name, Level):
    # Level=1 is for texture with No specular nor Mirror reflection
    # Level=2 is for texture with translation of spec and mir levels for when no map influences them
    # Level=3 is for texture with Maximum Spec and Mirror 

    try:
        if int(name) > 0:
            prefix='shader'
    except:
        prefix = ''
    prefix='shader_'
    name = splitHyphen(name)
    if Level == 2:
        return prefix+name
    elif Level == 1:
        return prefix+name+'0'#used for 0 of specular map
    elif Level == 3:
        return prefix+name+'1'#used for 1 of specular map


##############end safety string name material
##############################EndSF###########################

def setTab(tabtype, spaces):
    TabStr = ''
    if tabtype == '0':
        TabStr = ''
    elif tabtype == '1': 
        TabStr = '\t'
    elif tabtype == '2':
        TabStr = spaces * ' '
    return TabStr


def write_pov(filename, scene=None, info_callback=None):
    import mathutils
    #file = filename
    file = open(filename.name, 'w')

    # Only for testing
    if not scene:
        scene = bpy.data.scenes[0]

    render = scene.render
    world = scene.world
    global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
    Tab = setTab(scene.pov_indentation_character, scene.pov_indentation_spaces)
    
    def uniqueName(name, nameSeq):

        if name not in nameSeq:
            return name

        name_orig = name
        i = 1
        while name in nameSeq:
            name = '%s_%.3d' % (name_orig, i)
            i += 1
        name = splitHyphen(name)
        return name

    def fileWriteTab(Tabcount, str_o):
        if Tabcount >= 1: file.write('%s' % Tab*Tabcount)
        file.write(str_o)

    def writeMatrix(matrix):
        fileWriteTab(1, 'matrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))

    def writeObjectMaterial(material):
        
        # DH - modified some variables to be function local, avoiding RNA write
        # this should be checked to see if it is functionally correct
        
        if material: #and material.transparency_method == 'RAYTRACE':#Commented out: always write IOR to be able to use it for SSS, Fresnel reflections...
            #But there can be only one!
            if material.subsurface_scattering.use:#SSS IOR get highest priority
                fileWriteTab(1, 'interior {\n')
                fileWriteTab(2, 'ior %.6f\n' % material.subsurface_scattering.ior)
            elif material.pov_mirror_use_IOR:#Then the raytrace IOR taken from raytrace transparency properties and used for reflections if IOR Mirror option is checked
                fileWriteTab(1, 'interior {\n')
                fileWriteTab(2, 'ior %.6f\n' % material.raytrace_transparency.ior)
            else:
                fileWriteTab(1, 'interior {\n')
                fileWriteTab(2, 'ior %.6f\n' % material.raytrace_transparency.ior)
                
            pov_fake_caustics = False
            pov_photons_refraction = False
            pov_photons_reflection = False
                
            if material.pov_refraction_type=='0':
                pov_fake_caustics = False
                pov_photons_refraction = False
                pov_photons_reflection = True #should respond only to proper checkerbox
            elif material.pov_refraction_type=='1':
                pov_fake_caustics = True
                pov_photons_refraction = False
            elif material.pov_refraction_type=='2':
                pov_fake_caustics = False
                pov_photons_refraction = True

            #If only Raytrace transparency is set, its IOR will be used for refraction, but user can set up 'un-physical' fresnel reflections in raytrace mirror parameters. 
            #Last, if none of the above is specified, user can set up 'un-physical' fresnel reflections in raytrace mirror parameters. And pov IOR defaults to 1. 
            if material.pov_caustics_enable:
                if pov_fake_caustics:
                    fileWriteTab(2, 'caustics %.3g\n' % material.pov_fake_caustics_power)
                if pov_photons_refraction:
                    fileWriteTab(2, 'dispersion %.3g\n' % material.pov_photons_dispersion) #Default of 1 means no dispersion
            #TODO        
            # Other interior args
            # if material.use_transparency and material.transparency_method == 'RAYTRACE':
            # fade_distance 2
            # fade_power [Value]
            # fade_color

            # (variable) dispersion_samples (constant count for now)
            fileWriteTab(1, '}\n')
            if pov_photons_refraction or pov_photons_reflection:
                fileWriteTab(1, 'photons{\n')
                fileWriteTab(2, 'target\n')
                if pov_photons_refraction:
                    fileWriteTab(2, 'refraction on\n')
                if pov_photons_reflection:
                    fileWriteTab(2, 'reflection on\n')
                fileWriteTab(1, '}\n')
                
    materialNames = {}
    DEF_MAT_NAME = 'Default'

    def writeMaterial(material):
        # Assumes only called once on each material
        if material:
            name_orig = material.name
        else:
            name_orig = DEF_MAT_NAME

        name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames)
        comments = scene.pov_comments_enable

        ##################Several versions of the finish: Level conditions are variations for specular/Mirror texture channel map with alternative finish of 0 specular and no mirror reflection
        # Level=1 Means No specular nor Mirror reflection
        # Level=2 Means translation of spec and mir levels for when no map influences them
        # Level=3 Means Maximum Spec and Mirror 
        def povHasnoSpecularMaps(Level):
            if Level == 1:
                fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 1))
                if comments: file.write('  //No specular nor Mirror reflection\n')
                else: fileWriteTab(0, '\n')
            elif Level == 2:
                fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 2))
                if comments: file.write('  //translation of spec and mir levels for when no map influences them\n')
                else: fileWriteTab(0, '\n')
            elif Level == 3:
                fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 3))
                if comments: file.write('  //Maximum Spec and Mirror\n')
                else: fileWriteTab(0, '\n')


            if material:
                #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency)
                frontDiffuse=material.diffuse_intensity
                backDiffuse=material.translucency
                
            
                if material.pov_conserve_energy:

                    #Total should not go above one
                    if (frontDiffuse + backDiffuse) <= 1.0:
                        pass
                    elif frontDiffuse==backDiffuse:
                        frontDiffuse = backDiffuse = 0.5 # Try to respect the user's 'intention' by comparing the two values but bringing the total back to one
                    elif frontDiffuse>backDiffuse:       # Let the highest value stay the highest value
                        backDiffuse = 1-(1-frontDiffuse)
                    else:
                        frontDiffuse = 1-(1-backDiffuse)
                    

                # map hardness between 0.0 and 1.0
                roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
                ## scale from 0.0 to 0.1
                roughness *= 0.1 
                # add a small value because 0.0 is invalid
                roughness += (1 / 511.0)

