#====================== BEGIN GPL LICENSE BLOCK ============================
#
#  This program is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.
#  All rights reserved.
#
#======================= END GPL LICENSE BLOCK =============================

bl_info = {
    "name": "Export Unreal Engine Format(.psk/.psa)",
    "author": "Darknet/Optimus_P-Fat/Active_Trash/Sinsoft/VendorX/Spoof",
    "version": (2, 5),
    "blender": (2, 6, 3),
    "api": 36079,
    "location": "File > Export > Skeletal Mesh/Animation Data (.psk/.psa)",
    "description": "Export Skeleletal Mesh/Animation Data",
    "warning": "",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"\
        "Scripts/Import-Export/Unreal_psk_psa",
    "tracker_url": "https://projects.blender.org/tracker/index.php?"\
        "func=detail&aid=21366",
    "category": "Import-Export"}

"""
-- Unreal Skeletal Mesh and Animation Export (.psk  and .psa) export script v0.0.1 --<br> 

- NOTES:
- This script Exports To Unreal's PSK and PSA file formats for Skeletal Meshes and Animations. <br>
- This script DOES NOT support vertex animation! These require completely different file formats. <br>

- v0.0.1
- Initial version

- v0.0.2
- This version adds support for more than one material index!

[ - Edit by: Darknet
- v0.0.3 - v0.0.12
- This will work on UT3 and it is a stable version that work with vehicle for testing. 
- Main Bone fix no dummy needed to be there.
- Just bone issues position, rotation, and offset for psk.
- The armature bone position, rotation, and the offset of the bone is fix. It was to deal with skeleton mesh export for psk.
- Animation is fix for position, offset, rotation bone support one rotation direction when armature build. 
- It will convert your mesh into triangular when exporting to psk file.
- Did not work with psa export yet.

- v0.0.13
- The animatoin will support different bone rotations when export the animation.

- v0.0.14
- Fixed Action set keys frames when there is no pose keys and it will ignore it.

- v0.0.15
- Fixed multiple objects when exporting to psk. Select one mesh to export to psk.
- ]

- v0.1.1
- Blender 2.50 svn (Support)

Credit to:
- export_cal3d.py (Position of the Bones Format)
- blender2md5.py (Animation Translation Format)
- export_obj.py (Blender 2.5/Pyhton 3.x Format)

- freenode #blendercoder -> user -> ideasman42

- Give Credit to those who work on this script.

- http://sinsoft.com
"""


#===========================================================================
"""
NOTES for Jan 2012 refactor (Spoof)

	* THIS IS A WORK IN PROGRESS. These modifications were originally
	intended for internal use and are incomplete. Use at your own risk! *

TODO

- (Blender 2.62) changes to Matrix math
- (Blender 2.62) check for long names
- option to manually set the root bone for export

CHANGES

- new bone parsing to allow advanced rigging
- identification of armature and mesh
- removed the need to apply an action to the armature
- fixed anim rate to work correctly in UDK (no more FPS fudging)
- progress reporting while processing smooth groups
- more informative logging
- code refactor for clarity and modularity
	- naming conventions unified to use lowercase_with_underscore
	- C++ datatypes and PSK/PSA classes remain CamelCaseStyle for clarity
	- names such as 'ut' and 'unreal' unified to 'udk'
	- simplification of code structure
	- removed legacy code paths

USAGE

This version of the exporter is more selective over which bones are considered
part of the UDK skeletal mesh, and allows greater flexibility for adding
control bones to aid in animation.

Taking advantage of this script requires the following methodology:

	* Place all exportable bones into a bone hierarchy extending from a single
	root. This root bone must have use_deform enabled. All other root bones
	in the armature must disable use_deform. *

The script searches for a root bone with use_deform set true and considers all
bones parented to it as part of the UDK skeletal mesh. Thus only these bones
are exported and all other bones are ignored.

This removes many restrictions on the rigger/animator, who can add control
bone hierarchies to the rig, and keyframe any element into actions. With this
approach you can build complex animation rigs in a similar vein to the Rigify
add-on, by Nathan Vegdahl. However...

	* Rigify is incompatible with this script *

Rigify interlaces deformer bones within a single hierarchy making it difficult
to deconstruct for export. It also splits some meta-rig bones into multiple
deformer bones (bad for optimising a game character). I had partial success
writing a parser for the structure, but it was taking too much time and,
considering the other issues with Rigify, it was abandoned.
"""
#===========================================================================


import os
import time
import bpy
import mathutils
import math
import random
import operator
import sys

from struct import pack


# REFERENCE MATERIAL JUST IN CASE:
# 
# U = x / sqrt(x^2 + y^2 + z^2)
# V = y / sqrt(x^2 + y^2 + z^2)
#
# Triangles specifed counter clockwise for front face
#
# defines for sizeofs
SIZE_FQUAT				= 16
SIZE_FVECTOR			= 12
SIZE_VJOINTPOS			= 44
SIZE_ANIMINFOBINARY		= 168
SIZE_VCHUNKHEADER		= 32
SIZE_VMATERIAL			= 88
SIZE_VBONE				= 120
SIZE_FNAMEDBONEBINARY	= 120
SIZE_VRAWBONEINFLUENCE	= 12
SIZE_VQUATANIMKEY		= 32
SIZE_VVERTEX			= 16
SIZE_VPOINT				= 12
SIZE_VTRIANGLE			= 12

MaterialName			= []


#===========================================================================
# Custom exception class
#===========================================================================
class Error( Exception ):

	def __init__(self, message):
		self.message = message


#===========================================================================
# Verbose logging with loop truncation
#===========================================================================
def verbose( msg, iteration=-1, max_iterations=4, msg_truncated="..." ):

	if bpy.context.scene.udk_option_verbose == True:
		# limit the number of times a loop can output messages
		if iteration > max_iterations:
			return
		elif iteration == max_iterations:
			print(msg_truncated)
			return

		print(msg)
	

#===========================================================================
# Log header/separator
#===========================================================================
def header( msg, justify='LEFT', spacer='_', cols=78 ):
	
	if justify == 'LEFT':
		s = '{:{spacer}<{cols}}'.format(msg+" ", spacer=spacer, cols=cols)
	
	elif justify == 'RIGHT':
		s = '{:{spacer}>{cols}}'.format(" "+msg, spacer=spacer, cols=cols)
	
	else:
		s = '{:{spacer}^{cols}}'.format(" "+msg+" ", spacer=spacer, cols=cols)
	
	return "\n" + s + "\n"


#===========================================================================
# Generic Object->Integer mapping
# the object must be usable as a dictionary key
#===========================================================================
class ObjMap:
	
	def __init__(self):
		self.dict = {}
		self.next = 0
	
	def get(self, obj):
		if obj in self.dict:
			return self.dict[obj]
		else:
			id = self.next
			self.next = self.next + 1
			self.dict[obj] = id
			return id
	
	def items(self):
		getval = operator.itemgetter(0)
		getkey = operator.itemgetter(1)
		return map(getval, sorted(self.dict.items(), key=getkey))


#===========================================================================
# RG - UNREAL DATA STRUCTS - CONVERTED FROM C STRUCTS GIVEN ON UDN SITE 
# provided here: http://udn.epicgames.com/Two/BinaryFormatSpecifications.html
# updated UDK (Unreal Engine 3): http://udn.epicgames.com/Three/BinaryFormatSpecifications.html
#===========================================================================
class FQuat:

	def __init__(self): 
		self.X = 0.0
		self.Y = 0.0
		self.Z = 0.0
		self.W = 1.0
		
	def dump(self):
		return pack('ffff', self.X, self.Y, self.Z, self.W)
		
	def __cmp__(self, other):
		return cmp(self.X, other.X) \
			or cmp(self.Y, other.Y) \
			or cmp(self.Z, other.Z) \
			or cmp(self.W, other.W)
		
	def __hash__(self):
		return hash(self.X) ^ hash(self.Y) ^ hash(self.Z) ^ hash(self.W)
		
	def __str__(self):
		return "[%f,%f,%f,%f](FQuat)" % (self.X, self.Y, self.Z, self.W)


class FVector(object):

	def __init__(self, X=0.0, Y=0.0, Z=0.0):
		self.X = X
		self.Y = Y
		self.Z = Z
		
	def dump(self):
		return pack('fff', self.X, self.Y, self.Z)
		
	def __cmp__(self, other):
		return cmp(self.X, other.X) \
			or cmp(self.Y, other.Y) \
			or cmp(self.Z, other.Z)
		
	def _key(self):
		return (type(self).__name__, self.X, self.Y, self.Z)
		
	def __hash__(self):
		return hash(self._key())
		
	def __eq__(self, other):
		if not hasattr(other, '_key'):
			return False
		return self._key() == other._key() 
		
	def dot(self, other):
		return self.X * other.X + self.Y * other.Y + self.Z * other.Z
	
	def cross(self, other):
		return FVector(self.Y * other.Z - self.Z * other.Y,
				self.Z * other.X - self.X * other.Z,
				self.X * other.Y - self.Y * other.X)
				
	def sub(self, other):
		return FVector(self.X - other.X,
			self.Y - other.Y,
			self.Z - other.Z)


class VJointPos:

	def __init__(self):
		self.Orientation	= FQuat()
		self.Position		= FVector()
		self.Length			= 0.0
		self.XSize			= 0.0
		self.YSize			= 0.0
		self.ZSize			= 0.0
		
	def dump(self):
		return self.Orientation.dump() + self.Position.dump() + pack('4f', self.Length, self.XSize, self.YSize, self.ZSize)


class AnimInfoBinary:

	def __init__(self):
		self.Name			= ""	# length=64
		self.Group			= ""	# length=64
		self.TotalBones		= 0
		self.RootInclude	= 0
		self.KeyCompressionStyle = 0
		self.KeyQuotum		= 0
		self.KeyPrediction	= 0.0
		self.TrackTime		= 0.0
		self.AnimRate		= 0.0
		self.StartBone		= 0
		self.FirstRawFrame	= 0
		self.NumRawFrames	= 0
		
	def dump(self):
		return pack('64s64siiiifffiii', str.encode(self.Name), str.encode(self.Group), self.TotalBones, self.RootInclude, self.KeyCompressionStyle, self.KeyQuotum, self.KeyPrediction, self.TrackTime, self.AnimRate, self.StartBone, self.FirstRawFrame, self.NumRawFrames)


class VChunkHeader:

	def __init__(self, name, type_size):
		self.ChunkID		= str.encode(name)	# length=20
		self.TypeFlag		= 1999801			# special value
		self.DataSize		= type_size
		self.DataCount		= 0
		
	def dump(self):
		return pack('20siii', self.ChunkID, self.TypeFlag, self.DataSize, self.DataCount)


class VMaterial:

	def __init__(self):
		self.MaterialName	= ""	# length=64
		self.TextureIndex	= 0
		self.PolyFlags		= 0		# DWORD
		self.AuxMaterial	= 0
		self.AuxFlags		= 0		# DWORD
		self.LodBias		= 0
		self.LodStyle		= 0
		
	def dump(self):
		#print("DATA MATERIAL:",self.MaterialName)
		return pack('64siLiLii', str.encode(self.MaterialName), self.TextureIndex, self.PolyFlags, self.AuxMaterial, self.AuxFlags, self.LodBias, self.LodStyle)


class VBone:

	def __init__(self):
		self.Name			= ""	# length = 64
		self.Flags			= 0		# DWORD
		self.NumChildren	= 0
		self.ParentIndex	= 0
		self.BonePos		= VJointPos()
		
	def dump(self):
		return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()


#same as above - whatever - this is how Epic does it...	 
class FNamedBoneBinary:

	def __init__(self):
		self.Name			= ""	# length = 64
		self.Flags			= 0		# DWORD
		self.NumChildren	= 0
		self.ParentIndex	= 0
		self.BonePos		= VJointPos()
		self.IsRealBone		= 0		# this is set to 1 when the bone is actually a bone in the mesh and not a dummy
		
	def dump(self):
		return pack('64sLii', str.encode(self.Name), self.Flags, self.NumChildren, self.ParentIndex) + self.BonePos.dump()


class VRawBoneInfluence:

	def __init__(self):
		self.Weight			= 0.0
		self.PointIndex		= 0
		self.BoneIndex		= 0
		
	def dump(self):
		return pack('fii', self.Weight, self.PointIndex, self.BoneIndex)


class VQuatAnimKey:

	def __init__(self):
		self.Position		= FVector()
		self.Orientation	= FQuat()
		self.Time			= 0.0
		
	def dump(self):
		return self.Position.dump() + self.Orientation.dump() + pack('f', self.Time)


class VVertex(object):

	def __init__(self):
		self.PointIndex		= 0		# WORD
		self.U				= 0.0
		self.V				= 0.0
		self.MatIndex		= 0		# BYTE
		self.Reserved		= 0		# BYTE
		self.SmoothGroup	= 0 
		
	def dump(self):
		return pack('HHffBBH', self.PointIndex, 0, self.U, self.V, self.MatIndex, self.Reserved, 0)
		
	def __cmp__(self, other):
		return cmp(self.PointIndex, other.PointIndex) \
			or cmp(self.U, other.U) \
			or cmp(self.V, other.V) \
			or cmp(self.MatIndex, other.MatIndex) \
			or cmp(self.Reserved, other.Reserved) \
			or cmp(self.SmoothGroup, other.SmoothGroup ) 
	
	def _key(self):
		return (type(self).__name__, self.PointIndex, self.U, self.V, self.MatIndex, self.Reserved)
		
	def __hash__(self):
		return hash(self._key())
		
	def __eq__(self, other):
		if not hasattr(other, '_key'):
			return False
		return self._key() == other._key()


class VPointSimple:

	def __init__(self):
		self.Point = FVector()

	def __cmp__(self, other):
		return cmp(self.Point, other.Point)
		
	def __hash__(self):
		return hash(self._key())

	def _key(self):
		return (type(self).__name__, self.Point)

	def __eq__(self, other):
		if not hasattr(other, '_key'):
			return False
		return self._key() == other._key()


class VPoint(object):

	def __init__(self):
		self.Point = FVector()
		self.SmoothGroup = 0 
		
	def dump(self):
		return self.Point.dump()
		
	def __cmp__(self, other):
		return cmp(self.Point, other.Point) \
			or cmp(self.SmoothGroup, other.SmoothGroup) 
	
	def _key(self):
		return (type(self).__name__, self.Point, self.SmoothGroup)
	
	def __hash__(self):
		return hash(self._key()) \
			^ hash(self.SmoothGroup) 
		
	def __eq__(self, other):
		if not hasattr(other, '_key'):
			return False
		return self._key() == other._key() 


class VTriangle:

	def __init__(self):
		self.WedgeIndex0	= 0		# WORD
		self.WedgeIndex1	= 0		# WORD
		self.WedgeIndex2	= 0		# WORD
		self.MatIndex		= 0		# BYTE
		self.AuxMatIndex	= 0		# BYTE
		self.SmoothingGroups = 0	# DWORD
		
	def dump(self):
		return pack('HHHBBL', self.WedgeIndex0, self.WedgeIndex1, self.WedgeIndex2, self.MatIndex, self.AuxMatIndex, self.SmoothingGroups)

# END UNREAL DATA STRUCTS
#===========================================================================


#===========================================================================
# RG - helper class to handle the normal way the UT files are stored 
# as sections consisting of a header and then a list of data structures
#===========================================================================
class FileSection:
	
	def __init__(self, name, type_size):
		self.Header	= VChunkHeader(name, type_size)
		self.Data	= []	# list of datatypes
	
	def dump(self):
		data = self.Header.dump()
		for i in range(len(self.Data)):
			data = data + self.Data[i].dump()
		return data
	
	def UpdateHeader(self):
		self.Header.DataCount = len(self.Data)


#===========================================================================
# PSK
#===========================================================================
class PSKFile:
	
	def __init__(self):
		self.GeneralHeader	= VChunkHeader("ACTRHEAD", 0)
		self.Points			= FileSection("PNTS0000", SIZE_VPOINT)				# VPoint
		self.Wedges			= FileSection("VTXW0000", SIZE_VVERTEX)				# VVertex
		self.Faces			= FileSection("FACE0000", SIZE_VTRIANGLE)			# VTriangle
		self.Materials		= FileSection("MATT0000", SIZE_VMATERIAL)			# VMaterial
		self.Bones			= FileSection("REFSKELT", SIZE_VBONE)				# VBone
		self.Influences		= FileSection("RAWWEIGHTS", SIZE_VRAWBONEINFLUENCE)	# VRawBoneInfluence
		
		#RG - this mapping is not dumped, but is used internally to store the new point indices 
		# for vertex groups calculated during the mesh dump, so they can be used again
		# to dump bone influences during the armature dump
		#
		# the key in this dictionary is the VertexGroup/Bone Name, and the value
		# is a list of tuples containing the new point index and the weight, in that order
		#
		# Layout:
		# { groupname : [ (index, weight), ... ], ... }
		#
		# example: 
		# { 'MyVertexGroup' : [ (0, 1.0), (5, 1.0), (3, 0.5) ] , 'OtherGroup' : [(2, 1.0)] }
		
		self.VertexGroups = {} 
		
	def AddPoint(self, p):
		self.Points.Data.append(p)
		
	def AddWedge(self, w):
		self.Wedges.Data.append(w)
	
	def AddFace(self, f):
		self.Faces.Data.append(f)
		
	def AddMaterial(self, m):
		self.Materials.Data.append(m)
		
	def AddBone(self, b):
		self.Bones.Data.append(b)
		
	def AddInfluence(self, i):
		self.Influences.Data.append(i)
		
	def UpdateHeaders(self):
		self.Points.UpdateHeader()
		self.Wedges.UpdateHeader()
		self.Faces.UpdateHeader()
		self.Materials.UpdateHeader()
		self.Bones.UpdateHeader()
		self.Influences.UpdateHeader()
		
	def dump(self):
		self.UpdateHeaders()
		data = self.GeneralHeader.dump() + self.Points.dump() + self.Wedges.dump() + self.Faces.dump() + self.Materials.dump() + self.Bones.dump() + self.Influences.dump()
		return data
		
	def GetMatByIndex(self, mat_index):
		if mat_index >= 0 and len(self.Materials.Data) > mat_index:
			return self.Materials.Data[mat_index]
		else:
			m = VMaterial()
			# modified by VendorX
			m.MaterialName = MaterialName[mat_index]
			self.AddMaterial(m)
			return m
		
	def PrintOut(self):
		print( "{:>16} {:}".format( "Points", len(self.Points.Data) ) )
		print( "{:>16} {:}".format( "Wedges", len(self.Wedges.Data) ) )
		print( "{:>16} {:}".format( "Faces", len(self.Faces.Data) ) )
		print( "{:>16} {:}".format( "Materials", len(self.Materials.Data) ) )
		print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
		print( "{:>16} {:}".format( "Influences", len(self.Influences.Data) ) )


