# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import subprocess import os import sys import time import math from math import atan, pi, degrees, sqrt import platform as pltfrm if pltfrm.architecture()[0] == '64bit': bitness = 64 else: bitness = 32 ##############################SF########################### ##############find image texture def splitExt(path): dotidx = path.rfind('.') if dotidx == -1: return path, '' else: return (path[dotidx:]).upper().replace('.','') def imageFormat(imgF): ext = '' ext_orig = splitExt(imgF) if ext_orig == 'JPG' or ext_orig == 'JPEG': ext='jpeg' if ext_orig == 'GIF': ext = 'gif' if ext_orig == 'TGA': ext = 'tga' if ext_orig == 'IFF': ext = 'iff' if ext_orig == 'PPM': ext = 'ppm' if ext_orig == 'PNG': ext = 'png' if ext_orig == 'SYS': ext = 'sys' if ext_orig in ('TIFF', 'TIF'): ext = 'tiff' if ext_orig == 'EXR': ext = 'exr'#POV3.7 Only! if ext_orig == 'HDR': ext = 'hdr'#POV3.7 Only! --MR print(imgF) if not ext: print(' WARNING: texture image format not supported ') # % (imgF , '')) #(ext_orig))) return ext def imgMap(ts): image_map='' if ts.mapping=='FLAT':image_map= ' map_type 0 ' if ts.mapping=='SPHERE':image_map= ' map_type 1 '# map_type 7 in megapov if ts.mapping=='TUBE':image_map= ' map_type 2 ' #if ts.mapping=='?':image_map= ' map_type 3 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) #if ts.mapping=='?':image_map= ' map_type 4 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) if ts.texture.use_interpolation: image_map+= ' interpolate 2 ' if ts.texture.extension == 'CLIP': image_map+=' once ' #image_map+='}' #if ts.mapping=='CUBE':image_map+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_map=='': print(' No texture image found ') return image_map def imgMapBG(wts): image_mapBG='' if wts.texture_coords== 'VIEW':image_mapBG= ' map_type 0 ' #texture_coords refers to the mapping of world textures if wts.texture_coords=='ANGMAP':image_mapBG= ' map_type 1 ' if wts.texture_coords=='TUBE':image_mapBG= ' map_type 2 ' if wts.texture.use_interpolation: image_mapBG+= ' interpolate 2 ' if wts.texture.extension == 'CLIP': image_mapBG+=' once ' #image_mapBG+='}' #if wts.mapping=='CUBE':image_mapBG+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_mapBG=='': print(' No background texture image found ') return image_mapBG def splitFile(path): idx = path.rfind('/') if idx == -1: idx = path.rfind('\\') return path[idx:].replace('/', '').replace('\\', '') def splitPath(path): idx = path.rfind('/') if idx == -1: return path, '' else: return path[:idx] def findInSubDir(filename, subdirectory=''): pahFile='' if subdirectory: path = subdirectory else: path = os.getcwd() try: for root, dirs, names in os.walk(path): if filename in names: pahFile = os.path.join(root, filename) return pahFile except OSError: return '' def path_image(image): import os fn = bpy.path.abspath(image) fn_strip = os.path.basename(fn) if not os.path.isfile(fn): fn=(findInSubDir(splitFile(fn),splitPath(bpy.data.filepath))) () return fn ##############end find image texture def splitHyphen(name): hyphidx = name.find('-') if hyphidx == -1: return name else: return (name[hyphidx:]).replace('-','') ##############safety string name material def safety(name, Level): # Level=1 is for texture with No specular nor Mirror reflection # Level=2 is for texture with translation of spec and mir levels for when no map influences them # Level=3 is for texture with Maximum Spec and Mirror try: if int(name) > 0: prefix='shader' except: prefix = '' prefix='shader_' name = splitHyphen(name) if Level == 2: return prefix+name elif Level == 1: return prefix+name+'0'#used for 0 of specular map elif Level == 3: return prefix+name+'1'#used for 1 of specular map ##############end safety string name material ##############################EndSF########################### def setTab(tabtype, spaces): TabStr = '' if tabtype == '0': TabStr = '' elif tabtype == '1': TabStr = '\t' elif tabtype == '2': TabStr = spaces * ' ' return TabStr def write_pov(filename, scene=None, info_callback=None): import mathutils #file = filename file = open(filename.name, 'w') # Only for testing if not scene: scene = bpy.data.scenes[0] render = scene.render world = scene.world global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X') Tab = setTab(scene.pov_indentation_character, scene.pov_indentation_spaces) def uniqueName(name, nameSeq): if name not in nameSeq: return name name_orig = name i = 1 while name in nameSeq: name = '%s_%.3d' % (name_orig, i) i += 1 name = splitHyphen(name) return name def fileWriteTab(Tabcount, str_o): if Tabcount >= 1: file.write('%s' % Tab*Tabcount) file.write(str_o) def writeMatrix(matrix): fileWriteTab(1, 'matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2])) def writeObjectMaterial(material): # DH - modified some variables to be function local, avoiding RNA write # this should be checked to see if it is functionally correct if material: #and material.transparency_method == 'RAYTRACE':#Commented out: always write IOR to be able to use it for SSS, Fresnel reflections... #But there can be only one! if material.subsurface_scattering.use:#SSS IOR get highest priority fileWriteTab(1, 'interior {\n') fileWriteTab(2, 'ior %.6f\n' % material.subsurface_scattering.ior) elif material.pov_mirror_use_IOR:#Then the raytrace IOR taken from raytrace transparency properties and used for reflections if IOR Mirror option is checked fileWriteTab(1, 'interior {\n') fileWriteTab(2, 'ior %.6f\n' % material.raytrace_transparency.ior) else: fileWriteTab(1, 'interior {\n') fileWriteTab(2, 'ior %.6f\n' % material.raytrace_transparency.ior) pov_fake_caustics = False pov_photons_refraction = False pov_photons_reflection = False if material.pov_refraction_type=='0': pov_fake_caustics = False pov_photons_refraction = False pov_photons_reflection = True #should respond only to proper checkerbox elif material.pov_refraction_type=='1': pov_fake_caustics = True pov_photons_refraction = False elif material.pov_refraction_type=='2': pov_fake_caustics = False pov_photons_refraction = True #If only Raytrace transparency is set, its IOR will be used for refraction, but user can set up 'un-physical' fresnel reflections in raytrace mirror parameters. #Last, if none of the above is specified, user can set up 'un-physical' fresnel reflections