                #####################################Diffuse Shader######################################
                # Not used for Full spec (Level=3) of the shader
                if material.diffuse_shader == 'OREN_NAYAR' and Level != 3:
                    fileWriteTab(1, 'brilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray

                if material.diffuse_shader == 'TOON' and Level != 3:
                    fileWriteTab(1, 'brilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25))
                    frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray
                
                if material.diffuse_shader == 'MINNAERT' and Level != 3:
                    #fileWriteTab(1, 'aoi %.3g\n' % material.darkness)
                    pass #let's keep things simple for now
                if material.diffuse_shader == 'FRESNEL' and Level != 3:
                    #fileWriteTab(1, 'aoi %.3g\n' % material.diffuse_fresnel_factor)
                    pass #let's keep things simple for now
                if material.diffuse_shader == 'LAMBERT' and Level != 3:
                    fileWriteTab(1, 'brilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value

                if Level == 2:   
                    ####################################Specular Shader######################################
                    if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa!
                        fileWriteTab(1, 'phong %.3g\n' % (material.specular_intensity))
                        fileWriteTab(1, 'phong_size %.3g\n'% (material.specular_hardness / 2 + 0.25)) 

                    if material.specular_shader == 'BLINN':#Povray 'specular' keyword corresponds to a Blinn model, without the ior.
                        fileWriteTab(1, 'specular %.3g\n' % (material.specular_intensity * (material.specular_ior/4))) #Use blender Blinn's IOR just as some factor for spec intensity
                        fileWriteTab(1, 'roughness %.3g\n' % roughness) 
                        #Could use brilliance 2(or varying around 2 depending on ior or factor) too.


                    if material.specular_shader == 'TOON':
                        fileWriteTab(1, 'phong %.3g\n' % (material.specular_intensity * 2))
                        fileWriteTab(1, 'phong_size %.3g\n' % (0.1+material.specular_toon_smooth / 2)) #use extreme phong_size


                    if material.specular_shader == 'WARDISO':
                        fileWriteTab(1, 'specular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values.
                        fileWriteTab(1, 'roughness %.4g\n' % (0.0005+material.specular_slope/10)) #find best suited default constant for brilliance Use both phong and specular for some values.
                        fileWriteTab(1, 'brilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values.
                        

                    
                    #########################################################################################
                elif Level == 1:
                    fileWriteTab(1, 'specular 0\n')
                elif Level == 3:
                    fileWriteTab(1, 'specular 1\n')
                fileWriteTab(1, 'diffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse))


                fileWriteTab(1, 'ambient %.3g\n' % material.ambient)
                #fileWriteTab(1, 'ambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
                fileWriteTab(1, 'emission %.3g\n' % material.emit) #New in povray 3.7
                
                #fileWriteTab(1, 'roughness %.3g\n' % roughness) #povray just ignores roughness if there's no specular keyword
                
                if material.pov_conserve_energy:
                    fileWriteTab(1, 'conserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice.

                # 'phong 70.0 '
                if Level != 1:
                    if material.raytrace_mirror.use:
                        raytrace_mirror = material.raytrace_mirror
                        if raytrace_mirror.reflect_factor:
                            fileWriteTab(1, 'reflection {\n')
                            fileWriteTab(2, 'rgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
                            if material.pov_mirror_metallic:
                                fileWriteTab(2, 'metallic %.3g' % (raytrace_mirror.reflect_factor))
                            if material.pov_mirror_use_IOR: #WORKING ?
                                fileWriteTab(2, 'fresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice
                            fileWriteTab(2, 'falloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor))

                if material.subsurface_scattering.use:
                    subsurface_scattering = material.subsurface_scattering
                    fileWriteTab(1, 'subsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2]))

                if material.pov_irid_enable:
                    fileWriteTab(1, 'irid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence))

            else:
                fileWriteTab(1, 'diffuse 0.8\n')
                fileWriteTab(1, 'phong 70.0\n')
                
                #fileWriteTab(1, 'specular 0.2\n')


            # This is written into the object
            '''
            if material and material.transparency_method=='RAYTRACE':
                'interior { ior %.3g} ' % material.raytrace_transparency.ior
            '''

            #fileWriteTab(3, 'crand 1.0\n') # Sand granyness
            #fileWriteTab(3, 'metallic %.6f\n' % material.spec)
            #fileWriteTab(3, 'phong %.6f\n' % material.spec)
            #fileWriteTab(3, 'phong_size %.6f\n' % material.spec)
            #fileWriteTab(3, 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness

            fileWriteTab(0, '}\n\n')

        # Level=1 Means No specular nor Mirror reflection
        povHasnoSpecularMaps(Level=1)

        # Level=2 Means translation of spec and mir levels for when no map influences them
        povHasnoSpecularMaps(Level=2)
        
        # Level=3 Means Maximum Spec and Mirror
        povHasnoSpecularMaps(Level=3)

    def exportCamera():
        camera = scene.camera
        
        # DH disabled for now, this isn't the correct context
        active_object = None #bpy.context.active_object # does not always work  MR
        matrix = global_matrix * camera.matrix_world
        focal_point = camera.data.dof_distance

        # compute resolution
        Qsize = float(render.resolution_x) / float(render.resolution_y)
        fileWriteTab(0, '#declare camLocation  = <%.6f, %.6f, %.6f>;\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
        fileWriteTab(0, '#declare camLookAt = <%.6f, %.6f, %.6f>;\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))

        fileWriteTab(0, 'camera {\n')
        if scene.pov_baking_enable and active_object and active_object.type=='MESH':
            fileWriteTab(1, 'mesh_camera{ 1 3\n') # distribution 3 is what we want here
            fileWriteTab(2, 'mesh{%s}\n' % active_object.name)
            fileWriteTab(1, '}\n')
            fileWriteTab(0, 'location <0,0,.01>')
            fileWriteTab(0, 'direction <0,0,-1>')
        # Using standard camera otherwise
        else:
            fileWriteTab(1, 'location  <0, 0, 0>\n')
            fileWriteTab(1, 'look_at  <0, 0, -1>\n')
            fileWriteTab(1, 'right <%s, 0, 0>\n' % - Qsize)
            fileWriteTab(1, 'up <0, 1, 0>\n')
            fileWriteTab(1, 'angle  %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))

            fileWriteTab(1, 'rotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
            fileWriteTab(1, 'translate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
            if focal_point != 0:
                fileWriteTab(1, 'aperture 0.25\n') # fixed blur amount for now to do, add slider a button? 
                fileWriteTab(1, 'blur_samples 96 128\n')
                fileWriteTab(1, 'variance 1/10000\n')
                fileWriteTab(1, 'focal_point <0, 0, %f>\n' % focal_point)
        fileWriteTab(0, '}\n')

    def exportLamps(lamps):
        # Get all lamps
        for ob in lamps:
            lamp = ob.data

            matrix = global_matrix * ob.matrix_world

            color = tuple([c * lamp.energy *2 for c in lamp.color]) # Colour is modified by energy #muiltiplie by 2 for a better match --Maurice

            fileWriteTab(0, 'light_source {\n')
            fileWriteTab(1, '< 0,0,0 >\n')
            fileWriteTab(1, 'color rgb<%.3g, %.3g, %.3g>\n' % color)

            if lamp.type == 'POINT': # Point Lamp
                pass
            elif lamp.type == 'SPOT': # Spot
                fileWriteTab(1, 'spotlight\n')