#===========================================================================
# PSA
#
# Notes from UDN:
#   The raw key array holds all the keys for all the bones in all the specified sequences, 
#   organized as follows:
#   For each AnimInfoBinary's sequence there are [Number of bones] times [Number of frames keys] 
#   in the VQuatAnimKeys, laid out as tracks of [numframes] keys for each bone in the order of 
#   the bones as defined in the array of FnamedBoneBinary in the PSA. 
#
#   Once the data from the PSK (now digested into native skeletal mesh) and PSA (digested into 
#   a native animation object containing one or more sequences) are associated together at runtime, 
#   bones are linked up by name. Any bone in a skeleton (from the PSK) that finds no partner in 
#   the animation sequence (from the PSA) will assume its reference pose stance ( as defined in 
#   the offsets & rotations that are in the VBones making up the reference skeleton from the PSK)
#===========================================================================
class PSAFile:

	def __init__(self):
		self.GeneralHeader	= VChunkHeader("ANIMHEAD", 0)
		self.Bones			= FileSection("BONENAMES", SIZE_FNAMEDBONEBINARY)	#FNamedBoneBinary
		self.Animations		= FileSection("ANIMINFO", SIZE_ANIMINFOBINARY)		#AnimInfoBinary
		self.RawKeys		= FileSection("ANIMKEYS", SIZE_VQUATANIMKEY)		#VQuatAnimKey
		# this will take the format of key=Bone Name, value = (BoneIndex, Bone Object)
		# THIS IS NOT DUMPED
		self.BoneLookup = {} 

	def AddBone(self, b):
		self.Bones.Data.append(b)
		
	def AddAnimation(self, a):
		self.Animations.Data.append(a)
		
	def AddRawKey(self, k):
		self.RawKeys.Data.append(k)
		
	def UpdateHeaders(self):
		self.Bones.UpdateHeader()
		self.Animations.UpdateHeader()
		self.RawKeys.UpdateHeader()
		
	def GetBoneByIndex(self, bone_index):
		if bone_index >= 0 and len(self.Bones.Data) > bone_index:
			return self.Bones.Data[bone_index]
	
	def IsEmpty(self):
		return (len(self.Bones.Data) == 0 or len(self.Animations.Data) == 0)
	
	def StoreBone(self, b):
		self.BoneLookup[b.Name] = [-1, b]
					
	def UseBone(self, bone_name):
		if bone_name in self.BoneLookup:
			bone_data = self.BoneLookup[bone_name]
			
			if bone_data[0] == -1:
				bone_data[0] = len(self.Bones.Data)
				self.AddBone(bone_data[1])
				#self.Bones.Data.append(bone_data[1])
			
			return bone_data[0]
			
	def GetBoneByName(self, bone_name):
		if bone_name in self.BoneLookup:
			bone_data = self.BoneLookup[bone_name]
			return bone_data[1]
		
	def GetBoneIndex(self, bone_name):
		if bone_name in self.BoneLookup:
			bone_data = self.BoneLookup[bone_name]
			return bone_data[0]
		
	def dump(self):
		self.UpdateHeaders()
		return self.GeneralHeader.dump() + self.Bones.dump() + self.Animations.dump() + self.RawKeys.dump()
		
	def PrintOut(self):
		print( "{:>16} {:}".format( "Bones", len(self.Bones.Data) ) )
		print( "{:>16} {:}".format( "Animations", len(self.Animations.Data) ) )
		print( "{:>16} {:}".format( "Raw keys", len(self.RawKeys.Data) ) )


#===========================================================================
# Helpers to create bone structs
#===========================================================================
def make_vbone( name, parent_index, child_count, orientation_quat, position_vect ):
	bone						= VBone()
	bone.Name					= name
	bone.ParentIndex			= parent_index
	bone.NumChildren			= child_count
	bone.BonePos.Orientation	= orientation_quat
	bone.BonePos.Position.X		= position_vect.x
	bone.BonePos.Position.Y		= position_vect.y
	bone.BonePos.Position.Z		= position_vect.z
	#these values seem to be ignored?
	#bone.BonePos.Length = tail.length
	#bone.BonePos.XSize = tail.x
	#bone.BonePos.YSize = tail.y
	#bone.BonePos.ZSize = tail.z
	return bone

def make_namedbonebinary( name, parent_index, child_count, orientation_quat, position_vect, is_real ):
	bone						= FNamedBoneBinary()
	bone.Name					= name
	bone.ParentIndex			= parent_index
	bone.NumChildren			= child_count
	bone.BonePos.Orientation	= orientation_quat
	bone.BonePos.Position.X		= position_vect.x
	bone.BonePos.Position.Y		= position_vect.y
	bone.BonePos.Position.Z		= position_vect.z
	bone.IsRealBone				= is_real
	return bone 

def make_fquat( bquat ):
	quat	= FQuat()
	#flip handedness for UT = set x,y,z to negative (rotate in other direction)
	quat.X  = -bquat.x
	quat.Y  = -bquat.y
	quat.Z  = -bquat.z
	quat.W  = bquat.w
	return quat
	
def make_fquat_default( bquat ):
	quat	= FQuat()
	#print(dir(bquat))
	quat.X  = bquat.x
	quat.Y  = bquat.y
	quat.Z  = bquat.z
	quat.W  = bquat.w
	return quat


#===========================================================================
#RG - check to make sure face isnt a line
#===========================================================================
def is_1d_face( face, mesh ):
	#ID Vertex of id point
	v0 = face.vertices[0]
	v1 = face.vertices[1]
	v2 = face.vertices[2]
	
	return (mesh.vertices[v0].co == mesh.vertices[v1].co \
		or mesh.vertices[v1].co == mesh.vertices[v2].co \
		or mesh.vertices[v2].co == mesh.vertices[v0].co)
	return False


#===========================================================================
# Smoothing group
# (renamed to seperate it from VVertex.SmoothGroup)
#===========================================================================
class SmoothingGroup:
	
	static_id = 1
	
	def __init__(self):
		self.faces				= []
		self.neighboring_faces	= []
		self.neighboring_groups	= []
		self.id					= -1
		self.local_id			= SmoothingGroup.static_id
		SmoothingGroup.static_id += 1
	
	def __cmp__(self, other):
		if isinstance(other, SmoothingGroup):
			return cmp( self.local_id, other.local_id )
		return -1
	
	def __hash__(self):
		return hash(self.local_id)

	# searches neighboring faces to determine which smoothing group ID can be used
	def get_valid_smoothgroup_id(self):
		temp_id = 1
		for group in self.neighboring_groups:
			if group != None and group.id == temp_id:
				if temp_id < 0x80000000:
					temp_id = temp_id << 1
				else:
					raise Error("Smoothing Group ID Overflowed, Smoothing Group evidently has more than 31 neighboring groups")
		
		self.id = temp_id
		return self.id
		
	def make_neighbor(self, new_neighbor):
		if new_neighbor not in self.neighboring_groups:
			self.neighboring_groups.append( new_neighbor )

	def contains_face(self, face):
		return (face in self.faces)
		
	def add_neighbor_face(self, face):
		if not face in self.neighboring_faces:
			self.neighboring_faces.append( face )
			
	def add_face(self, face):
		if not face in self.faces:
			self.faces.append( face )


def determine_edge_sharing( mesh ):
	
	edge_sharing_list = dict()
	
	for edge in mesh.edges:
		edge_sharing_list[edge.key] = []
	
	for face in mesh.tessfaces:
		for key in face.edge_keys:
			if not face in edge_sharing_list[key]:
				edge_sharing_list[key].append(face) # mark this face as sharing this edge
	
	return edge_sharing_list


def find_edges( mesh, key ):
	"""	Temp replacement for mesh.findEdges().
		This is painfully slow.
	"""
	for edge in mesh.edges:
		v = edge.vertices
		if key[0] == v[0] and key[1] == v[1]:
			return edge.index


def add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup ):
	
	if face in smoothgroup.faces:
		return

	smoothgroup.add_face(face)
	
	for key in face.edge_keys:
		
		edge_id = find_edges(mesh, key)
		
		if edge_id != None:
			
			# not sharp
			if not( mesh.edges[edge_id].use_edge_sharp):
				
				for shared_face in edge_sharing_list[key]:
					if shared_face != face:
						# recursive
						add_face_to_smoothgroup( mesh, shared_face, edge_sharing_list, smoothgroup )
			# sharp
			else:
				for shared_face in edge_sharing_list[key]:
					if shared_face != face:
						smoothgroup.add_neighbor_face( shared_face )


def determine_smoothgroup_for_face( mesh, face, edge_sharing_list, smoothgroup_list ):
	
	for group in smoothgroup_list:
		if (face in group.faces):
			return
	
	smoothgroup = SmoothingGroup();
	add_face_to_smoothgroup( mesh, face, edge_sharing_list, smoothgroup )
	
	if not smoothgroup in smoothgroup_list:
		smoothgroup_list.append( smoothgroup )


def build_neighbors_tree( smoothgroup_list ):

	for group in smoothgroup_list:
		for face in group.neighboring_faces:
			for neighbor_group in smoothgroup_list:
				if neighbor_group.contains_face( face ) and neighbor_group not in group.neighboring_groups:
					group.make_neighbor( neighbor_group )
					neighbor_group.make_neighbor( group )


#===========================================================================
# parse_smooth_groups
#===========================================================================
def parse_smooth_groups( mesh ):
	
	print("Parsing smooth groups...")
	