in raytrace mirror parameters. And pov IOR defaults to 1. if material.pov_caustics_enable: if pov_fake_caustics: fileWriteTab(2, 'caustics %.3g\n' % material.pov_fake_caustics_power) if pov_photons_refraction: fileWriteTab(2, 'dispersion %.3g\n' % material.pov_photons_dispersion) #Default of 1 means no dispersion #TODO # Other interior args # if material.use_transparency and material.transparency_method == 'RAYTRACE': # fade_distance 2 # fade_power [Value] # fade_color # (variable) dispersion_samples (constant count for now) fileWriteTab(1, '}\n') if pov_photons_refraction or pov_photons_reflection: fileWriteTab(1, 'photons{\n') fileWriteTab(2, 'target\n') if pov_photons_refraction: fileWriteTab(2, 'refraction on\n') if pov_photons_reflection: fileWriteTab(2, 'reflection on\n') fileWriteTab(1, '}\n') materialNames = {} DEF_MAT_NAME = 'Default' def writeMaterial(material): # Assumes only called once on each material if material: name_orig = material.name else: name_orig = DEF_MAT_NAME name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames) comments = scene.pov_comments_enable ##################Several versions of the finish: Level conditions are variations for specular/Mirror texture channel map with alternative finish of 0 specular and no mirror reflection # Level=1 Means No specular nor Mirror reflection # Level=2 Means translation of spec and mir levels for when no map influences them # Level=3 Means Maximum Spec and Mirror def povHasnoSpecularMaps(Level): if Level == 1: fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 1)) if comments: file.write(' //No specular nor Mirror reflection\n') else: fileWriteTab(0, '\n') elif Level == 2: fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 2)) if comments: file.write(' //translation of spec and mir levels for when no map influences them\n') else: fileWriteTab(0, '\n') elif Level == 3: fileWriteTab(0, '#declare %s = finish {' % safety(name, Level = 3)) if comments: file.write(' //Maximum Spec and Mirror\n') else: fileWriteTab(0, '\n') if material: #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency) frontDiffuse=material.diffuse_intensity backDiffuse=material.translucency if material.pov_conserve_energy: #Total should not go above one if (frontDiffuse + backDiffuse) <= 1.0: pass elif frontDiffuse==backDiffuse: frontDiffuse = backDiffuse = 0.5 # Try to respect the user's 'intention' by comparing the two values but bringing the total back to one elif frontDiffuse>backDiffuse: # Let the highest value stay the highest value backDiffuse = 1-(1-frontDiffuse) else: frontDiffuse = 1-(1-backDiffuse) # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) ## scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) #####################################Diffuse Shader###################################### # Not used for Full spec (Level=3) of the shader if material.diffuse_shader == 'OREN_NAYAR' and Level != 3: fileWriteTab(1, 'brilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray if material.diffuse_shader == 'TOON' and Level != 3: fileWriteTab(1, 'brilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25)) frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray if material.diffuse_shader == 'MINNAERT' and Level != 3: #fileWriteTab(1, 'aoi %.3g\n' % material.darkness) pass #let's keep things simple for now if material.diffuse_shader == 'FRESNEL' and Level != 3: #fileWriteTab(1, 'aoi %.3g\n' % material.diffuse_fresnel_factor) pass #let's keep things simple for now if material.diffuse_shader == 'LAMBERT' and Level != 3: fileWriteTab(1, 'brilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value if Level == 2: ####################################Specular Shader###################################### if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa! fileWriteTab(1, 'phong %.3g\n' % (material.specular_intensity)) fileWriteTab(1, 'phong_size %.3g\n'% (material.specular_hardness / 2 + 0.25)) if material.specular_shader == 'BLINN':#Povray 'specular' keyword corresponds to a Blinn model, without the ior. fileWriteTab(1, 'specular %.3g\n' % (material.specular_intensity * (material.specular_ior/4))) #Use blender Blinn's IOR just as some factor for spec intensity fileWriteTab(1, 'roughness %.3g\n' % roughness) #Could use brilliance 2(or varying around 2 depending on ior or factor) too. if material.specular_shader == 'TOON': fileWriteTab(1, 'phong %.3g\n' % (material.specular_intensity * 2)) fileWriteTab(1, 'phong_size %.3g\n' % (0.1+material.specular_toon_smooth / 2)) #use extreme phong_size if material.specular_shader == 'WARDISO': fileWriteTab(1, 'specular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values. fileWriteTab(1, 'roughness %.4g\n' % (0.0005+material.specular_slope/10)) #find best suited default constant for brilliance Use both phong and specular for some values. fileWriteTab(1, 'brilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values. ######################################################################################### elif Level == 1: fileWriteTab(1, 'specular 0\n') elif Level == 3: fileWriteTab(1, 'specular 1\n') fileWriteTab(1, 'diffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse)) fileWriteTab(1, 'ambient %.3g\n' % material.ambient) #fileWriteTab(1, 'ambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value fileWriteTab(1, 'emission %.3g\n' % material.emit) #New in povray 3.7 #fileWriteTab(1, 'roughness %.3g\n' % roughness) #povray just ignores roughness if there's no specular keyword if material.pov_conserve_energy: fileWriteTab(1, 'conserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice. # 'phong 70.0 ' if Level != 1: if material.raytrace_mirror.use: raytrace_mirror = material.raytrace_mirror if raytrace_mirror.reflect_factor: fileWriteTab(1, 'reflection {\n') fileWriteTab(2, 'rgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color)) if material.pov_mirror_metallic: fileWriteTab(2, 'metallic %.3g' % (raytrace_mirror.reflect_factor)) if material.pov_mirror_use_IOR: #WORKING ? fileWriteTab(2, 'fresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice fileWriteTab(2, 'falloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor)) if material.subsurface_scattering.use: subsurface_scattering = material.subsurface_scattering fileWriteTab(1, 'subsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2])) if material.pov_irid_enable: fileWriteTab(1, 'irid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence)) else: fileWriteTab(1, 'diffuse 0.8\n') fileWriteTab(1, 'phong 70.0\n') #fileWriteTab(1, 'specular 0.2\n') # This is written into the object ''' if material and material.transparency_method=='RAYTRACE': 'interior { ior %.3g} ' % material.raytrace_transparency.ior ''' #fileWriteTab(3, 'crand 1.0\n') # Sand granyness #fileWriteTab(3, 'metallic %.6f\n' % material.spec) #fileWriteTab(3, 'phong %.6f\n' % material.spec) #fileWriteTab(3, 'phong_size %.6f\n' % material.spec) #fileWriteTab(3, 'brilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness fileWriteTab(0, '}\n\n') # Level=1 Means No specular nor Mirror reflection povHasnoSpecularMaps(Level=1) # Level=2 Means translation of spec and mir levels for when no map influences them povHasnoSpecularMaps(Level=2) # Level=3 Means Maximum Spec and Mirror povHasnoSpecularMaps(Level=3) def exportCamera(): camera = scene.camera # DH disabled for now, this isn't the correct context active_object = None #bpy.context.active_object # does not always work MR matrix = global_matrix * camera.matrix_world focal_point = camera.data.dof_distance # compute resolution Qsize = float(render.resolution_x) / float(render.resolution_y) fileWriteTab(0, '#declare camLocation = <%.6f, %.6f, %.6f>;\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) fileWriteTab(0, '#declare camLookAt = <%.6f, %.6f, %.6f>;\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) fileWriteTab(0, 'camera {\n') if scene.pov_baking_enable and active_object and active_object.type=='MESH': fileWriteTab(1, 'mesh_camera{ 1 3\n') # distribution 3 is what we want here fileWriteTab(2, 'mesh{%s}\n' % active_object.name) fileWriteTab(1, '}\n') fileWriteTab(0, 'location <0,0,.01>') fileWriteTab(0, 'direction <0,0,-1>') # Using standard camera otherwise else: fileWriteTab(1, 'location <0, 0, 0>\n') fileWriteTab(1, 'look_at <0, 0, -1>\n') fileWriteTab(1, 'right <%s, 0, 0>\n' % - Qsize) fileWriteTab(1, 'up <0, 1, 0>\n') fileWriteTab(1, 'angle %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi)) fileWriteTab(1, 'rotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) fileWriteTab(1, 'translate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) if focal_point != 0: fileWriteTab(1, 'aperture 0.25\n') # fixed blur amount for now to do, add slider a button? fileWriteTab(1, 'blur_samples 96 128\n') fileWriteTab(1, 'variance 1/10000\n') fileWriteTab(1, 'focal_point <0, 0, %f>\n' % focal_point) fileWriteTab(0, '}\n') def exportLamps(lamps): # Get all lamps for ob in lamps: lamp = ob.data matrix = global_matrix * ob.matrix_world color = tuple([c * lamp.energy *2 for c in lamp.color]) # Colour is modified by energy #muiltiplie by 2 for a better match --Maurice fileWriteTab(0, 'light_source {\n') fileWriteTab(1, '< 0,0,0 >\n') fileWriteTab(1, 'color rgb<%.3g, %.3g, %.3g>\n' % color) if lamp.type == 'POINT': # Point Lamp pass elif lamp.type == 'SPOT': # Spot fileWriteTab(1, 'spotlight\n') # Falloff is the main radius from the centre line fileWriteTab(1, 'falloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH fileWriteTab(1, 'radius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend))) # Blender does not have a tightness equivilent, 0 is most like blender default. fileWriteTab(1, 'tightness 0\n') # 0:10f fileWriteTab(1, 'point_at <0, 0, -1>\n') elif lamp.type == 'SUN': fileWriteTab(1, 'parallel\n') fileWriteTab(1, 'point_at <0, 0, -1>\n') # *must* be after 'parallel' elif lamp.type == 'AREA': fileWriteTab(1, 'fade_distance %.6f\n' % (lamp.distance / 5) ) fileWriteTab(1, 'fade_power %d\n' % 2) # Area lights have no falloff type, so always use blenders lamp quad equivalent for those? size_x = lamp.size samples_x = lamp.shadow_ray_samples_x if lamp.shape == 'SQUARE': size_y = size_x samples_y = samples_x else: size_y = lamp.size_y samples_y = lamp.shadow_ray_samples_y fileWriteTab(1, 'area_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED': if lamp.jitter: fileWriteTab(1, 'jitter\n') else: fileWriteTab(1, 'adaptive 1\n') fileWriteTab(1, 'jitter\n') if lamp.type == 'HEMI':#HEMI never has any shadow attribute fileWriteTab(1, 'shadowless\n') elif lamp.shadow_method == 'NOSHADOW': fileWriteTab(1, 'shadowless\n') if lamp.type != 'SUN' and lamp.type!='AREA' and lamp.type!='HEMI':#Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they are put to type 2 attenuation a little higher above. fileWriteTab(1, 'fade_distance %.6f\n' % (lamp.distance / 5) ) if lamp.falloff_type == 'INVERSE_SQUARE': fileWriteTab(1, 'fade_power %d\n' % 2) # Use blenders lamp quad equivalent elif lamp.falloff_type == 'INVERSE_LINEAR': fileWriteTab(1, 'fade_power %d\n' % 1) # Use blenders lamp linear elif lamp.falloff_type == 'CONSTANT': #Supposing using no fade power keyword would default to constant, no attenuation. pass elif lamp.falloff_type == 'CUSTOM_CURVE': #Using Custom curve for fade power 3 for now. fileWriteTab(1, 'fade_power %d\n' % 4) writeMatrix(matrix) fileWriteTab(0, '}\n') ################################################################################################################################## #Wip to be Used for fresnel, but not tested yet. ################################################################################################################################## ## lampLocation=[0,0,0] ## lampRotation=[0,0,0] ## lampDistance=0.00 ## averageLampLocation=[0,0,0] ## averageLampRotation=[0,0,0] ## averageLampDistance=0.00 ## lamps=[] ## for l in scene.objects: ## if l.type == 'LAMP':#get all lamps ## lamps += [l] ## for ob in lamps: ## lamp = ob.data ## lampLocation[0]+=ob.location[0] ## lampLocation[1]+=ob.location[1] ## lampLocation[2]+=ob.location[2] ## lampRotation[0]+=ob.rotation_euler[0] ## lampRotation[1]+=ob.rotation_euler[1] ## lampRotation[2]+=ob.rotation_euler[2] ## lampDistance+=ob.data.distance ## averageLampRotation[0]=lampRotation[0] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[1]=lampRotation[1] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[2]=lampRotation[2] / len(lamps)#create an average direction for all lamps. ## ## averageLampLocation[0]=lampLocation[0] / len(lamps)#create an average position for all