                # Falloff is the main radius from the centre line
                fileWriteTab(1, 'falloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
                fileWriteTab(1, 'radius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))

                # Blender does not have a tightness equivilent, 0 is most like blender default.
                fileWriteTab(1, 'tightness 0\n') # 0:10f

                fileWriteTab(1, 'point_at  <0, 0, -1>\n')
            elif lamp.type == 'SUN':
                fileWriteTab(1, 'parallel\n')
                fileWriteTab(1, 'point_at  <0, 0, -1>\n') # *must* be after 'parallel'

            elif lamp.type == 'AREA':
                fileWriteTab(1, 'fade_distance %.6f\n' % (lamp.distance / 5) )
                fileWriteTab(1, 'fade_power %d\n' % 2) #  Area lights have no falloff type, so always use blenders lamp quad equivalent for those?
                size_x = lamp.size
                samples_x = lamp.shadow_ray_samples_x
                if lamp.shape == 'SQUARE':
                    size_y = size_x
                    samples_y = samples_x
                else:
                    size_y = lamp.size_y
                    samples_y = lamp.shadow_ray_samples_y

                fileWriteTab(1, 'area_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
                if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
                    if lamp.jitter:
                        fileWriteTab(1, 'jitter\n')
                else:
                    fileWriteTab(1, 'adaptive 1\n')
                    fileWriteTab(1, 'jitter\n')

            if lamp.type == 'HEMI':#HEMI never has any shadow attribute
                fileWriteTab(1, 'shadowless\n')
            elif lamp.shadow_method == 'NOSHADOW':
                    fileWriteTab(1, 'shadowless\n')

            if lamp.type != 'SUN' and lamp.type!='AREA' and lamp.type!='HEMI':#Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they are put to type 2 attenuation a little higher above.
                fileWriteTab(1, 'fade_distance %.6f\n' % (lamp.distance / 5) )
                if lamp.falloff_type == 'INVERSE_SQUARE':
                    fileWriteTab(1, 'fade_power %d\n' % 2) # Use blenders lamp quad equivalent
                elif lamp.falloff_type == 'INVERSE_LINEAR':
                    fileWriteTab(1, 'fade_power %d\n' % 1) # Use blenders lamp linear
                elif lamp.falloff_type == 'CONSTANT': #Supposing using no fade power keyword would default to constant, no attenuation.
                    pass
                elif lamp.falloff_type == 'CUSTOM_CURVE': #Using Custom curve for fade power 3 for now.
                    fileWriteTab(1, 'fade_power %d\n' % 4)

            writeMatrix(matrix)

            fileWriteTab(0, '}\n')
##################################################################################################################################
#Wip to be Used for fresnel, but not tested yet.
##################################################################################################################################
##    lampLocation=[0,0,0]
##    lampRotation=[0,0,0]
##    lampDistance=0.00
##    averageLampLocation=[0,0,0]
##    averageLampRotation=[0,0,0]
##    averageLampDistance=0.00
##    lamps=[]
##    for l in scene.objects:
##        if l.type == 'LAMP':#get all lamps
##            lamps += [l]
##    for ob in lamps:
##        lamp = ob.data
##        lampLocation[0]+=ob.location[0]
##        lampLocation[1]+=ob.location[1]
##        lampLocation[2]+=ob.location[2]
##        lampRotation[0]+=ob.rotation_euler[0]
##        lampRotation[1]+=ob.rotation_euler[1]
##        lampRotation[2]+=ob.rotation_euler[2]
##        lampDistance+=ob.data.distance
##        averageLampRotation[0]=lampRotation[0] / len(lamps)#create an average direction for all lamps.
##        averageLampRotation[1]=lampRotation[1] / len(lamps)#create an average direction for all lamps.
##        averageLampRotation[2]=lampRotation[2] / len(lamps)#create an average direction for all lamps.
##
##        averageLampLocation[0]=lampLocation[0] / len(lamps)#create an average position for all lamps.
##        averageLampLocation[1]=lampLocation[1] / len(lamps)#create an average position for all lamps.
##        averageLampLocation[2]=lampLocation[2] / len(lamps)#create an average position for all lamps.
##        
##        averageLampDistance=lampDistance / len(lamps)#create an average distance for all lamps.
##    file.write('\n#declare lampTarget= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);' % (-(averageLampLocation[0]-averageLampDistance), -(averageLampLocation[1]-averageLampDistance), -(averageLampLocation[2]-averageLampDistance), averageLampRotation[0], averageLampRotation[1], averageLampRotation[2]))
##    #v(A,B) rotates vector A about origin by vector B.    
##
####################################################################################################################################

    def exportMeta(metas):

        # TODO - blenders 'motherball' naming is not supported.

        for ob in metas:
            meta = ob.data
            importance=ob.pov_importance_value              

            fileWriteTab(0, 'blob {\n')
            fileWriteTab(1, 'threshold %.4g\n' % meta.threshold)

            try:
                material = meta.materials[0] # lame! - blender cant do enything else.
            except:
                material = None

            for elem in meta.elements:

                if elem.type not in ('BALL', 'ELLIPSOID'):
                    continue # Not supported

                loc = elem.co

                stiffness = elem.stiffness
                if elem.use_negative:
                    stiffness = - stiffness

                if elem.type == 'BALL':

                    fileWriteTab(1, 'sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))

                    # After this wecould do something simple like...
                    # 	'pigment {Blue} }'
                    # except we'll write the color

                elif elem.type == 'ELLIPSOID':
                    # location is modified by scale
                    fileWriteTab(1, 'sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
                    fileWriteTab(2, 'scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))

                if material:
                    diffuse_color = material.diffuse_color

                    if material.use_transparency and material.transparency_method == 'RAYTRACE':
                        trans = 1.0 - material.raytrace_transparency.filter
                    else:
                        trans = 0.0

                    material_finish = materialNames[material.name]

                    fileWriteTab(2, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, safety(material_finish, Level=2)))

                else:
                    fileWriteTab(2, 'pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.

            writeObjectMaterial(material)

            writeMatrix(global_matrix * ob.matrix_world)
            #Importance for radiosity sampling added here: 
            fileWriteTab(1, 'radiosity { \n')
            fileWriteTab(2, 'importance %3g \n' % importance)
            fileWriteTab(1, '}\n')
            
            fileWriteTab(0, '}\n') #End of Metaball block

            fileWriteTab(0, '}\n')

    objectNames = {}
    DEF_OBJ_NAME = 'Default'
    def exportMeshs(scene, sel):

        ob_num = 0

        for ob in sel:
            ob_num += 1
#############################################
            #Generating a name for object just like materials to be able to use it (baking for now or anything else).
            if sel:
                name_orig = ob.name
            else:
                name_orig = DEF_OBJ_NAME
            name = objectNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), objectNames)
#############################################
            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
                continue

            me = ob.data
            importance=ob.pov_importance_value            
            me_materials = me.materials

            me = ob.create_mesh(scene, True, 'RENDER')

            if not me or not me.faces:
                continue

            if info_callback:
                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))