	t					= time.clock()
	smoothgroup_list	= []
	edge_sharing_list	= determine_edge_sharing(mesh)
	#print("faces:",len(mesh.tessfaces))
	interval =  math.floor(len(mesh.tessfaces) / 100)
	if interval == 0: #if the faces are few do this
	    interval =  math.floor(len(mesh.tessfaces) / 10)	
	#print("FACES:",len(mesh.tessfaces),"//100 =" "interval:",interval)
	for face in mesh.tessfaces:
		#print(dir(face))
		determine_smoothgroup_for_face(mesh, face, edge_sharing_list, smoothgroup_list)
		# progress indicator, writes to console without scrolling
		if face.index > 0 and (face.index % interval) == 0:
			print("Processing... {}%\r".format( int(face.index / len(mesh.tessfaces) * 100) ), end='')
			sys.stdout.flush()
	print("Completed" , ' '*20)
	
	verbose("len(smoothgroup_list)={}".format(len(smoothgroup_list)))
	
	build_neighbors_tree(smoothgroup_list)
	
	for group in smoothgroup_list:
		group.get_valid_smoothgroup_id()
	
	print("Smooth group parsing completed in {:.2f}s".format(time.clock() - t))
	return smoothgroup_list


#===========================================================================
# http://en.wikibooks.org/wiki/Blender_3D:_Blending_Into_Python/Cookbook#Triangulate_NMesh
# blender 2.50 format using the Operators/command convert the mesh to tri mesh
#===========================================================================
def triangulate_mesh( object ):
	
	verbose(header("triangulateNMesh"))
	#print(type(object))
	scene = bpy.context.scene
	
	me_ob		= object.copy()
	me_ob.data = object.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
	bpy.context.scene.objects.link(me_ob)
	bpy.context.scene.update()
	bpy.ops.object.mode_set(mode='OBJECT')
	for i in scene.objects:
		i.select = False # deselect all objects
	
	me_ob.select			= True
	scene.objects.active	= me_ob
	
	print("Copy and Convert mesh just incase any way...")
	
	bpy.ops.object.mode_set(mode='EDIT')
	bpy.ops.mesh.select_all(action='SELECT')# select all the face/vertex/edge
	bpy.ops.object.mode_set(mode='EDIT')
	bpy.ops.mesh.quads_convert_to_tris()
	bpy.context.scene.update()
	
	bpy.ops.object.mode_set(mode='OBJECT')
		
	bpy.context.scene.udk_option_triangulate = True
		
	verbose("Triangulated mesh")
		
	me_ob.data = me_ob.to_mesh(bpy.context.scene, True, 'PREVIEW') #write data object
	bpy.context.scene.update()
	return me_ob

#copy mesh data and then merge them into one object
def meshmerge(selectedobjects):
    bpy.ops.object.mode_set(mode='OBJECT')
    cloneobjects = []
    if len(selectedobjects) > 1:
        print("selectedobjects:",len(selectedobjects))
        count = 0 #reset count
        for count in range(len( selectedobjects)):
            #print("Index:",count)
            if selectedobjects[count] != None:
                me_da = selectedobjects[count].data.copy() #copy data
                me_ob = selectedobjects[count].copy() #copy object
                #note two copy two types else it will use the current data or mesh
                me_ob.data = me_da
                bpy.context.scene.objects.link(me_ob)#link the object to the scene #current object location
                print("Index:",count,"clone object",me_ob.name)
                cloneobjects.append(me_ob)
        #bpy.ops.object.mode_set(mode='OBJECT')
        for i in bpy.data.objects: i.select = False #deselect all objects
        count = 0 #reset count
        #bpy.ops.object.mode_set(mode='OBJECT')
        for count in range(len( cloneobjects)):
            if count == 0:
                bpy.context.scene.objects.active = cloneobjects[count]
                print("Set Active Object:",cloneobjects[count].name)
            cloneobjects[count].select = True
        bpy.ops.object.join()
        if len(cloneobjects) > 1:
            bpy.types.Scene.udk_copy_merge = True
    return cloneobjects[0]
	
#sort the mesh center top list and not center at the last array. Base on order while select to merge mesh to make them center.
def sortmesh(selectmesh):
	print("MESH SORTING...")
	centermesh = []
	notcentermesh = []
	for countm in range(len(selectmesh)):
		if selectmesh[countm].location.x == 0 and selectmesh[countm].location.y == 0 and selectmesh[countm].location.z == 0:
			centermesh.append(selectmesh[countm])
		else:
			notcentermesh.append(selectmesh[countm])
	selectmesh = []
	for countm in range(len(centermesh)):
		selectmesh.append(centermesh[countm])
	for countm in range(len(notcentermesh)):
		selectmesh.append(notcentermesh[countm])
	if len(selectmesh) == 1:
		return selectmesh[0]
	else:
		return meshmerge(selectmesh)

#===========================================================================
# parse_mesh
#===========================================================================
def parse_mesh( mesh, psk ):
	#bpy.ops.object.mode_set(mode='OBJECT')
	#error ? on commands for select object?
	print(header("MESH", 'RIGHT'))
	print("Mesh object:", mesh.name)
	scene = bpy.context.scene
	for i in scene.objects: i.select = False # deselect all objects
	scene.objects.active	= mesh
	setmesh = mesh
	mesh = triangulate_mesh(mesh)
	if bpy.types.Scene.udk_copy_merge == True:
		bpy.context.scene.objects.unlink(setmesh)
	#print("FACES----:",len(mesh.data.tessfaces))
	verbose("Working mesh object: {}".format(mesh.name))
	
	#collect a list of the material names
	print("Materials...")
	
	mat_slot_index = 0

	for slot in mesh.material_slots:

		print("  Material {} '{}'".format(mat_slot_index, slot.name))
		MaterialName.append(slot.name)
		#if slot.material.texture_slots[0] != None:
			#if slot.material.texture_slots[0].texture.image.filepath != None:
				#print("    Texture path {}".format(slot.material.texture_slots[0].texture.image.filepath)) 
		#create the current material
		v_material				= psk.GetMatByIndex(mat_slot_index)
		v_material.MaterialName	= slot.name
		v_material.TextureIndex	= mat_slot_index
		v_material.AuxMaterial	= mat_slot_index
		mat_slot_index += 1
		verbose("    PSK index {}".format(v_material.TextureIndex))

	#END slot in mesh.material_slots
	
	# object_mat = mesh.materials[0]
	#object_material_index = mesh.active_material_index
	#FIXME ^ this is redundant due to "= face.material_index" in face loop

	wedges			= ObjMap()
	points			= ObjMap()
	points_linked	= {}
	
	discarded_face_count = 0

	smoothgroup_list = parse_smooth_groups(mesh.data)
	
	print("{} faces".format(len(mesh.data.tessfaces)))
	
	print("Smooth groups active:", bpy.context.scene.udk_option_smoothing_groups)
	
	for face in mesh.data.tessfaces:
		
		smoothgroup_id = 0x80000000
		
		for smooth_group in smoothgroup_list:
			if smooth_group.contains_face(face):
				smoothgroup_id = smooth_group.id
				break

		#print ' -- Dumping UVs -- '
		#print current_face.uv_textures
		# modified by VendorX
		object_material_index = face.material_index
		
		if len(face.vertices) != 3:
			raise Error("Non-triangular face (%i)" % len(face.vertices))
		
		#RG - apparently blender sometimes has problems when you do quad to triangle 
		#   conversion, and ends up creating faces that have only TWO points -
		#	one of the points is simply in the vertex list for the face twice. 
		#   This is bad, since we can't get a real face normal for a LINE, we need 
		#   a plane for this. So, before we add the face to the list of real faces, 
		#   ensure that the face is actually a plane, and not a line. If it is not 
		#   planar, just discard it and notify the user in the console after we're
		#   done dumping the rest of the faces
		
		if not is_1d_face(face, mesh.data):
			
			wedge_list	= []
			vect_list	= []
			
			#get or create the current material
			psk.GetMatByIndex(object_material_index)

			face_index	= face.index
			has_uv		= False
			face_uv		= None
			
			if len(mesh.data.uv_textures) > 0:
				has_uv		= True   
				uv_layer	= mesh.data.tessface_uv_textures.active
				face_uv		= uv_layer.data[face_index]
				#size(data) is number of texture faces. Each face has UVs
				#print("DATA face uv: ",len(faceUV.uv), " >> ",(faceUV.uv[0][0]))
			
			for i in range(3):
				vert_index	= face.vertices[i]
				vert		= mesh.data.vertices[vert_index]
				uv			= []
				#assumes 3 UVs Per face (for now)
				if (has_uv):
					if len(face_uv.uv) != 3:
						print("WARNING: face has more or less than 3 UV coordinates - writing 0,0...")
						uv = [0.0, 0.0]
					else:
						uv = [face_uv.uv[i][0],face_uv.uv[i][1]] #OR bottom works better # 24 for cube
				else:
					#print ("No UVs?")
					uv = [0.0, 0.0]
				
				#flip V coordinate because UEd requires it and DOESN'T flip it on its own like it
				#does with the mesh Y coordinates. this is otherwise known as MAGIC-2
				uv[1] = 1.0 - uv[1]
				
				# clamp UV coords if udk_option_clamp_uv is True
				if bpy.context.scene.udk_option_clamp_uv:
					if (uv[0] > 1):
						uv[0] = 1
					if (uv[0] < 0):
						uv[0] = 0
					if (uv[1] > 1):
						uv[1] = 1
					if (uv[1] < 0):
						uv[1] = 0
				
				# RE - Append untransformed vector (for normal calc below)
				# TODO: convert to Blender.Mathutils
				vect_list.append( FVector(vert.co.x, vert.co.y, vert.co.z) )
				