lamps. ## averageLampLocation[1]=lampLocation[1] / len(lamps)#create an average position for all lamps. ## averageLampLocation[2]=lampLocation[2] / len(lamps)#create an average position for all lamps. ## ## averageLampDistance=lampDistance / len(lamps)#create an average distance for all lamps. ## file.write('\n#declare lampTarget= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);' % (-(averageLampLocation[0]-averageLampDistance), -(averageLampLocation[1]-averageLampDistance), -(averageLampLocation[2]-averageLampDistance), averageLampRotation[0], averageLampRotation[1], averageLampRotation[2])) ## #v(A,B) rotates vector A about origin by vector B. ## #################################################################################################################################### def exportMeta(metas): # TODO - blenders 'motherball' naming is not supported. for ob in metas: meta = ob.data importance=ob.pov_importance_value fileWriteTab(0, 'blob {\n') fileWriteTab(1, 'threshold %.4g\n' % meta.threshold) try: material = meta.materials[0] # lame! - blender cant do enything else. except: material = None for elem in meta.elements: if elem.type not in ('BALL', 'ELLIPSOID'): continue # Not supported loc = elem.co stiffness = elem.stiffness if elem.use_negative: stiffness = - stiffness if elem.type == 'BALL': fileWriteTab(1, 'sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness)) # After this wecould do something simple like... # 'pigment {Blue} }' # except we'll write the color elif elem.type == 'ELLIPSOID': # location is modified by scale fileWriteTab(1, 'sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness)) fileWriteTab(2, 'scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z)) if material: diffuse_color = material.diffuse_color if material.use_transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 material_finish = materialNames[material.name] fileWriteTab(2, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \ (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, safety(material_finish, Level=2))) else: fileWriteTab(2, 'pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last. writeObjectMaterial(material) writeMatrix(global_matrix * ob.matrix_world) #Importance for radiosity sampling added here: fileWriteTab(1, 'radiosity { \n') fileWriteTab(2, 'importance %3g \n' % importance) fileWriteTab(1, '}\n') fileWriteTab(0, '}\n') #End of Metaball block fileWriteTab(0, '}\n') objectNames = {} DEF_OBJ_NAME = 'Default' def exportMeshs(scene, sel): ob_num = 0 for ob in sel: ob_num += 1 ############################################# #Generating a name for object just like materials to be able to use it (baking for now or anything else). if sel: name_orig = ob.name else: name_orig = DEF_OBJ_NAME name = objectNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), objectNames) ############################################# if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'): continue me = ob.data importance=ob.pov_importance_value me_materials = me.materials me = ob.create_mesh(scene, True, 'RENDER') if not me or not me.faces: continue if info_callback: info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) #if ob.type!='MESH': # continue # me = ob.data matrix = global_matrix * ob.matrix_world try: uv_layer = me.uv_textures.active.data except AttributeError: uv_layer = None try: vcol_layer = me.vertex_colors.active.data except AttributeError: vcol_layer = None faces_verts = [f.vertices[:] for f in me.faces] faces_normals = [tuple(f.normal) for f in me.faces] verts_normals = [tuple(v.normal) for v in me.vertices] # quads incur an extra face quadCount = sum(1 for f in faces_verts if len(f) == 4) # Use named declaration to allow reference e.g. for baking. MR fileWriteTab(0, '#declare %s=\n' % name) fileWriteTab(0, 'mesh2 {\n') fileWriteTab(1, 'vertex_vectors {\n') fileWriteTab(2, '%s' % (len(me.vertices))) # vert count for v in me.vertices: fileWriteTab(0, ',\n') fileWriteTab(2, '<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count file.write('\n') fileWriteTab(1, '}\n') # Build unique Normal list uniqueNormals = {} for fi, f in enumerate(me.faces): fv = faces_verts[fi] # [-1] is a dummy index, use a list so we can modify in place if f.use_smooth: # Use vertex normals for v in fv: key = verts_normals[v] uniqueNormals[key] = [-1] else: # Use face normal key = faces_normals[fi] uniqueNormals[key] = [-1] fileWriteTab(1, 'normal_vectors {\n') fileWriteTab(2, '%d' % len(uniqueNormals)) # vert count idx = 0 for no, index in uniqueNormals.items(): fileWriteTab(0, ',\n') fileWriteTab(2, '<%.6f, %.6f, %.6f>' % no) # vert count index[0] = idx idx += 1 file.write('\n') fileWriteTab(1, '}\n') # Vertex colours vertCols = {} # Use for material colours also. if uv_layer: # Generate unique UV's uniqueUVs = {} for fi, uv in enumerate(uv_layer): if len(faces_verts[fi]) == 4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for uv in uvs: uniqueUVs[tuple(uv)] = [-1] fileWriteTab(1, 'uv_vectors {\n') #print unique_uvs fileWriteTab(2, '%s' % (len(uniqueUVs))) # vert count idx = 0 for uv, index in uniqueUVs.items(): fileWriteTab(0, ',\n') fileWriteTab(0, '<%.6f, %.6f>' % uv) index[0] = idx idx += 1 ''' else: # Just add 1 dummy vector, no real UV's fileWriteTab(2, '1') # vert count file.write(',\n\t\t<0.0, 0.0>') ''' file.write('\n') fileWriteTab(1, '}\n') if me.vertex_colors: for fi, f in enumerate(me.faces): material_index = f.material_index material = me_materials[material_index] if material and material.use_vertex_color_paint: col = vcol_layer[fi] if len(faces_verts[fi]) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 for col in cols: key = col[0], col[1], col[2], material_index # Material index! vertCols[key] = [-1] else: if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index vertCols[key] = [-1] else: # No vertex colours, so write material colours as vertex colours for i, material in enumerate(me_materials): if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat vertCols[key] = [-1] # Vert Colours fileWriteTab(1, 'texture_list {\n') fileWriteTab(2, '%s' % (len(vertCols))) # vert count idx = 0 for col, index in vertCols.items(): if me_materials: material = me_materials[col[3]] material_finish = materialNames[material.name] if material.use_transparency: trans = 1.0 - material.alpha else: trans = 0.0 else: material_finish = DEF_MAT_NAME # not working properly, trans = 0.0 ##############SF texturesDif='' texturesSpec='' texturesNorm='' texturesAlpha='' for t in material.texture_slots: if t and t.texture.type == 'IMAGE' and t.use and t.texture.image: image_filename = path_image(t.texture.image.filepath) imgGamma = '' if image_filename: if t.use_map_color_diffuse: texturesDif = image_filename colvalue = t.default_value t_dif = t if t_dif.texture.pov_tex_gamma_enable: imgGamma = (' gamma %.3g ' % t_dif.texture.pov_tex_gamma_value) if t.use_map_specular or t.use_map_raymir: texturesSpec = image_filename colvalue = t.default_value t_spec = t if t.use_map_normal: texturesNorm = image_filename colvalue = t.normal_factor * 10.0 #textNormName=t.texture.image.name + '.normal' #was the above used? --MR t_nor = t if t.use_map_alpha: texturesAlpha = image_filename colvalue = t.alpha_factor * 10.0 #textDispName=t.texture.image.name + '.displ' #was the above used? --MR t_alpha = t ############################################################################################################## fileWriteTab(1, '\n') fileWriteTab(2, 'texture {\n') #THIS AREA NEEDS TO LEAVE THE TEXTURE OPEN UNTIL ALL MAPS ARE WRITTEN DOWN. --MR ############################################################################################################## if material.diffuse_shader == 'MINNAERT': fileWriteTab(1, '\n') fileWriteTab(3, 'aoi\n') fileWriteTab(3, 'texture_map {\n') fileWriteTab(4, '[%.3g finish {diffuse %.3g}]\n' % ((material.darkness/2), (2-material.darkness))) fileWriteTab(4, '[%.3g' % (1-(material.darkness/2))) ######TO OPTIMIZE? or present a more elegant way? At least make it work!################################################################## #If Fresnel gets removed from 2.5, why bother? if material.diffuse_shader == 'FRESNEL': ######END of part TO OPTIMIZE? or present a more elegant way?################################################################## ## #lampLocation=lamp.position ## lampRotation= ## a=lamp.Rotation[0] ## b=lamp.Rotation[1] ## c=lamp.Rotation[2] ## lampLookAt=tuple (x,y,z) ## lampLookAt[3]= 0.0 #Put 'target' of the lamp on the floor plane to elimianate one unknown value ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation - lampLookAt).z))=lamp.rotation[0] ## degrees(atan((lampLocation - lampLookAt).z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation.z))=lamp.rotation[0] ## degrees(atan((lampLocation.z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] #color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy fileWriteTab(1, '\n') fileWriteTab(3, 'slope { lampTarget }\n') fileWriteTab(3, 'texture_map {\n') fileWriteTab(4, '[%.3g finish {diffuse %.3g}]\n' % ((material.diffuse_fresnel/2), (2-material.diffuse_fresnel_factor))) fileWriteTab(4, '[%.3g\n' % (1-(material.diffuse_fresnel/2))) #if material.diffuse_shader == 'FRESNEL': pigment pattern aoi pigment and texture map above, the rest below as one of its entry ########################################################################################################################## if texturesSpec !='': fileWriteTab(1, '\n') fileWriteTab(4, 'pigment_pattern {\n') mappingSpec = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_spec.offset.x / 10 ,t_spec.offset.y / 10 ,t_spec.offset.z / 10, t_spec.scale.x / 2.25, t_spec.scale.y / 2.25, t_spec.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. fileWriteTab(5, 'uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesSpec) ,texturesSpec ,imgMap(t_spec),mappingSpec)) fileWriteTab(6, 'texture_map {\n') fileWriteTab(7, '[0 \n') if texturesDif == '': if texturesAlpha !='': fileWriteTab(1, '\n') mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) fileWriteTab(5, 'pigment_map {\n') fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n') fileWriteTab(6, '[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans) ) fileWriteTab(5, '}\n') fileWriteTab(4, '}\n') else: fileWriteTab(3, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=1)))# Level 1 is no specular else: fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated spec else: mappingDif = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) fileWriteTab(5, 'pigment_map {\n') fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n') fileWriteTab(6, '[1 uv_mapping image_map {%s \"%s\" %s}%s]\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif)) fileWriteTab(5, '}\n' ) fileWriteTab(4, '}\n') else: fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s}\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif)) if texturesSpec !='': fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=1)))# Level 1 is no specular else: fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular ## scale 1 rotate y*0 #imageMap = ('{image_map {%s \"%s\" %s }\n' % (imageFormat(textures),textures,imgMap(t_dif))) #fileWriteTab(3, 'uv_mapping pigment %s} %s finish {%s}\n' % (imageMap,mapping,safety(material_finish))) #fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}\n' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ('{bump_map {%s \"%s\" %s mapping}' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? fileWriteTab(4, 'normal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}\n' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': fileWriteTab(7, ']\n') ################################Second index for mapping specular max value################################################################################################## fileWriteTab(7, '[1 \n') if texturesDif == '': if texturesAlpha !='': mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) fileWriteTab(5, 'pigment_map {\n') fileWriteTab(6, '[0 color rgbft<0,0,0,1,1>]\n') fileWriteTab(6, '[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) fileWriteTab(5, '}\n') fileWriteTab(4, '}\n') else: fileWriteTab(3, 'pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}\n' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=3)))# Level 3 is full specular else: fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular else: mappingDif = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. fileWriteTab(3, 'pigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}\n' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) fileWriteTab(4, 'pigment_map {\n') fileWriteTab(5, '[0 color rgbft<0,0,0,1,1>]\n') fileWriteTab(6, '[1 uv_mapping image_map {%s \"%s\" %s}%s]\n' % (imageFormat(texturesDif),texturesDif,(imgMap(t_dif)+imgGamma),mappingDif)) fileWriteTab(5, '}\n') fileWriteTab(4, '}\n') else: fileWriteTab(3, 'pigment {uv_mapping image_map {%s \"%s\" %s}%s}\n' % (imageFormat(texturesDif),texturesDif,(imgGamma + imgMap(t_dif)),mappingDif)) if texturesSpec !='': fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=3)))# Level 3 is full specular else: fileWriteTab(3, 'finish {%s}\n' % (safety(material_finish, Level=2)))# Level 2 is translated specular ## scale 1 rotate y*0 #imageMap = ('{image_map {%s \"%s\" %s }' % (imageFormat(textures),textures,imgMap(t_dif))) #file.write('\n\t\t\tuv_mapping pigment %s} %s finish {%s}' % (imageMap,mapping,safety(material_finish))) #file.write('\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (' translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>\n' % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ('{bump_map {%s \"%s\" %s mapping}' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? fileWriteTab(4, 'normal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}\n' % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': fileWriteTab(7, ']\n') fileWriteTab(4, '}\n') #End of slope/ior texture_map if material.diffuse_shader == 'MINNAERT' or material.diffuse_shader == 'FRESNEL': fileWriteTab(4, ']\n') fileWriteTab(3, '}\n') fileWriteTab(2, '}\n') #THEN IT CAN CLOSE IT --MR ############################################################################################################ index[0] = idx idx += 1 file.write('\n') fileWriteTab(1, '}\n') # Face indicies fileWriteTab(1, 'face_indices {\n') fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] material_index = f.material_index if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) if vcol_layer: col = vcol_layer[fi] if len(fv) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 if not me_materials or me_materials[material_index] is None: # No materials for i1, i2, i3 in indicies: fileWriteTab(0, ',\n') fileWriteTab(2, '<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count else: material = me_materials[material_index] for i1, i2, i3 in indicies: if me.vertex_colors and material.use_vertex_color_paint: # Colour per vertex - vertex colour col1 = cols[i1] col2 = cols[i2] col3 = cols[i3] ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] else: # Colour per material - flat material colour diffuse_color = material.diffuse_color ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] fileWriteTab(0, ',\n') fileWriteTab(2, '<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count file.write('\n') fileWriteTab(1, '}\n') # normal_indices indicies fileWriteTab(1, 'normal_indices {\n') fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) for i1, i2, i3 in indicies: if f.use_smooth: fileWriteTab(0, ',\n') fileWriteTab(2, '<%d,%d,%d>' %\ (uniqueNormals[verts_normals[fv[i1]]][0],\ uniqueNormals[verts_normals[fv[i2]]][0],\ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count else: idx = uniqueNormals[faces_normals[fi]][0] fileWriteTab(0, ',\n') fileWriteTab(2, '<%d,%d,%d>' % (idx, idx, idx)) # vert count file.write('\n') fileWriteTab(1, '}\n') if uv_layer: fileWriteTab(1, 'uv_indices {\n') fileWriteTab(2, '%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) uv = uv_layer[fi] if len(faces_verts[fi]) == 4: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4) else: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3) for i1, i2, i3 in indicies: fileWriteTab(0, ',\n') fileWriteTab(2, '<%d,%d,%d>' %\ (uniqueUVs[uvs[i1]][0],\ uniqueUVs[uvs[i2]][0],\ uniqueUVs[uvs[i3]][0])) file.write('\n') fileWriteTab(1,'}\n') if me.materials: try: material = me.materials[0] # dodgy writeObjectMaterial(material) except IndexError: print(me) writeMatrix(matrix) #Importance for radiosity sampling added here: fileWriteTab(1, 'radiosity { \n') fileWriteTab(2, 'importance %3g \n' % importance) fileWriteTab(1, '}\n') fileWriteTab(0, '}\n') # End of mesh block fileWriteTab(0, '%s\n' % name) # Use named declaration to allow reference e.g. for baking. MR bpy.data.meshes.remove(me) def exportWorld(world): render = scene.render camera = scene.camera matrix = global_matrix * camera.matrix_world if not world: return #############Maurice#################################### #These lines added to get sky gradient (visible with PNG output) if world: #For simple flat background: if not world.use_sky_blend: #Non fully transparent background could premultiply alpha and avoid anti-aliasing display issue: if render.alpha_mode == 'PREMUL' or render.alpha_mode == 'PREMUL' : fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n' % (tuple(world.horizon_color))) #Currently using no alpha with Sky option: elif render.alpha_mode == 'SKY': fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 0>}\n' % (tuple(world.horizon_color))) #StraightAlpha: else: fileWriteTab(0, 'background {rgbt<%.3g, %.3g, %.3g, 1>}\n' % (tuple(world.horizon_color))) worldTexCount=0 #For Background image textures for t in world.texture_slots: #risk to write several sky_spheres but maybe ok. worldTexCount+=1 if t and t.texture.type == 'IMAGE': #and t.use: #No enable checkbox for world textures yet (report it?) image_filename = path_image(t.texture.image.filepath) if t.texture.image.filepath != image_filename: t.texture.image.filepath = image_filename if image_filename != '' and t.use_map_blend: texturesBlend = image_filename #colvalue = t.default_value t_blend = t #commented below was an idea to make the Background image oriented as camera taken here: http://news.povray.org/povray.