            #if ob.type!='MESH':
            #	continue
            # me = ob.data

            matrix = global_matrix * ob.matrix_world
            try:
                uv_layer = me.uv_textures.active.data
            except AttributeError:
                uv_layer = None

            try:
                vcol_layer = me.vertex_colors.active.data
            except AttributeError:
                vcol_layer = None

            faces_verts = [f.vertices[:] for f in me.faces]
            faces_normals = [tuple(f.normal) for f in me.faces]
            verts_normals = [tuple(v.normal) for v in me.vertices]

            # quads incur an extra face
            quadCount = sum(1 for f in faces_verts if len(f) == 4)

            # Use named declaration to allow reference e.g. for baking. MR
            fileWriteTab(0, '#declare %s=\n' % name) 
            fileWriteTab(0, 'mesh2 {\n')
            fileWriteTab(1, 'vertex_vectors {\n')
            fileWriteTab(2, '%s' % (len(me.vertices))) # vert count
            
            for v in me.vertices:
                fileWriteTab(0, ',\n')
                fileWriteTab(2, '<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
            file.write('\n')
            fileWriteTab(1, '}\n')


            # Build unique Normal list
            uniqueNormals = {}
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                # [-1] is a dummy index, use a list so we can modify in place
                if f.use_smooth: # Use vertex normals
                    for v in fv:
                        key = verts_normals[v]
                        uniqueNormals[key] = [-1]
                else: # Use face normal
                    key = faces_normals[fi]
                    uniqueNormals[key] = [-1]

            fileWriteTab(1, 'normal_vectors {\n')
            fileWriteTab(2, '%d' % len(uniqueNormals)) # vert count
            idx = 0
            for no, index in uniqueNormals.items():
                fileWriteTab(0, ',\n')
                fileWriteTab(2, '<%.6f, %.6f, %.6f>' % no) # vert count
                index[0] = idx
                idx += 1
            file.write('\n')
            fileWriteTab(1, '}\n')


            # Vertex colours
            vertCols = {} # Use for material colours also.

            if uv_layer:
                # Generate unique UV's
                uniqueUVs = {}

                for fi, uv in enumerate(uv_layer):

                    if len(faces_verts[fi]) == 4:
                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
                    else:
                        uvs = uv.uv1, uv.uv2, uv.uv3

                    for uv in uvs:
                        uniqueUVs[tuple(uv)] = [-1]

                fileWriteTab(1, 'uv_vectors {\n')
                #print unique_uvs
                fileWriteTab(2, '%s' % (len(uniqueUVs))) # vert count
                idx = 0
                for uv, index in uniqueUVs.items():
                    fileWriteTab(0, ',\n')
                    fileWriteTab(0, '<%.6f, %.6f>' % uv)
                    index[0] = idx
                    idx += 1
                '''
                else:
                    # Just add 1 dummy vector, no real UV's
                    fileWriteTab(2, '1') # vert count
                    file.write(',\n\t\t<0.0, 0.0>')
                '''
                file.write('\n')
                fileWriteTab(1, '}\n')


            if me.vertex_colors:

                for fi, f in enumerate(me.faces):
                    material_index = f.material_index
                    material = me_materials[material_index]

                    if material and material.use_vertex_color_paint:

                        col = vcol_layer[fi]

                        if len(faces_verts[fi]) == 4:
                            cols = col.color1, col.color2, col.color3, col.color4
                        else:
                            cols = col.color1, col.color2, col.color3

                        for col in cols:
                            key = col[0], col[1], col[2], material_index # Material index!
                            vertCols[key] = [-1]

                    else:
                        if material:
                            diffuse_color = tuple(material.diffuse_color)
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
                            vertCols[key] = [-1]


            else:
                # No vertex colours, so write material colours as vertex colours
                for i, material in enumerate(me_materials):

                    if material:
                        diffuse_color = tuple(material.diffuse_color)
                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
                        vertCols[key] = [-1]


            # Vert Colours
            fileWriteTab(1, 'texture_list {\n')
            fileWriteTab(2, '%s' % (len(vertCols))) # vert count
            idx = 0
            for col, index in vertCols.items():
                if me_materials:
                    material = me_materials[col[3]]
                    material_finish = materialNames[material.name]

                    if material.use_transparency:
                        trans = 1.0 - material.alpha
                    else:
                        trans = 0.0

                else:
                    material_finish = DEF_MAT_NAME # not working properly,
                    trans = 0.0

                ##############SF
                texturesDif=''
                texturesSpec=''
                texturesNorm=''
                texturesAlpha=''
                for t in material.texture_slots:
                    if t and t.texture.type == 'IMAGE' and t.use and t.texture.image: 
                        image_filename = path_image(t.texture.image.filepath)
                        imgGamma = ''
                        if image_filename:
                            if t.use_map_color_diffuse: 
                                texturesDif = image_filename
                                colvalue = t.default_value
                                t_dif = t
                                if t_dif.texture.pov_tex_gamma_enable:
                                    imgGamma = (' gamma %.3g ' % t_dif.texture.pov_tex_gamma_value)
                            if t.use_map_specular or t.use_map_raymir: 
                                texturesSpec = image_filename
                                colvalue = t.default_value
                                t_spec = t
                            if t.use_map_normal: 
                                texturesNorm = image_filename
                                colvalue = t.normal_factor * 10.0
                                #textNormName=t.texture.image.name + '.normal'
                                #was the above used? --MR
                                t_nor = t
                            if t.use_map_alpha: 
                                texturesAlpha = image_filename
                                colvalue = t.alpha_factor * 10.0
                                #textDispName=t.texture.image.name + '.displ'
                                #was the above used? --MR
                                t_alpha = t




                ##############################################################################################################
                fileWriteTab(1, '\n')
                fileWriteTab(2, 'texture {\n') #THIS AREA NEEDS TO LEAVE THE TEXTURE OPEN UNTIL ALL MAPS ARE WRITTEN DOWN.   --MR                      


                ##############################################################################################################
                if material.diffuse_shader == 'MINNAERT':
                    fileWriteTab(1, '\n')
                    fileWriteTab(3, 'aoi\n')
                    fileWriteTab(3, 'texture_map {\n')
                    fileWriteTab(4, '[%.3g finish {diffuse %.3g}]\n' % ((material.darkness/2), (2-material.darkness)))
                    fileWriteTab(4, '[%.3g' % (1-(material.darkness/2)))
######TO OPTIMIZE? or present a more elegant way? At least make it work!##################################################################
                #If Fresnel gets removed from 2.5, why bother?
                if material.diffuse_shader == 'FRESNEL':
                    