				# Transform position for export
				#vpos = vert.co * object_material_index
				vpos = mesh.matrix_local * vert.co

				# Create the point
				p				= VPoint()
				p.Point.X		= vpos.x
				p.Point.Y		= vpos.y
				p.Point.Z		= vpos.z
				if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
					p.SmoothGroup = smoothgroup_id

				lPoint			= VPointSimple()
				lPoint.Point.X	= vpos.x
				lPoint.Point.Y	= vpos.y
				lPoint.Point.Z	= vpos.z
				
				if lPoint in points_linked:
					if not(p in points_linked[lPoint]):
						points_linked[lPoint].append(p)
				else:
					points_linked[lPoint] = [p]
				
				# Create the wedge
				w				= VVertex()
				w.MatIndex		= object_material_index
				w.PointIndex	= points.get(p) # store keys
				w.U				= uv[0]
				w.V				= uv[1]
				if bpy.context.scene.udk_option_smoothing_groups:#is this necessary?
					w.SmoothGroup = smoothgroup_id
				index_wedge = wedges.get(w)
				wedge_list.append(index_wedge)
				
				#print results
				#print("result PointIndex={}, U={:.6f}, V={:.6f}, wedge_index={}".format(
				#   w.PointIndex,
				#   w.U,
				#   w.V,
				#   index_wedge))
			
			#END for i in range(3)

			# Determine face vertex order
			
			# TODO: convert to Blender.Mathutils
			# get normal from blender
			no = face.normal
			# convert to FVector
			norm = FVector(no[0], no[1], no[2])
			# Calculate the normal of the face in blender order
			tnorm = vect_list[1].sub(vect_list[0]).cross(vect_list[2].sub(vect_list[1]))
			# RE - dot the normal from blender order against the blender normal
			# this gives the product of the two vectors' lengths along the blender normal axis
			# all that matters is the sign
			dot = norm.dot(tnorm)

			tri = VTriangle()
			# RE - magic: if the dot product above > 0, order the vertices 2, 1, 0
			#	   if the dot product above < 0, order the vertices 0, 1, 2
			#	   if the dot product is 0, then blender's normal is coplanar with the face
			#	   and we cannot deduce which side of the face is the outside of the mesh
			if dot > 0:
				(tri.WedgeIndex2, tri.WedgeIndex1, tri.WedgeIndex0) = wedge_list
			elif dot < 0:
				(tri.WedgeIndex0, tri.WedgeIndex1, tri.WedgeIndex2) = wedge_list
			else:
				dindex0 = face.vertices[0];
				dindex1 = face.vertices[1];
				dindex2 = face.vertices[2];

				mesh.data.vertices[dindex0].select = True
				mesh.data.vertices[dindex1].select = True
				mesh.data.vertices[dindex2].select = True
				
				raise Error("Normal coplanar with face! points:", mesh.data.vertices[dindex0].co, mesh.data.vertices[dindex1].co, mesh.data.vertices[dindex2].co)
			
			face.select = True
			#print("smooth:",(current_face.use_smooth))
			#not sure if this right
			#tri.SmoothingGroups
			if face.use_smooth == True:
				tri.SmoothingGroups = 1
			else:
				tri.SmoothingGroups = 0
			
			#tri.SmoothingGroups = 1
			tri.MatIndex = object_material_index

			if bpy.context.scene.udk_option_smoothing_groups:
				tri.SmoothingGroups = smoothgroup_id
			
			psk.AddFace(tri)

		#END if not is_1d_face(current_face, mesh.data)	

		else:
			discarded_face_count += 1
			
	#END face in mesh.data.faces
		
	print("{} points".format(len(points.dict)))
	
	for point in points.items():
		psk.AddPoint(point)
		
	if len(points.dict) > 32767:
	   raise Error("Mesh vertex limit exceeded! {} > 32767".format(len(points.dict)))
	
	print("{} wedges".format(len(wedges.dict)))
	
	for wedge in wedges.items():
		psk.AddWedge(wedge)
	
	# alert the user to degenerate face issues
	if discarded_face_count > 0:
		print("WARNING: Mesh contained degenerate faces (non-planar)")
		print("		 Discarded {} faces".format(discarded_face_count))
	
	#RG - walk through the vertex groups and find the indexes into the PSK points array 
	#for them, then store that index and the weight as a tuple in a new list of 
	#verts for the group that we can look up later by bone name, since Blender matches
	#verts to bones for influences by having the VertexGroup named the same thing as
	#the bone
	
	#[print(x, len(points_linked[x])) for x in points_linked] 
	#print("pointsindex length ",len(points_linked))
	#vertex group
	
	# all vertex groups of the mesh (obj)...
	for obj_vertex_group in mesh.vertex_groups:
		
		#print("  bone group build:",obj_vertex_group.name)#print bone name
		#print(dir(obj_vertex_group))
		verbose("obj_vertex_group.name={}".format(obj_vertex_group.name))
		
		vertex_list = []
		
		# all vertices in the mesh...
		for vertex in mesh.data.vertices:
			#print(dir(vertex))
			# all groups this vertex is a member of...
			for vgroup in vertex.groups:
				
				if vgroup.group == obj_vertex_group.index:
					
					vertex_weight	= vgroup.weight
					p				= VPointSimple()
					vpos			= mesh.matrix_local * vertex.co
					p.Point.X		= vpos.x
					p.Point.Y		= vpos.y 
					p.Point.Z		= vpos.z
						
					for point in points_linked[p]:
						point_index	= points.get(point) #point index
						v_item		= (point_index, vertex_weight)
						vertex_list.append(v_item)
					
		#bone name, [point id and wieght]
		#print("Add Vertex Group:",obj_vertex_group.name, " No. Points:",len(vertex_list))
		psk.VertexGroups[obj_vertex_group.name] = vertex_list
	
	# remove the temporary triangulated mesh
	if bpy.context.scene.udk_option_triangulate == True:
		verbose("Removing temporary triangle mesh: {}".format(mesh.name))
		bpy.ops.object.mode_set(mode='OBJECT')	  # OBJECT mode
		mesh.parent = None						  # unparent to avoid phantom links
		bpy.context.scene.objects.unlink(mesh)	  # unlink
		

#===========================================================================
# Collate bones that belong to the UDK skeletal mesh
#===========================================================================
def parse_armature( armature, psk, psa ):
	
	print(header("ARMATURE", 'RIGHT'))
	verbose("Armature object: {} Armature data: {}".format(armature.name, armature.data.name))
	
	# generate a list of root bone candidates
	root_candidates = [b for b in armature.data.bones if b.parent == None and b.use_deform == True]
	
	# should be a single, unambiguous result
	if len(root_candidates) == 0:
		raise Error("Cannot find root for UDK bones. The root bone must use deform.")
	
	if len(root_candidates) > 1:
		raise Error("Ambiguous root for UDK. More than one root bone is using deform.")
	
	# prep for bone collection
	udk_root_bone	= root_candidates[0]
	udk_bones		= []
	BoneUtil.static_bone_id = 0	# replaces global
	
	# traverse bone chain
	print("{: <3} {: <48} {: <20}".format("ID", "Bone", "Status"))
	print()
	recurse_bone(udk_root_bone, udk_bones, psk, psa, 0, armature.matrix_local)
	
	# final validation
	if len(udk_bones) < 3:
		raise Error("Less than three bones may crash UDK (legacy issue?)")
	
	# return a list of bones making up the entire udk skel
	# this is passed to parse_animation instead of working from keyed bones in the action
	return udk_bones


#===========================================================================
# bone				current bone
# bones				bone list
# psk				the PSK file object
# psa				the PSA file object
# parent_id
# parent_matrix
# indent			text indent for recursive log
#===========================================================================
def recurse_bone( bone, bones, psk, psa, parent_id, parent_matrix, indent="" ):
	
	status = "Ok"
	
	bones.append(bone);

	if not bone.use_deform:
		status = "No effect"
	
	# calc parented bone transform
	if bone.parent != None:
		quat		= make_fquat(bone.matrix.to_quaternion())
		quat_parent	= bone.parent.matrix.to_quaternion().inverted()
		parent_head	= quat_parent * bone.parent.head
		parent_tail	= quat_parent * bone.parent.tail
		translation	= (parent_tail - parent_head) + bone.head

	# calc root bone transform
	else:
		translation	= parent_matrix * bone.head				# ARMATURE OBJECT Location
		rot_matrix	= bone.matrix * parent_matrix.to_3x3()	# ARMATURE OBJECT Rotation
		quat		= make_fquat_default(rot_matrix.to_quaternion())
	
	bone_id		= BoneUtil.static_bone_id	# ALT VERS
	BoneUtil.static_bone_id += 1			# ALT VERS
	
	child_count = len(bone.children)
	
	psk.AddBone( make_vbone(bone.name, parent_id, child_count, quat, translation) )
	psa.StoreBone( make_namedbonebinary(bone.name, parent_id, child_count, quat, translation, 1) )
	
	#RG - dump influences for this bone - use the data we collected in the mesh dump phase to map our bones to vertex groups
	if bone.name in psk.VertexGroups:
		
		vertex_list = psk.VertexGroups[bone.name]
		#print("vertex list:", len(vertex_list), " of >" ,bone.name )
		for vertex_data in vertex_list:
			
			point_index				= vertex_data[0]
			vertex_weight			= vertex_data[1]
			influence				= VRawBoneInfluence()
			influence.Weight		= vertex_weight
			influence.BoneIndex		= bone_id
			influence.PointIndex	= point_index
			#print ("   AddInfluence to vertex {}, weight={},".format(point_index, vertex_weight))
			psk.AddInfluence(influence)

	else:
		status = "No vertex group"
		#FIXME overwriting previous status error?
	
	print("{:<3} {:<48} {:<20}".format(bone_id, indent+bone.name, status))
	
	#bone.matrix_local
	#recursively dump child bones
	
	for child_bone in bone.children:
		recurse_bone(child_bone, bones, psk, psa, bone_id, parent_matrix, " "+indent)