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.povray.org%3E/ #mappingBlend = (' translate <%.4g,%.4g,%.4g> rotate z*degrees(atan((camLocation - camLookAt).x/(camLocation - camLookAt).y)) rotate x*degrees(atan((camLocation - camLookAt).y/(camLocation - camLookAt).z)) rotate y*degrees(atan((camLocation - camLookAt).z/(camLocation - camLookAt).x)) scale <%.4g,%.4g,%.4g>b' % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x ,t_blend.scale.y ,t_blend.scale.z))#replace 4/3 by the ratio of each image found by some custom or existing function #using camera rotation valuesdirectly from blender seems much easier if t_blend.texture_coords=='ANGMAP': mappingBlend = ('') else: mappingBlend = (' translate <%.4g-0.5,%.4g-0.5,%.4g-0.5> rotate<0,0,0> scale <%.4g,%.4g,%.4g>' % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x*0.85 , t_blend.scale.y*0.85 , t_blend.scale.z*0.85 )) #The initial position and rotation of the pov camera is probably creating the rotation offset should look into it someday but at least background won't rotate with the camera now. #Putting the map on a plane would not introduce the skysphere distortion and allow for better image scale matching but also some waay to chose depth and size of the plane relative to camera. fileWriteTab(0, 'sky_sphere {\n') fileWriteTab(1, 'pigment {\n') fileWriteTab(2, 'image_map{%s \"%s\" %s}\n' % (imageFormat(texturesBlend),texturesBlend,imgMapBG(t_blend))) fileWriteTab(1, '}\n') fileWriteTab(1, '%s\n' % (mappingBlend)) fileWriteTab(0, '}\n') #fileWriteTab(2, 'scale 2\n') #fileWriteTab(2, 'translate -1\n') #For only Background gradient if worldTexCount==0: if world.use_sky_blend: fileWriteTab(0, 'sky_sphere {\n') fileWriteTab(1, 'pigment {\n') fileWriteTab(2, 'gradient y\n')#maybe Should follow the advice of POV doc about replacing gradient for skysphere..5.5 fileWriteTab(2, 'color_map {\n') if render.alpha_mode == 'STRAIGHT': fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.horizon_color))) fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.zenith_color))) elif render.alpha_mode == 'PREMUL': fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.horizon_color))) fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.zenith_color))) #aa premult not solved with transmit 1 else: fileWriteTab(3, '[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.horizon_color))) fileWriteTab(3, '[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.zenith_color))) fileWriteTab(2, '}\n') fileWriteTab(1, '}\n') fileWriteTab(0, '}\n') #sky_sphere alpha (transmit) is not translating into image alpha the same way as 'background' if world.light_settings.use_indirect_light: scene.pov_radio_enable=1 #Maybe change the above to scene.pov_radio_enable = world.light_settings.use_indirect_light ? ############################################################### mist = world.mist_settings if mist.use_mist: fileWriteTab(0, 'fog {\n') fileWriteTab(1, 'distance %.6f\n' % mist.depth) fileWriteTab(1, 'color rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,))) #fileWriteTab(1, 'fog_offset %.6f\n' % mist.start) #fileWriteTab(1, 'fog_alt 5\n') #fileWriteTab(1, 'turbulence 0.2\n') #fileWriteTab(1, 'turb_depth 0.3\n') fileWriteTab(1, 'fog_type 1\n') fileWriteTab(0, '}\n') if scene.pov_media_enable: fileWriteTab(0, 'media {\n') fileWriteTab(1, 'scattering { 1, rgb %.3g}\n' % scene.pov_media_color) fileWriteTab(1, 'samples %.d\n' % scene.pov_media_samples) fileWriteTab(0, '}\n') def exportGlobalSettings(scene): fileWriteTab(0, 'global_settings {\n') fileWriteTab(1, 'assumed_gamma 1.0\n') fileWriteTab(1, 'max_trace_level %d\n' % scene.pov_max_trace_level) if scene.pov_radio_enable: fileWriteTab(1, 'radiosity {\n') fileWriteTab(2, 'adc_bailout %.4g\n' % scene.pov_radio_adc_bailout) fileWriteTab(2, 'always_sample %d\n' % scene.pov_radio_always_sample) fileWriteTab(2, 'brightness %.4g\n' % scene.pov_radio_brightness) fileWriteTab(2, 'count %d\n' % scene.pov_radio_count) fileWriteTab(2, 'error_bound %.4g\n' % scene.pov_radio_error_bound) fileWriteTab(2, 'gray_threshold %.4g\n' % scene.pov_radio_gray_threshold) fileWriteTab(2, 'low_error_factor %.4g\n' % scene.pov_radio_low_error_factor) fileWriteTab(2, 'media %d\n' % scene.pov_radio_media) fileWriteTab(2, 'minimum_reuse %.4g\n' % scene.pov_radio_minimum_reuse) fileWriteTab(2, 'nearest_count %d\n' % scene.pov_radio_nearest_count) fileWriteTab(2, 'normal %d\n' % scene.pov_radio_normal) fileWriteTab(2, 'pretrace_start %.3g\n' % scene.pov_radio_pretrace_start) fileWriteTab(2, 'pretrace_end %.3g\n' % scene.pov_radio_pretrace_end) fileWriteTab(2, 'recursion_limit %d\n' % scene.pov_radio_recursion_limit) fileWriteTab(1, '}\n') once=1 for material in bpy.data.materials: if material.subsurface_scattering.use and once: fileWriteTab(1, 'mm_per_unit %.6f\n' % (material.subsurface_scattering.scale * (-100) + 15))#In pov, the scale has reversed influence compared to blender. these number should correct that once=0 #In povray, the scale factor for all subsurface shaders needs to be the same if world: fileWriteTab(1, 'ambient_light rgb<%.3g, %.3g, %.3g>\n' % tuple(world.ambient_color)) if material.pov_photons_refraction or material.pov_photons_reflection: fileWriteTab(1, 'photons {\n') fileWriteTab(2, 'spacing 0.003\n') fileWriteTab(2, 'max_trace_level 5\n') fileWriteTab(2, 'adc_bailout 0.1\n') fileWriteTab(2, 'gather 30, 150\n') fileWriteTab(1, '}\n') fileWriteTab(0, '}\n') sel = scene.objects comments = scene.pov_comments_enable if comments: file.write('//---------------------------------------------\n//--Exported with Povray exporter for Blender--\n//---------------------------------------------\n') if comments: file.write('\n//--Global settings and background--\n\n') exportGlobalSettings(scene) if comments: file.write('\n') exportWorld(scene.world) if comments: file.write('\n//--Cameras--\n\n') exportCamera() if comments: file.write('\n//--Lamps--\n\n') exportLamps([l for l in sel if l.type == 'LAMP']) if comments: file.write('\n//--Material Definitions--\n\n') # Convert all materials to strings we can access directly per vertex. #exportMaterials() writeMaterial(None) # default material for material in bpy.data.materials: writeMaterial(material) if comments: file.write('\n') if comments: file.write('//--Meta objects--\n\n') # <- How can this be written only if the scene contains META? Activating a boolean just before meta export and testing it here? exportMeta([l for l in sel if l.type == 'META']) if comments: file.write('\n') # <- How can this be written only if the scene contains META? if comments: file.write('//--Mesh objecs--\n\n') exportMeshs(scene, sel) #What follow used to happen here: #exportCamera() #exportWorld(scene.world) #exportGlobalSettings(scene) #...and the order was important for an attempt to implement pov 3.7 baking (mesh camera) comment for the record #print('pov file closed %s' % file.closed) file.close() #print('pov file closed %s' % file.closed) def