######END of part TO OPTIMIZE? or present a more elegant way?##################################################################

##                        #lampLocation=lamp.position
##                        lampRotation=
##                        a=lamp.Rotation[0]
##                        b=lamp.Rotation[1]
##                        c=lamp.Rotation[2]
##                        lampLookAt=tuple (x,y,z)
##                        lampLookAt[3]= 0.0 #Put 'target' of the lamp on the floor plane to elimianate one unknown value
##                                   degrees(atan((lampLocation - lampLookAt).y/(lampLocation - lampLookAt).z))=lamp.rotation[0]
##                                   degrees(atan((lampLocation - lampLookAt).z/(lampLocation - lampLookAt).x))=lamp.rotation[1]
##                                   degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2]
##                        degrees(atan((lampLocation - lampLookAt).y/(lampLocation.z))=lamp.rotation[0]
##                        degrees(atan((lampLocation.z/(lampLocation - lampLookAt).x))=lamp.rotation[1]
##                        degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2]
                     

                                #color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy                        
                        
                    fileWriteTab(1, '\n')
                    fileWriteTab(3, 'slope { lampTarget }\n')
                    fileWriteTab(3, 'texture_map {\n')
                    fileWriteTab(4, '[%.3g finish {diffuse %.3g}]\n' % ((material.diffuse_fresnel/2), (2-material.diffuse_fresnel_factor)))
                    fileWriteTab(4, '[%.3g\n' % (1-(material.diffuse_fresnel/2)))
              
                
                #if material.diffuse_shader == 'FRESNEL': pigment pattern aoi pigment and texture map above, the rest below as one of its entry
                ##########################################################################################################################            
                if texturesSpec !='':
                    fileWriteTab(1, '\n')
                    fileWriteTab(4, 'pigment_pattern {\n')
                    mappingSpec = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_spec.offset.x / 10 ,t_spec.offset.y / 10 ,t_spec.offset.z / 10, t_spec.scale.x / 2.25, t_spec.scale.y / 2.25, t_spec.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                    fileWriteTab(5, 'uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesSpec) ,texturesSpec ,imgMap(t_spec),mappingSpec))
                    fileWriteTab(6, 'texture_map {\n')
                    fileWriteTab(7, '[0 \n')

                if texturesDif == '':
                    if texturesAlpha !='':
                        fileWriteTab(1, '\n')
                        mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha))
                        fileWriteTab(5, 'pigment_map {\n')
                        fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n')
                        fileWriteTab(6, '[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n'  % (col[0], col[1], col[2], 1.0 - material.alpha, trans) )
                        fileWriteTab(5, '}\n')
                        fileWriteTab(4, '}\n')

                    else:

                        fileWriteTab(3, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))

                    if texturesSpec !='':
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=1)))# Level 1 is no specular
                        
                    else:
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated spec

                else:
                    mappingDif = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                    if texturesAlpha !='':
                        mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha))
                        fileWriteTab(5, 'pigment_map {\n')
                        fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n')
                        fileWriteTab(6, '[1 uv_mapping image_map {%s \"%s\" %s}%s]\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif))
                        fileWriteTab(5, '}\n' )
                        fileWriteTab(4, '}\n')

                    else:
                        fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s}\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif))

                    if texturesSpec !='':
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=1)))# Level 1 is no specular
                            
                    else:
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular

                    ## scale 1 rotate y*0
                    #imageMap = ('{image_map {%s \"%s\" %s }\n' % (imageFormat(textures),textures,imgMap(t_dif)))
                    #fileWriteTab(3, 'uv_mapping pigment %s} %s finish {%s}\n' % (imageMap,mapping,safety(material_finish)))
                    #fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}\n' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish)))
                if texturesNorm !='':
                    ## scale 1 rotate y*0
                    mappingNor = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25))
                    #imageMapNor = ('{bump_map {%s \"%s\" %s mapping}' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor)))
                    #We were not using the above maybe we should?
                    fileWriteTab(4, 'normal {uv_mapping bump_map {%s \"%s\" %s  bump_size %.4g }%s}\n' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor))
                if texturesSpec !='':                
                    fileWriteTab(7, ']\n')
                ################################Second index for mapping specular max value##################################################################################################
                    fileWriteTab(7, '[1 \n')

                if texturesDif == '':
                    if texturesAlpha !='':
                        mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha))
                        fileWriteTab(5, 'pigment_map {\n')
                        fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n')
                        fileWriteTab(6, '[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))
                        fileWriteTab(5, '}\n')
                        fileWriteTab(4, '}\n')

                    else:
                        fileWriteTab(3, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans))

                    if texturesSpec !='':
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=3)))# Level 3 is full specular
                        
                    else:
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular

                else:
                    mappingDif = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal.
                    if texturesAlpha !='':
                        mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. 
                        fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha))
                        fileWriteTab(4, 'pigment_map {\n')
                        fileWriteTab(5, '[0 color rgbft<0,0,0,1,1>]\n')
                        fileWriteTab(6, '[1 uv_mapping image_map {%s \"%s\" %s}%s]\n' % (imageFormat(texturesDif),texturesDif,(imgMap(t_dif)+imgGamma),mappingDif))
                        fileWriteTab(5, '}\n')
                        fileWriteTab(4, '}\n')

                    else:
                        fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s}\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif))
                    if texturesSpec !='':
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=3)))# Level 3 is full specular
                    else:
                        fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular

                    ## scale 1 rotate y*0
                    #imageMap = ('{image_map {%s \"%s\" %s }' % (imageFormat(textures),textures,imgMap(t_dif)))
                    #file.write('\n\t\t\tuv_mapping pigment %s} %s finish {%s}' % (imageMap,mapping,safety(material_finish)))
                    #file.write('\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish)))
                if texturesNorm !='':
                    ## scale 1 rotate y*0
                    mappingNor = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25))
                    #imageMapNor = ('{bump_map {%s \"%s\" %s mapping}' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor)))
                    #We were not using the above maybe we should?
                    fileWriteTab(4, 'normal {uv_mapping bump_map {%s \"%s\" %s  bump_size %.4g }%s}\n' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor))
                if texturesSpec !='':                
                    fileWriteTab(7, ']\n')

                    fileWriteTab(4, '}\n') 

                #End of slope/ior texture_map
                if material.diffuse_shader == 'MINNAERT' or material.diffuse_shader == 'FRESNEL':
                    fileWriteTab(4, ']\n')
                    fileWriteTab(3, '}\n')                          
                fileWriteTab(2, '}\n') #THEN IT CAN CLOSE IT   --MR
                