# FIXME rename? remove?
class BoneUtil:
	static_bone_id = 0 # static property to replace global


#===========================================================================
# armature			the armature
# udk_bones			list of bones to be exported
# actions_to_export	list of actions to process for export
# psa				the PSA file object
#===========================================================================
def parse_animation( armature, udk_bones, actions_to_export, psa ):
	
	print(header("ANIMATION", 'RIGHT'))
	
	context		= bpy.context
	anim_rate	= context.scene.render.fps
	
	verbose("Armature object: {}".format(armature.name))
	print("Scene: {} FPS: {} Frames: {} to {}".format(context.scene.name, anim_rate, context.scene.frame_start, context.scene.frame_end))
	print("Processing {} action(s)".format(len(actions_to_export)))
	print()
	if armature.animation_data == None:
	    print("None Actions Set! skipping...")
	    return
	restoreAction	= armature.animation_data.action	# Q: is animation_data always valid?
	
	restoreFrame	= context.scene.frame_current		# we already do this in export_proxy, but we'll do it here too for now
	raw_frame_index = 0	 # used to set FirstRawFrame, seperating actions in the raw keyframe array
	
	# action loop...
	for action in actions_to_export:
		
		# removed: check for armature with no animation; all it did was force you to add one

		if not len(action.fcurves):
			print("{} has no keys, skipping".format(action.name))
			continue
		
		# apply action to armature and update scene
		armature.animation_data.action = action
		context.scene.update()
		
		# min/max frames define range
		framemin, framemax	= action.frame_range
		start_frame			= int(framemin)
		end_frame			= int(framemax)
		scene_range			= range(start_frame, end_frame + 1)
		frame_count			= len(scene_range)
		
		# create the AnimInfoBinary
		anim				= AnimInfoBinary()
		anim.Name			= action.name
		anim.Group			= "" # unused?
		anim.NumRawFrames	= frame_count
		anim.AnimRate		= anim_rate
		anim.FirstRawFrame	= raw_frame_index
		
		print("{}, frames {} to {} ({} frames)".format(action.name, start_frame, end_frame, frame_count))
		
		# removed: bone lookup table
		
		# build a list of pose bones relevant to the collated udk_bones
		# fixme: could be done once, prior to loop?
		udk_pose_bones = []
		for b in udk_bones:
			for pb in armature.pose.bones:
				if b.name == pb.name:
					udk_pose_bones.append(pb)
					break;

		# sort in the order the bones appear in the PSA file
		ordered_bones = {}
		ordered_bones = sorted([(psa.UseBone(b.name), b) for b in udk_pose_bones], key=operator.itemgetter(0))
		
		# NOTE: posebone.bone references the obj/edit bone
		# REMOVED: unique_bone_indexes is redundant?
		
		# frame loop...
		for i in range(frame_count):
			
			frame = scene_range[i]
			
			#verbose("FRAME {}".format(i), i) # test loop sampling
			
			# advance to frame (automatically updates the pose)
			context.scene.frame_set(frame)
			
			# compute the key for each bone
			for bone_data in ordered_bones:
				
				bone_index			= bone_data[0]
				pose_bone			= bone_data[1]
				pose_bone_matrix	= mathutils.Matrix(pose_bone.matrix)
				
				if pose_bone.parent != None:
					pose_bone_parent_matrix	= mathutils.Matrix(pose_bone.parent.matrix)
					pose_bone_matrix		= pose_bone_parent_matrix.inverted() * pose_bone_matrix
				
				head				= pose_bone_matrix.to_translation()
				quat				= pose_bone_matrix.to_quaternion().normalized()
				
				if pose_bone.parent != None:
					quat = make_fquat(quat)
				else:
					quat = make_fquat_default(quat)
				
				vkey				= VQuatAnimKey()
				vkey.Position.X		= head.x
				vkey.Position.Y		= head.y
				vkey.Position.Z		= head.z
				vkey.Orientation	= quat
				
				# frame delta = 1.0 / fps
				vkey.Time			= 1.0 / float(anim_rate)	# according to C++ header this is "disregarded"
				
				psa.AddRawKey(vkey)
				
			# END for bone_data in ordered_bones

			raw_frame_index += 1
		
		# END for i in range(frame_count)
		
		anim.TotalBones	= len(ordered_bones)	# REMOVED len(unique_bone_indexes)
		anim.TrackTime	= float(frame_count)	# frame_count/anim.AnimRate makes more sense, but this is what actually works in UDK

		verbose("anim.TotalBones={}, anim.TrackTime={}".format(anim.TotalBones, anim.TrackTime))
		
		psa.AddAnimation(anim)
		
	# END for action in actions

	# restore
	armature.animation_data.action = restoreAction
	context.scene.frame_set(restoreFrame)


#===========================================================================
# Collate actions to be exported
# Modify this to filter for one, some or all actions. For now use all.
# RETURNS list of actions
#===========================================================================
def collate_actions():
	verbose(header("collate_actions"))
	actions_to_export = []
	
	for action in bpy.data.actions:
		
		verbose(" + {}".format(action.name))
		actions_to_export.append(action)
	
	return actions_to_export


#===========================================================================
# Locate the target armature and mesh for export
# RETURNS armature, mesh
#===========================================================================
def find_armature_and_mesh():
	verbose(header("find_armature_and_mesh", 'LEFT', '<', 60))
	
	context			= bpy.context
	active_object	= context.active_object
	armature		= None
	mesh			= None
	
	# TODO:
	# this could be more intuitive
	bpy.ops.object.mode_set(mode='OBJECT')
	# try the active object
	if active_object and active_object.type == 'ARMATURE':
		armature = active_object
	
	# otherwise, try for a single armature in the scene
	else:
		all_armatures = [obj for obj in context.scene.objects if obj.type == 'ARMATURE']
		
		if len(all_armatures) == 1:
			armature = all_armatures[0]
		
		elif len(all_armatures) > 1:
			raise Error("Please select an armature in the scene")
		
		else:
			raise Error("No armatures in scene")
	
	verbose("Found armature: {}".format(armature.name))
	
	meshselected = []
	parented_meshes = [obj for obj in armature.children if obj.type == 'MESH']
	for obj in armature.children:
		#print(dir(obj))
		if obj.type == 'MESH' and obj.select == True:
			meshselected.append(obj)
	# try the active object
	if active_object and active_object.type == 'MESH' and len(meshselected) == 0:
	
		if active_object.parent == armature:
			mesh = active_object
		
		else:
			raise Error("The selected mesh is not parented to the armature")
	
	# otherwise, expect a single mesh parented to the armature (other object types are ignored)
	else:
		print("Number of meshes:",len(parented_meshes))
		print("Number of meshes (selected):",len(meshselected))
		if len(parented_meshes) == 1:
			mesh = parented_meshes[0]
			
		elif len(parented_meshes) > 1:
			if len(meshselected) >= 1:
				mesh = sortmesh(meshselected)
			else:
				raise Error("More than one mesh(s) parented to armature. Select object(s)!")
		else:
			raise Error("No mesh parented to armature")
		
	verbose("Found mesh: {}".format(mesh.name))	
	if len(armature.pose.bones) == len(mesh.vertex_groups):
		print("Armature and Mesh Vertex Groups matches Ok!")
	else:
		raise Error("Armature bones:" + str(len(armature.pose.bones)) + " Mesh Vertex Groups:" + str(len(mesh.vertex_groups)) +" doesn't match!")
	return armature, mesh


#===========================================================================
# Returns a list of vertex groups in the mesh. Can be modified to filter
# groups as necessary.
# UNUSED
#===========================================================================
def collate_vertex_groups( mesh ):
	verbose("collate_vertex_groups")
	groups = []
	
	for group in mesh.vertex_groups:
		
		groups.append(group)
		verbose("  " + group.name)
	
	return groups
		
#===========================================================================
# Main
#===========================================================================
def export(filepath):
	print(header("Export", 'RIGHT'))
	bpy.types.Scene.udk_copy_merge = False #in case fail to export set this to default
	t		= time.clock()
	context	= bpy.context
	
	print("Blender Version {}.{}.{}".format(bpy.app.version[0], bpy.app.version[1], bpy.app.version[2]))
	print("Filepath: {}".format(filepath))
	
	verbose("PSK={}, PSA={}".format(context.scene.udk_option_export_psk, context.scene.udk_option_export_psa))
	
	# find armature and mesh
	# [change this to implement alternative methods; raise Error() if not found]
	udk_armature, udk_mesh = find_armature_and_mesh()
	
	# check misc conditions
	if not (udk_armature.scale.x == udk_armature.scale.y == udk_armature.scale.z == 1):
		raise Error("bad armature scale: armature object should have uniform scale of 1 (ALT-S)")
	
	if not (udk_mesh.scale.x == udk_mesh.scale.y == udk_mesh.scale.z == 1):
		raise Error("bad mesh scale: mesh object should have uniform scale of 1 (ALT-S)")
	
	if not (udk_armature.location.x == udk_armature.location.y == udk_armature.location.z == 0):
		raise Error("bad armature location: armature should be located at origin (ALT-G)")
	
	if not (udk_mesh.location.x == udk_mesh.location.y == udk_mesh.location.z == 0):
		raise Error("bad mesh location: mesh should be located at origin (ALT-G)")
	
	# prep
	psk = PSKFile()
	psa = PSAFile()
	
	# step 1
	parse_mesh(udk_mesh, psk)
	
	# step 2
	udk_bones = parse_armature(udk_armature, psk, psa)
	
	# step 3
	if context.scene.udk_option_export_psa == True:
		actions = collate_actions()
		parse_animation(udk_armature, udk_bones, actions, psa)
	