write_pov_ini(filename_ini, filename_pov, filename_image): scene = bpy.data.scenes[0] render = scene.render x = int(render.resolution_x * render.resolution_percentage * 0.01) y = int(render.resolution_y * render.resolution_percentage * 0.01) file = open(filename_ini.name, 'w') file.write("Input_File_Name='%s'\n" % filename_pov.name) file.write("Output_File_Name='%s'\n" % filename_image.name) file.write('Width=%d\n' % x) file.write('Height=%d\n' % y) # Needed for border render. ''' file.write('Start_Column=%d\n' % part.x) file.write('End_Column=%d\n' % (part.x+part.w)) file.write('Start_Row=%d\n' % (part.y)) file.write('End_Row=%d\n' % (part.y+part.h)) ''' file.write('Bounding_Method=2\n')#The new automatic BSP is faster in most scenes file.write('Display=1\n')#Activated (turn this back off when better live exchange is done between the two programs (see next comment) file.write('Pause_When_Done=0\n') file.write('Output_File_Type=N\n') # PNG, with POV 3.7, can show background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #file.write('Output_File_Type=T\n') # TGA, best progressive loading file.write('Output_Alpha=1\n') if render.use_antialiasing: aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 2 (recursive) with higher max subdiv forced because no mipmapping in povray needs higher sampling. file.write('Antialias=on\n') file.write('Sampling_Method=2\n') file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) file.write('Antialias_Threshold=0.1\n')#rather high settings but necessary. file.write('Jitter=off\n')#prevent animation flicker else: file.write('Antialias=0\n') file.write('Version=3.7') #print('ini file closed %s' % file.closed) file.close() #print('ini file closed %s' % file.closed) class PovrayRender(bpy.types.RenderEngine): bl_idname = 'POVRAY_RENDER' bl_label = 'Povray 3.7' DELAY = 0.05 def _export(self, scene): import tempfile # mktemp is Deprecated since version 2.3, replaced with NamedTemporaryFile() #CR self._temp_file_in = tempfile.NamedTemporaryFile(suffix='.pov', delete=False) self._temp_file_out = tempfile.NamedTemporaryFile(suffix='.png', delete=False)#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = tempfile.NamedTemporaryFile(suffix='.tga', delete=False) self._temp_file_ini = tempfile.NamedTemporaryFile(suffix='.ini', delete=False) ''' self._temp_file_in = '/test.pov' self._temp_file_out = '/test.png'#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = '/test.tga' self._temp_file_ini = '/test.ini' ''' def info_callback(txt): self.update_stats('', 'POVRAY 3.7: ' + txt) write_pov(self._temp_file_in, scene, info_callback) def _render(self): try: os.remove(self._temp_file_out.name) # so as not to load the old file except OSError: pass write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out) print ('***-STARTING-***') pov_binary = 'povray' extra_args = [] if sys.platform == 'win32': import winreg regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.7\\Windows') if bitness == 64: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64' else: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine' else: # DH - added -d option to prevent render window popup which leads to segfault on linux extra_args.append('-d') if 1: # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists try: self._process = subprocess.Popen([pov_binary, self._temp_file_ini.name] + extra_args) # stdout=subprocess.PIPE, stderr=subprocess.PIPE except OSError: # TODO, report api print("POVRAY 3.7: could not execute '%s', possibly povray isn't installed" % pov_binary) import traceback traceback.print_exc() print ('***-DONE-***') return False else: # This works too but means we have to wait until its done os.system('%s %s' % (pov_binary, self._temp_file_ini.name)) # print ('***-DONE-***') return True def _cleanup(self): for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out): #print('Name: %s' % f.name) #print('File closed %s' % f.closed) f.close() # Why do I have to close them again? Without closeing the pov and ini files are not deletable. PNG is not closable! try: os.unlink(f.name) #os.remove(f.name) except OSError: #was that the proper error type? #print('Couldn't remove/unlink TEMP file %s' % f.name) pass print('') self.update_stats('', '') def render(self, scene): self.update_stats('', 'POVRAY 3.7: Exporting data from Blender') self._export(scene) self.update_stats('', 'POVRAY 3.7: Parsing File') if not self._render(): self.update_stats('', 'POVRAY 3.7: Not found') return r = scene.render ##WIP output format ## if r.file_format == 'OPENEXR': ## fformat = 'EXR' ## render.color_mode = 'RGBA' ## else: ## fformat = 'TGA' ## r.file_format = 'TARGA' ## r.color_mode = 'RGBA' # compute resolution x = int(r.resolution_x * r.resolution_percentage * 0.01) y = int(r.resolution_y * r.resolution_percentage * 0.01) # Wait for the file to be created while not os.path.exists(self._temp_file_out.name): # print('***POV WAITING FOR FILE***') if self.test_break(): try: self._process.terminate() print('***POV INTERRUPTED***') except OSError: pass break poll_result = self._process.poll() if poll_result is not None: print('***POV PROCESS FAILED : %s ***' % poll_result) self.update_stats('', 'POVRAY 3.7: Failed') break time.sleep(self.DELAY) if os.path.exists(self._temp_file_out.name): # print('***POV FILE OK***') self.update_stats('', 'POVRAY 3.7: Rendering') prev_size = -1 def update_image(): # print('***POV UPDATING IMAGE***') result = self.begin_result(0, 0, x, y) lay = result.layers[0] # possible the image wont load early on. try: lay.load_from_file(self._temp_file_out.name) except SystemError: pass self.end_result(result) # Update while povray renders while True: # print('***POV RENDER LOOP***') # test if povray exists if self._process.poll() is not None: print('***POV PROCESS FINISHED***') update_image() break # user exit if self.test_break(): try: self._process.terminate() print('***POV PROCESS INTERRUPTED***') except OSError: pass break # Would be nice to redirect the output # stdout_value, stderr_value = self._process.communicate() # locks # check if the file updated new_size = os.path.getsize(self._temp_file_out.name) if new_size != prev_size: update_image() prev_size = new_size time.sleep(self.DELAY) else: print('***POV FILE NOT FOUND***') print('***POV FINISHED***') #time.sleep(self.DELAY) self._cleanup()