                ############################################################################################################

                index[0] = idx
                idx += 1

            file.write('\n')
            fileWriteTab(1, '}\n')

            # Face indicies
            fileWriteTab(1, 'face_indices {\n')
            fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count
            for fi, f in enumerate(me.faces):
                fv = faces_verts[fi]
                material_index = f.material_index
                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                if vcol_layer:
                    col = vcol_layer[fi]

                    if len(fv) == 4:
                        cols = col.color1, col.color2, col.color3, col.color4
                    else:
                        cols = col.color1, col.color2, col.color3


                if not me_materials or me_materials[material_index] is None: # No materials
                    for i1, i2, i3 in indicies:
                        fileWriteTab(0, ',\n')
                        fileWriteTab(2, '<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
                else:
                    material = me_materials[material_index]
                    for i1, i2, i3 in indicies:
                        if me.vertex_colors and material.use_vertex_color_paint:
                            # Colour per vertex - vertex colour

                            col1 = cols[i1]
                            col2 = cols[i2]
                            col3 = cols[i3]

                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
                        else:
                            # Colour per material - flat material colour
                            diffuse_color = material.diffuse_color
                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]

                        fileWriteTab(0, ',\n')
                        fileWriteTab(2, '<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count


            file.write('\n')
            fileWriteTab(1, '}\n')

            # normal_indices indicies
            fileWriteTab(1, 'normal_indices {\n')
            fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count
            for fi, fv in enumerate(faces_verts):

                if len(fv) == 4:
                    indicies = (0, 1, 2), (0, 2, 3)
                else:
                    indicies = ((0, 1, 2),)

                for i1, i2, i3 in indicies:
                    if f.use_smooth:
                        fileWriteTab(0, ',\n')
                        fileWriteTab(2, '<%d,%d,%d>' %\
                        (uniqueNormals[verts_normals[fv[i1]]][0],\
                         uniqueNormals[verts_normals[fv[i2]]][0],\
                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
                    else:
                        idx = uniqueNormals[faces_normals[fi]][0]
                        fileWriteTab(0, ',\n')
                        fileWriteTab(2, '<%d,%d,%d>' % (idx, idx, idx)) # vert count

            file.write('\n')
            fileWriteTab(1, '}\n')

            if uv_layer:
                fileWriteTab(1, 'uv_indices {\n')
                fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count
                for fi, fv in enumerate(faces_verts):

                    if len(fv) == 4:
                        indicies = (0, 1, 2), (0, 2, 3)
                    else:
                        indicies = ((0, 1, 2),)

                    uv = uv_layer[fi]
                    if len(faces_verts[fi]) == 4:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
                    else:
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)

                    for i1, i2, i3 in indicies:
                        fileWriteTab(0, ',\n')
                        fileWriteTab(2, '<%d,%d,%d>' %\
                        (uniqueUVs[uvs[i1]][0],\
                         uniqueUVs[uvs[i2]][0],\
                         uniqueUVs[uvs[i3]][0]))
                file.write('\n')
                fileWriteTab(1,'}\n')

            if me.materials:
                try:
                    material = me.materials[0] # dodgy
                    writeObjectMaterial(material)
                except IndexError:
                    print(me)

            writeMatrix(matrix)
            
            #Importance for radiosity sampling added here: 
            fileWriteTab(1, 'radiosity { \n')
            fileWriteTab(2, 'importance %3g \n' % importance)
            fileWriteTab(1, '}\n') 

            fileWriteTab(0, '}\n') # End of mesh block
            fileWriteTab(0, '%s\n' % name) # Use named declaration to allow reference e.g. for baking. MR

            bpy.data.meshes.remove(me)

    def exportWorld(world):
        render = scene.render
        camera = scene.camera
        matrix = global_matrix * camera.matrix_world
        if not world:
            return
        #############Maurice#################################### 
        #These lines added to get sky gradient (visible with PNG output)
        if world:
            #For simple flat background:
            if not world.use_sky_blend:
                #Non fully transparent background could premultiply alpha and avoid anti-aliasing display issue: 
                if render.alpha_mode == 'PREMUL' or render.alpha_mode == 'PREMUL' :
                    fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n' % (tuple(world.horizon_color)))
                #Currently using no alpha with Sky option:
                elif render.alpha_mode == 'SKY':
                    fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 0>}\n' % (tuple(world.horizon_color)))
                #StraightAlpha:
                else:
                    fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 1>}\n' % (tuple(world.horizon_color)))

                    
            worldTexCount=0
            #For Background image textures
            for t in world.texture_slots: #risk to write several sky_spheres but maybe ok.
                worldTexCount+=1
                if t and t.texture.type == 'IMAGE': #and t.use: #No enable checkbox for world textures yet (report it?)
                    image_filename  = path_image(t.texture.image.filepath)
                    if t.texture.image.filepath != image_filename: t.texture.image.filepath = image_filename
                    if image_filename != '' and t.use_map_blend: 
                        texturesBlend = image_filename
                        #colvalue = t.default_value
                        t_blend = t
                    #commented below was an idea to make the Background image oriented as camera taken here: http://news.povray.org/povray.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.povray.org%3E/
                    #mappingBlend = (' translate <%.4g,%.4g,%.4g> rotate z*degrees(atan((camLocation - camLookAt).x/(camLocation - camLookAt).y)) rotate x*degrees(atan((camLocation - camLookAt).y/(camLocation - camLookAt).z)) rotate y*degrees(atan((camLocation - camLookAt).z/(camLocation - camLookAt).x)) scale <%.4g,%.4g,%.4g>b' % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x ,t_blend.scale.y ,t_blend.scale.z))#replace 4/3 by the ratio of each image found by some custom or existing function
                    #using camera rotation valuesdirectly from blender seems much easier
                    if t_blend.texture_coords=='ANGMAP':
                        mappingBlend = ('')
                    else:
                        mappingBlend = (' translate <%.4g-0.5,%.4g-0.5,%.4g-0.5> rotate<0,0,0>  scale <%.4g,%.4g,%.4g>' % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x*0.85 , t_blend.scale.y*0.85 , t_blend.scale.z*0.85 ))
                        #The initial position and rotation of the pov camera is probably creating the rotation offset should look into it someday but at least background won't rotate with the camera now. 
                    #Putting the map on a plane would not introduce the skysphere distortion and allow for better image scale matching but also some waay to chose depth and size of the plane relative to camera.
                    fileWriteTab(0, 'sky_sphere {\n')            
                    fileWriteTab(1, 'pigment {\n')
                    fileWriteTab(2, 'image_map{%s \"%s\" %s}\n' % (imageFormat(texturesBlend),texturesBlend,imgMapBG(t_blend)))
                    fileWriteTab(1, '}\n')
                    fileWriteTab(1, '%s\n' % (mappingBlend))
                    fileWriteTab(0, '}\n')  
                    #fileWriteTab(2, 'scale 2\n')
                    #fileWriteTab(2, 'translate -1\n')
      