	# write files
	print(header("Exporting", 'CENTER'))
	
	psk_filename = filepath + '.psk'
	psa_filename = filepath + '.psa'
	
	if context.scene.udk_option_export_psk == True:
		
		print("Skeletal mesh data...")
		psk.PrintOut()
		file = open(psk_filename, "wb") 
		file.write(psk.dump())
		file.close() 
		print("Exported: " + psk_filename)
		print()
	
	if context.scene.udk_option_export_psa == True:
		
		print("Animation data...")
		if not psa.IsEmpty():
			psa.PrintOut()
			file = open(psa_filename, "wb") 
			file.write(psa.dump())
			file.close() 
			print("Exported: " + psa_filename)
		
		else:
			print("No Animation (.psa file) to export")

		print()

	print("Export completed in {:.2f} seconds".format((time.clock() - t)))

from bpy.props import *

#===========================================================================
# Operator
#===========================================================================
class Operator_UDKExport( bpy.types.Operator ):

	bl_idname	= "object.udk_export"
	bl_label	= "Export now"
	__doc__		= "Export to UDK"
	
	def execute(self, context):
		print( "\n"*8 )
		
		scene = bpy.context.scene
		
		scene.udk_option_export_psk	= (scene.udk_option_export == '0' or scene.udk_option_export == '2')
		scene.udk_option_export_psa	= (scene.udk_option_export == '1' or scene.udk_option_export == '2')
		
		filepath = get_dst_path()
		
		# cache settings
		restore_frame = scene.frame_current
		
		message = "Finish Export!"
		try:
			export(filepath)

		except Error as err:
			print(err.message)
			message = err.message
		
		# restore settings
		scene.frame_set(restore_frame)
        
		self.report({'ERROR'}, message)
		
		# restore settings
		scene.frame_set(restore_frame)
		
		return {'FINISHED'}

#===========================================================================
# Operator
#===========================================================================
class Operator_ToggleConsole( bpy.types.Operator ):

	bl_idname	= "object.toggle_console"
	bl_label	= "Toggle console"
	__doc__		= "Show or hide the console"
	
	#def invoke(self, context, event):
	#   bpy.ops.wm.console_toggle()
	#   return{'FINISHED'}
	def execute(self, context):
		bpy.ops.wm.console_toggle()
		return {'FINISHED'}


#===========================================================================
# Get filepath for export
#===========================================================================
def get_dst_path():
	if bpy.context.scene.udk_option_filename_src == '0':
		if bpy.context.active_object:
			path = os.path.split(bpy.data.filepath)[0] + "\\" + bpy.context.active_object.name# + ".psk"
		else:
			path = os.path.split(bpy.data.filepath)[0] + "\\" + "Unknown";
	else:
		path = os.path.splitext(bpy.data.filepath)[0]# + ".psk"
	return path

# fixme
from bpy.props import *


#Added by [MGVS]
bpy.types.Scene.udk_option_filename_src = EnumProperty(
		name		= "Filename",
		description = "Sets the name for the files",
		items		= [ ('0', "From object",	"Name will be taken from object name"),
						('1', "From Blend",		"Name will be taken from .blend file name") ],
		default		= '0')
	
bpy.types.Scene.udk_option_export_psk = BoolProperty(
		name		= "bool export psa",
		description	= "bool for exporting this psk format",
		default		= True)

bpy.types.Scene.udk_option_export_psa = BoolProperty(
		name		= "bool export psa",
		description	= "bool for exporting this psa format",
		default		= True)

bpy.types.Scene.udk_option_clamp_uv = BoolProperty(
		name		= "Clamp UV",
		description	= "Clamp UV co-ordinates to [0-1]",
		default		= False)
		
bpy.types.Scene.udk_copy_merge = BoolProperty(
		name		= "merge mesh",
		description	= "Deal with unlinking the mesh to be remove while exporting the object.",
		default		= False)

bpy.types.Scene.udk_option_export = EnumProperty(
		name		= "Export",
		description	= "What to export",
		items		= [ ('0', "Mesh only",			"Exports the PSK file for the skeletal mesh"),
						('1', "Animation only",		"Export the PSA file for animations"),
						('2', "Mesh & Animation",	"Export both PSK and PSA files") ],
		default		= '2')

bpy.types.Scene.udk_option_verbose = BoolProperty(
		name		= "Verbose",
		description	= "Verbose console output",
		default		= False)

bpy.types.Scene.udk_option_smoothing_groups = BoolProperty(
		name		= "Smooth Groups",
		description	= "Activate hard edges as smooth groups",
		default		= True)

bpy.types.Scene.udk_option_triangulate = BoolProperty(
		name		= "Triangulate Mesh",
		description	= "Convert Quads to Triangles",
		default		= False)
		

import bmesh
#===========================================================================
# User interface
#===========================================================================
class OBJECT_OT_UTSelectedFaceSmooth(bpy.types.Operator):
    bl_idname = "object.utselectfacesmooth"  # XXX, name???
    bl_label = "Select Smooth faces"
    __doc__ = """It will only select smooth faces that is select mesh"""
    
    def invoke(self, context, event):
        print("----------------------------------------")
        print("Init Select Face(s):")
        bselected = False
        for obj in bpy.data.objects:
            if obj.type == 'MESH' and obj.select == True:
                smoothcount = 0
                flatcount = 0
                bpy.ops.object.mode_set(mode='OBJECT')#it need to go into object mode to able to select the faces
                for i in bpy.context.scene.objects: i.select = False #deselect all objects
                obj.select = True #set current object select
                bpy.context.scene.objects.active = obj #set active object
                mesh = bmesh.new();
                mesh.from_mesh(obj.data)
                for face in mesh.faces:
                    face.select = False
                for face in mesh.faces:
                    if face.smooth == True:
                        face.select = True
                        smoothcount += 1
                    else:
                        flatcount += 1
                        face.select = False
                mesh.to_mesh(obj.data)
                bpy.context.scene.update()
                bpy.ops.object.mode_set(mode='EDIT')
                print("Select Smooth Count(s):",smoothcount," Flat Count(s):",flatcount)
                bselected = True
                break
        if bselected:
            print("Selected Face(s) Exectue!")
            self.report({'INFO'}, "Selected Face(s) Exectue!")
        else:
            print("Didn't select Mesh Object!")
            self.report({'INFO'}, "Didn't Select Mesh Object!")
        print("----------------------------------------")        
        return{'FINISHED'}
		
class OBJECT_OT_MeshClearWeights(bpy.types.Operator):
    bl_idname = "object.meshclearweights"  # XXX, name???
    bl_label = "Remove Mesh vertex weights"
    __doc__ = """Remove all mesh vertex groups weights for the bones."""
    
    def invoke(self, context, event):
        for obj in bpy.data.objects:
            if obj.type == 'MESH' and obj.select == True:
                for vg in obj.vertex_groups:
                    obj.vertex_groups.remove(vg)
                self.report({'INFO'}, "Mesh Vertex Groups Remove!")
                break			
        return{'FINISHED'}

def unpack_list(list_of_tuples):
    l = []
    for t in list_of_tuples:
        l.extend(t)
    return l
	
class OBJECT_OT_UTRebuildMesh(bpy.types.Operator):
    bl_idname = "object.utrebuildmesh"  # XXX, name???
    bl_label = "Rebuild Mesh"
    __doc__ = """It rebuild the mesh from scrape from the selected mesh object. Note the scale will be 1:1 for object mode. To keep from deforming"""
    
    def invoke(self, context, event):
        print("----------------------------------------")
        print("Init Mesh Bebuild...")
        bselected = False
        for obj in bpy.data.objects:
            if obj.type == 'MESH' and obj.select == True:
                for i in bpy.context.scene.objects: i.select = False #deselect all objects
                obj.select = True
                bpy.context.scene.objects.active = obj
                bpy.ops.object.mode_set(mode='OBJECT')
                me_ob = bpy.data.meshes.new(("Re_"+obj.name))
                mesh = obj.data
                faces = []
                verts = []
                smoothings = []
                uvfaces = []
                print("creating array build mesh...")
                mmesh = obj.to_mesh(bpy.context.scene,True,'PREVIEW')
                uv_layer = mmesh.tessface_uv_textures.active
                for face in mmesh.tessfaces:
                    smoothings.append(face.use_smooth)#smooth or flat in boolean
                    if uv_layer != None:#check if there texture data exist
                        faceUV = uv_layer.data[face.index]
                        uvs = []
                        for uv in faceUV.uv:
                            uvs.append((uv[0],uv[1]))
                        uvfaces.append(uvs)
                    print((face.vertices[:]))
                    if len(face.vertices) == 3:
                        faces.extend([(face.vertices[0],face.vertices[1],face.vertices[2],0)])
                    else:
                        faces.extend([(face.vertices[0],face.vertices[1],face.vertices[2],face.vertices[3])])
                #vertex positions
                for vertex in mesh.vertices:
                    verts.append(vertex.co.to_tuple())				
                #vertices weight groups into array
                vertGroups = {} #array in strings
                for vgroup in obj.vertex_groups:
                    vlist = []
                    for v in mesh.vertices:
                        for vg in v.groups:
                            if vg.group == vgroup.index:
                                vlist.append((v.index,vg.weight))
                                #print((v.index,vg.weight))
                    vertGroups[vgroup.name] = vlist
                
                print("creating mesh object...")
                #me_ob.from_pydata(verts, [], faces)
                me_ob.vertices.add(len(verts))
                me_ob.tessfaces.add(len(faces))
                me_ob.vertices.foreach_set("co", unpack_list(verts)) 
                me_ob.tessfaces.foreach_set("vertices_raw",unpack_list( faces))
                me_ob.tessfaces.foreach_set("use_smooth", smoothings)#smooth array from face
                