            #For only Background gradient        
        
            if worldTexCount==0:
                if world.use_sky_blend:
                    fileWriteTab(0, 'sky_sphere {\n')            
                    fileWriteTab(1, 'pigment {\n')
                    fileWriteTab(2, 'gradient y\n')#maybe Should follow the advice of POV doc about replacing gradient for skysphere..5.5
                    fileWriteTab(2, 'color_map {\n')
                    if render.alpha_mode == 'STRAIGHT':
                        fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.horizon_color)))
                        fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.zenith_color)))
                    elif render.alpha_mode == 'PREMUL':
                        fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.horizon_color)))
                        fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.zenith_color))) #aa premult not solved with transmit 1
                    else:
                        fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.horizon_color)))
                        fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.zenith_color)))
                    fileWriteTab(2, '}\n')
                    fileWriteTab(1, '}\n')
                    fileWriteTab(0, '}\n')
                    #sky_sphere alpha (transmit) is not translating into image alpha the same way as 'background'

            if world.light_settings.use_indirect_light:
                scene.pov_radio_enable=1 
                
            #Maybe change the above to scene.pov_radio_enable = world.light_settings.use_indirect_light ?


        ###############################################################

        mist = world.mist_settings

        if mist.use_mist:
            fileWriteTab(0, 'fog {\n')
            fileWriteTab(1, 'distance %.6f\n' % mist.depth)
            fileWriteTab(1, 'color rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
            #fileWriteTab(1, 'fog_offset %.6f\n' % mist.start)
            #fileWriteTab(1, 'fog_alt 5\n')
            #fileWriteTab(1, 'turbulence 0.2\n')
            #fileWriteTab(1, 'turb_depth 0.3\n')
            fileWriteTab(1, 'fog_type 1\n')
            fileWriteTab(0, '}\n')
        if scene.pov_media_enable:
            fileWriteTab(0, 'media {\n')
            fileWriteTab(1, 'scattering { 1, rgb %.3g}\n' % scene.pov_media_color)
            fileWriteTab(1, 'samples %.d\n' % scene.pov_media_samples)
            fileWriteTab(0, '}\n')

    def exportGlobalSettings(scene):

        fileWriteTab(0, 'global_settings {\n')
        fileWriteTab(1, 'assumed_gamma 1.0\n')
        fileWriteTab(1, 'max_trace_level %d\n' % scene.pov_max_trace_level)

        if scene.pov_radio_enable:
            fileWriteTab(1, 'radiosity {\n')
            fileWriteTab(2, 'adc_bailout %.4g\n' % scene.pov_radio_adc_bailout)
            fileWriteTab(2, 'always_sample %d\n' % scene.pov_radio_always_sample)
            fileWriteTab(2, 'brightness %.4g\n' % scene.pov_radio_brightness)
            fileWriteTab(2, 'count %d\n' % scene.pov_radio_count)
            fileWriteTab(2, 'error_bound %.4g\n' % scene.pov_radio_error_bound)
            fileWriteTab(2, 'gray_threshold %.4g\n' % scene.pov_radio_gray_threshold)
            fileWriteTab(2, 'low_error_factor %.4g\n' % scene.pov_radio_low_error_factor)
            fileWriteTab(2, 'media %d\n' % scene.pov_radio_media)
            fileWriteTab(2, 'minimum_reuse %.4g\n' % scene.pov_radio_minimum_reuse)
            fileWriteTab(2, 'nearest_count %d\n' % scene.pov_radio_nearest_count)
            fileWriteTab(2, 'normal %d\n' % scene.pov_radio_normal)
            fileWriteTab(2, 'pretrace_start %.3g\n' % scene.pov_radio_pretrace_start)
            fileWriteTab(2, 'pretrace_end %.3g\n' % scene.pov_radio_pretrace_end)
            fileWriteTab(2, 'recursion_limit %d\n' % scene.pov_radio_recursion_limit)
            fileWriteTab(1, '}\n')
        once=1
        for material in bpy.data.materials:
            if material.subsurface_scattering.use and once:
                fileWriteTab(1, 'mm_per_unit %.6f\n' % (material.subsurface_scattering.scale * (-100) + 15))#In pov, the scale has reversed influence compared to blender. these number should correct that
                once=0 #In povray, the scale factor for all subsurface shaders needs to be the same

        if world: 
            fileWriteTab(1, 'ambient_light rgb<%.3g, %.3g, %.3g>\n' % tuple(world.ambient_color))

        if material.pov_photons_refraction or material.pov_photons_reflection:
            fileWriteTab(1, 'photons {\n')
            fileWriteTab(2, 'spacing 0.003\n')
            fileWriteTab(2, 'max_trace_level 5\n')
            fileWriteTab(2, 'adc_bailout 0.1\n')
            fileWriteTab(2, 'gather 30, 150\n')
            fileWriteTab(1, '}\n')

        fileWriteTab(0, '}\n')

        
    sel = scene.objects
    comments = scene.pov_comments_enable
    if comments: file.write('//---------------------------------------------\n//--Exported with Povray exporter for Blender--\n//---------------------------------------------\n')
    if comments: file.write('\n//--Global settings and background--\n\n')
    
    exportGlobalSettings(scene)
    
    if comments: file.write('\n')
    
    exportWorld(scene.world)
    
    if comments: file.write('\n//--Cameras--\n\n')
    
    exportCamera()
    
    if comments: file.write('\n//--Lamps--\n\n')
    
    exportLamps([l for l in sel if l.type == 'LAMP'])
    
    if comments: file.write('\n//--Material Definitions--\n\n')
    
    # Convert all materials to strings we can access directly per vertex.
    #exportMaterials()
    writeMaterial(None) # default material
    for material in bpy.data.materials:
        writeMaterial(material)

    if comments: file.write('\n')
    if comments: file.write('//--Meta objects--\n\n')  # <- How can this be written only if the scene contains META? Activating a boolean just before meta export and testing it here?
    
    exportMeta([l for l in sel if l.type == 'META'])
    
    if comments: file.write('\n')  # <- How can this be written only if the scene contains META?
    if comments: file.write('//--Mesh objecs--\n\n')
    
    exportMeshs(scene, sel)
    #What follow used to happen here:
    #exportCamera()
    #exportWorld(scene.world)
    #exportGlobalSettings(scene)
    #...and the order was important for an attempt to implement pov 3.7 baking (mesh camera) comment for the record