                #check if there is uv faces
                if len(uvfaces) > 0:
                    uvtex = me_ob.tessface_uv_textures.new(name="retex")
                    for i, face in enumerate(me_ob.tessfaces):
                        blender_tface = uvtex.data[i] #face
                        mfaceuv = uvfaces[i]
                        if len(mfaceuv) == 3:
                            blender_tface.uv1 = mfaceuv[0];
                            blender_tface.uv2 = mfaceuv[1];
                            blender_tface.uv3 = mfaceuv[2];
                        if len(mfaceuv) == 4:
                            blender_tface.uv1 = mfaceuv[0];
                            blender_tface.uv2 = mfaceuv[1];
                            blender_tface.uv3 = mfaceuv[2];
                            blender_tface.uv4 = mfaceuv[3];
                
                me_ob.update()#need to update the information to able to see into the secne
                obmesh = bpy.data.objects.new(("Re_"+obj.name),me_ob)
                bpy.context.scene.update()
                #Build tmp materials
                materialname = "ReMaterial"
                for matcount in mesh.materials:
                    matdata = bpy.data.materials.new(materialname)
                    me_ob.materials.append(matdata)
                #assign face to material id
                for face in mesh.tessfaces:
                    me_ob.faces[face.index].material_index = face.material_index
                #vertices weight groups
                for vgroup in vertGroups:
                    group = obmesh.vertex_groups.new(vgroup)
                    for v in vertGroups[vgroup]:
                        group.add([v[0]], v[1], 'ADD')# group.add(array[vertex id],weight,add)
                bpy.context.scene.objects.link(obmesh)
                print("Mesh Material Count:",len(me_ob.materials))
                matcount = 0
                print("MATERIAL ID OREDER:")
                for mat in me_ob.materials:
                    print("-Material:",mat.name,"INDEX:",matcount)
                    matcount += 1
                print("Object Name:",obmesh.name)
                bpy.context.scene.update()
                bselected = True
                break
        if bselected:
            self.report({'INFO'}, "Rebuild Mesh Finish!")
            print("Finish Mesh Build...")
        else:
            self.report({'INFO'}, "Didn't Select Mesh Object!")
            print("Didn't Select Mesh Object!")
        print("----------------------------------------")
        return{'FINISHED'}
		
class OBJECT_OT_UTRebuildArmature(bpy.types.Operator):
    bl_idname = "object.utrebuildarmature"  # XXX, name???
    bl_label = "Rebuild Armature"
    __doc__ = """If mesh is deform when importing to unreal engine try this. It rebuild the bones one at the time by select one armature object scrape to raw setup build. Note the scale will be 1:1 for object mode. To keep from deforming"""
    
    def invoke(self, context, event):
        print("----------------------------------------")
        print("Init Rebuild Armature...")
        bselected = False
        for obj in bpy.data.objects:
            if obj.type == 'ARMATURE' and obj.select == True:
                currentbone = [] #select armature for roll copy
                print("Armature Name:",obj.name)
                objectname = "ArmatureDataPSK"
                meshname ="ArmatureObjectPSK"
                armdata = bpy.data.armatures.new(objectname)
                ob_new = bpy.data.objects.new(meshname, armdata)
                bpy.context.scene.objects.link(ob_new)
                bpy.ops.object.mode_set(mode='OBJECT')
                for i in bpy.context.scene.objects: i.select = False #deselect all objects
                ob_new.select = True
                bpy.context.scene.objects.active = obj
                
                bpy.ops.object.mode_set(mode='EDIT')
                for bone in obj.data.edit_bones:
                    if bone.parent != None:
                        currentbone.append([bone.name,bone.roll])
                    else:
                        currentbone.append([bone.name,bone.roll])
                bpy.ops.object.mode_set(mode='OBJECT')
                for i in bpy.context.scene.objects: i.select = False #deselect all objects
                bpy.context.scene.objects.active = ob_new
                bpy.ops.object.mode_set(mode='EDIT')
                
                for bone in obj.data.bones:
                    bpy.ops.object.mode_set(mode='EDIT')
                    newbone = ob_new.data.edit_bones.new(bone.name)
                    newbone.head = bone.head_local
                    newbone.tail = bone.tail_local
                    for bonelist in currentbone:
                        if bone.name == bonelist[0]:
                            newbone.roll = bonelist[1]
                            break
                    if bone.parent != None:
                        parentbone = ob_new.data.edit_bones[bone.parent.name]
                        newbone.parent = parentbone
                print("Bone Count:",len(obj.data.bones))
                print("Hold Bone Count",len(currentbone))
                print("New Bone Count",len(ob_new.data.edit_bones))
                print("Rebuild Armture Finish:",ob_new.name)
                bpy.context.scene.update()
                bselected = True
                break
        if bselected:
            self.report({'INFO'}, "Rebuild Armature Finish!")
        else:
            self.report({'INFO'}, "Didn't Select Armature Object!")
        print("End of Rebuild Armature.")
        print("----------------------------------------")
        return{'FINISHED'}


class Panel_UDKExport( bpy.types.Panel ):

	bl_label		= "UDK Export"
	bl_idname		= "OBJECT_PT_udk_tools"
	#bl_space_type	= "PROPERTIES"
	#bl_region_type	= "WINDOW"
	#bl_context		= "object"
	bl_space_type	= "VIEW_3D"
	bl_region_type	= "TOOLS"
	
	#def draw_header(self, context):
	#	layout = self.layout
		#obj = context.object
		#layout.prop(obj, "select", text="")
	
	#@classmethod
	#def poll(cls, context):
	#	return context.active_object

	def draw(self, context):
		layout = self.layout
		path = get_dst_path()

		object_name = ""
		#if context.object:
		#	object_name = context.object.name
		if context.active_object:
			object_name = context.active_object.name

		layout.prop(context.scene, "udk_option_smoothing_groups")
		layout.prop(context.scene, "udk_option_clamp_uv")
		layout.prop(context.scene, "udk_option_verbose")

		row = layout.row()
		row.label(text="Active object: " + object_name)

		#layout.separator()

		layout.prop(context.scene, "udk_option_filename_src")
		row = layout.row()
		row.label(text=path)

		#layout.separator()

		layout.prop(context.scene, "udk_option_export")
		layout.operator("object.udk_export")
		
		#layout.separator()
		
		layout.operator("object.toggle_console")
		layout.operator(OBJECT_OT_UTRebuildArmature.bl_idname)
		layout.operator(OBJECT_OT_MeshClearWeights.bl_idname)
		layout.operator(OBJECT_OT_UTSelectedFaceSmooth.bl_idname)
		layout.operator(OBJECT_OT_UTRebuildMesh.bl_idname)

		#layout.separator()

class ExportUDKAnimData(bpy.types.Operator):
    """Export Skeleton Mesh / Animation Data file(s)"""
    bl_idname = "export_anim.udk" # this is important since its how bpy.ops.export.udk_anim_data is constructed
    bl_label = "Export PSK/PSA"
    __doc__ = """One mesh and one armature else select one mesh or armature to be exported"""

    # List of operator properties, the attributes will be assigned
    # to the class instance from the operator settings before calling.

    filepath = StringProperty(
            subtype='FILE_PATH',
            )
    filter_glob = StringProperty(
            default="*.psk;*.psa",
            options={'HIDDEN'},
            )
    udk_option_smoothing_groups = bpy.types.Scene.udk_option_smoothing_groups
    udk_option_clamp_uv = bpy.types.Scene.udk_option_clamp_uv
    udk_option_verbose = bpy.types.Scene.udk_option_verbose
    udk_option_filename_src = bpy.types.Scene.udk_option_filename_src
    udk_option_export = bpy.types.Scene.udk_option_export
    
    @classmethod
    def poll(cls, context):
        return context.active_object != None

    def execute(self, context):
        scene = bpy.context.scene
        scene.udk_option_export_psk	= (scene.udk_option_export == '0' or scene.udk_option_export == '2')
        scene.udk_option_export_psa	= (scene.udk_option_export == '1' or scene.udk_option_export == '2')
		
        filepath = get_dst_path()
		
		# cache settings
        restore_frame = scene.frame_current
		
        message = "Finish Export!"
        try:
            export(filepath)

        except Error as err:
            print(err.message)
            message = err.message
		
		# restore settings
        scene.frame_set(restore_frame)
        
        self.report({'WARNING', 'INFO'}, message)
        return {'FINISHED'}
        
    def invoke(self, context, event):
        wm = context.window_manager
        wm.fileselect_add(self)
        return {'RUNNING_MODAL'}		
def menu_func(self, context):
    default_path = os.path.splitext(bpy.data.filepath)[0] + ".psk"
    self.layout.operator(ExportUDKAnimData.bl_idname, text="Skeleton Mesh / Animation Data (.psk/.psa)").filepath = default_path

#===========================================================================
# Entry
#===========================================================================
def register():
	#print("REGISTER")
	bpy.utils.register_module(__name__)
	bpy.types.INFO_MT_file_export.append(menu_func)

def unregister():
	#print("UNREGISTER")
	bpy.utils.unregister_module(__name__)
	bpy.types.INFO_MT_file_export.remove(menu_func)
	
if __name__ == "__main__":
	#print("\n"*4)
	print(header("UDK Export PSK/PSA Alpha 0.1", 'CENTER'))
	register()
	
#loader
#filename = "D:/Projects/BlenderScripts/io_export_udk_psa_psk_alpha.py"
#exec(compile(open(filename).read(), filename, 'exec'))