    #print('pov file closed %s' % file.closed)
    file.close()
    #print('pov file closed %s' % file.closed)
    


def write_pov_ini(filename_ini, filename_pov, filename_image):
    scene = bpy.data.scenes[0]
    render = scene.render

    x = int(render.resolution_x * render.resolution_percentage * 0.01)
    y = int(render.resolution_y * render.resolution_percentage * 0.01)

    file = open(filename_ini.name, 'w')
    file.write("Input_File_Name='%s'\n" % filename_pov.name)
    file.write("Output_File_Name='%s'\n" % filename_image.name)

    file.write('Width=%d\n' % x)
    file.write('Height=%d\n' % y)

    # Needed for border render.
    '''
    file.write('Start_Column=%d\n' % part.x)
    file.write('End_Column=%d\n' % (part.x+part.w))

    file.write('Start_Row=%d\n' % (part.y))
    file.write('End_Row=%d\n' % (part.y+part.h))
    '''

    file.write('Bounding_Method=2\n')#The new automatic BSP is faster in most scenes

    file.write('Display=1\n')#Activated (turn this back off when better live exchange is done between the two programs (see next comment)
    file.write('Pause_When_Done=0\n')
    file.write('Output_File_Type=N\n') # PNG, with POV 3.7, can show background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. 
    #file.write('Output_File_Type=T\n') # TGA, best progressive loading
    file.write('Output_Alpha=1\n')

    if render.use_antialiasing:
        aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 2 (recursive) with higher max subdiv forced because no mipmapping in povray needs higher sampling.
        file.write('Antialias=on\n')
        file.write('Sampling_Method=2\n')
        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
        file.write('Antialias_Threshold=0.1\n')#rather high settings but necessary.
        file.write('Jitter=off\n')#prevent animation flicker
 
    else:
        file.write('Antialias=0\n')
    file.write('Version=3.7')
    #print('ini file closed %s' % file.closed)
    file.close()
    #print('ini file closed %s' % file.closed)


class PovrayRender(bpy.types.RenderEngine):
    bl_idname = 'POVRAY_RENDER'
    bl_label = 'Povray 3.7'
    DELAY = 0.05

    def _export(self, scene):
        import tempfile
        
        # mktemp is Deprecated since version 2.3, replaced with NamedTemporaryFile() #CR
        self._temp_file_in = tempfile.NamedTemporaryFile(suffix='.pov', delete=False)
        self._temp_file_out = tempfile.NamedTemporaryFile(suffix='.png', delete=False)#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats.
        #self._temp_file_out = tempfile.NamedTemporaryFile(suffix='.tga', delete=False)
        self._temp_file_ini = tempfile.NamedTemporaryFile(suffix='.ini', delete=False)
        '''
        self._temp_file_in = '/test.pov'
        self._temp_file_out = '/test.png'#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats.
        #self._temp_file_out = '/test.tga'
        self._temp_file_ini = '/test.ini'
        '''

        def info_callback(txt):
            self.update_stats('', 'POVRAY 3.7: ' + txt)

        write_pov(self._temp_file_in, scene, info_callback)

    def _render(self):

        try:
            os.remove(self._temp_file_out.name) # so as not to load the old file
        except OSError:
            pass

        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)

        print ('***-STARTING-***')

        pov_binary = 'povray'
        
        extra_args = []
        
        if sys.platform == 'win32':
            import winreg
            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.7\\Windows')

            if bitness == 64:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
            else:
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
        else:
            # DH - added -d option to prevent render window popup which leads to segfault on linux
            extra_args.append('-d')

        if 1:
            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
            try:
                self._process = subprocess.Popen([pov_binary, self._temp_file_ini.name] + extra_args) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
            except OSError:
                # TODO, report api
                print("POVRAY 3.7: could not execute '%s', possibly povray isn't installed" % pov_binary)
                import traceback
                traceback.print_exc()
                print ('***-DONE-***')
                return False

        else:
            # This works too but means we have to wait until its done
            os.system('%s %s' % (pov_binary, self._temp_file_ini.name))

        # print ('***-DONE-***')
        return True

    def _cleanup(self):
        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
            #print('Name: %s' % f.name)
            #print('File closed %s' % f.closed)
            f.close() # Why do I have to close them again? Without closeing the pov and ini files are not deletable. PNG is not closable!
            try:
                os.unlink(f.name)
                #os.remove(f.name)
            except OSError:  #was that the proper error type?
                #print('Couldn't remove/unlink TEMP file %s' % f.name)
                pass
            print('')

        self.update_stats('', '')

    def render(self, scene):

        self.update_stats('', 'POVRAY 3.7: Exporting data from Blender')
        self._export(scene)
        self.update_stats('', 'POVRAY 3.7: Parsing File')

        if not self._render():
            self.update_stats('', 'POVRAY 3.7: Not found')
            return

        r = scene.render
##WIP output format 
##        if r.file_format == 'OPENEXR':
##            fformat = 'EXR'
##            render.color_mode = 'RGBA'
##        else:
##            fformat = 'TGA'
##            r.file_format = 'TARGA'            
##            r.color_mode = 'RGBA'

        # compute resolution
        x = int(r.resolution_x * r.resolution_percentage * 0.01)
        y = int(r.resolution_y * r.resolution_percentage * 0.01)

        # Wait for the file to be created
        while not os.path.exists(self._temp_file_out.name):
            # print('***POV WAITING FOR FILE***')
            if self.test_break():
                try:
                    self._process.terminate()
                    print('***POV INTERRUPTED***')
                except OSError:
                    pass
                break
            
            poll_result = self._process.poll()
            if poll_result is not None:
                print('***POV PROCESS FAILED : %s ***' % poll_result)
                self.update_stats('', 'POVRAY 3.7: Failed')
                break

            time.sleep(self.DELAY)

        if os.path.exists(self._temp_file_out.name):
            # print('***POV FILE OK***')
            self.update_stats('', 'POVRAY 3.7: Rendering')

            prev_size = -1

            def update_image():
                # print('***POV UPDATING IMAGE***')
                result = self.begin_result(0, 0, x, y)
                lay = result.layers[0]
                # possible the image wont load early on.
                try:
                    lay.load_from_file(self._temp_file_out.name)
                except SystemError:
                    pass
                self.end_result(result)

            # Update while povray renders
            while True:
                # print('***POV RENDER LOOP***')

                # test if povray exists
                if self._process.poll() is not None:
                    print('***POV PROCESS FINISHED***')
                    update_image()
                    break

                # user exit
                if self.test_break():
                    try:
                        self._process.terminate()
                        print('***POV PROCESS INTERRUPTED***')
                    except OSError:
                        pass

                    break

                # Would be nice to redirect the output
                # stdout_value, stderr_value = self._process.communicate() # locks


                # check if the file updated
                new_size = os.path.getsize(self._temp_file_out.name)

                if new_size != prev_size:
                    update_image()
                    prev_size = new_size

                time.sleep(self.DELAY)
        else:
            print('***POV FILE NOT FOUND***')
        
        print('***POV FINISHED***')
        #time.sleep(self.DELAY)
        self._cleanup()