# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import bpy
import mathutils

from math import *
from itertools import *

NARROW_UI = 180
MAX_INPUT_NUMBER = 50

#Global_Scale = 0.001    #1 blender unit = X mm
GLOBAL_SCALE = 0.1    #1 blender unit = X mm
#Global_Scale = 1.0    #1 blender unit = X mm




# next two utility functions are stolen from import_obj.py

def unpack_list(list_of_tuples):
    l = []
    for t in list_of_tuples:
        l.extend(t)
    return l

def unpack_face_list(list_of_tuples):
    l = []
    for t in list_of_tuples:
        face = [i for i in t]

        if len(face) != 3 and len(face) != 4:
            raise RuntimeError("{0} vertices in face".format(len(face)))

        # rotate indices if the 4th is 0
        if len(face) == 4 and face[3] == 0:
            face = [face[3], face[0], face[1], face[2]]

        if len(face) == 3:
            face.append(0)

        l.extend(face)

    return l

'''
Remove Doubles takes a list on Verts and a list of Faces and
removes the doubles, much like Blender does in edit mode.
It doesn’t have the range function  but it will round the corrdinates
and remove verts that are very close togther.  The function
is useful because you can perform a “Remove Doubles” with out
having to enter Edit Mode. Having to enter edit mode has the
disadvantage of not being able to interactively change the properties.
'''


def RemoveDoubles(verts,faces,Decimal_Places = 4):

    new_verts = []
    new_faces = []
    dict_verts = {}
    Rounded_Verts = []

    for v in verts:
        Rounded_Verts.append([round(v[0],Decimal_Places),round(v[1],Decimal_Places),round(v[2],Decimal_Places)])

    for face in faces:
        new_face = []
        for vert_index in face:
            Real_co = tuple(verts[vert_index])
            Rounded_co = tuple(Rounded_Verts[vert_index])

            if Rounded_co not in dict_verts:
                dict_verts[Rounded_co] = len(dict_verts)
                new_verts.append(Real_co)
            if dict_verts[Rounded_co] not in new_face:
                new_face.append(dict_verts[Rounded_co])
        if len(new_face) == 3 or len(new_face) == 4:
            new_faces.append(new_face)

    return new_verts,new_faces




def Scale_Mesh_Verts(verts,scale_factor):
    Ret_verts = []
    for v in verts:
        Ret_verts.append([v[0]*scale_factor,v[1]*scale_factor,v[2]*scale_factor])
    return Ret_verts





#Create a matrix representing a rotation.
#
#Parameters:
#
#        * angle (float) - The angle of rotation desired.
#        * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d.
#        * axisFlag (string (optional)) - Possible values:
#              o "x - x-axis rotation"
#              o "y - y-axis rotation"
#              o "z - z-axis rotation"
#              o "r - arbitrary rotation around vector"
#        * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R"
#
#Returns: Matrix object.
#    A new rotation matrix.
def Simple_RotationMatrix(angle, matSize, axisFlag):
    if matSize != 4 :
        print ("Simple_RotationMatrix can only do 4x4")

    q = radians(angle)  #make the rotation go clockwise

    if axisFlag == 'x':
        matrix = mathutils.Matrix.Rotation(q, 4, 'X')
    elif  axisFlag == 'y':
        matrix = mathutils.Matrix.Rotation(q, 4, 'Y')
    elif axisFlag == 'z':
        matrix = mathutils.Matrix.Rotation(q, 4, 'Z')
    else:
        print   ("Simple_RotationMatrix can only do x y z axis")
    return matrix


##########################################################################################
##########################################################################################
##                    Converter Functions For Bolt Factory
##########################################################################################
##########################################################################################


def Flat_To_Radius(FLAT):
    h = (float(FLAT)/2)/cos(radians(30))
    return h

def Get_Phillips_Bit_Height(Bit_Dia):
    Flat_Width_half = (Bit_Dia*(0.5/1.82))/2.0
    Bit_Rad = Bit_Dia / 2.0
    x = Bit_Rad - Flat_Width_half
    y = tan(radians(60))*x
    return float(y)


##########################################################################################
##########################################################################################
##                    Miscellaneous Utilities
##########################################################################################
##########################################################################################

# Returns a list of verts rotated by the given matrix. Used by SpinDup
def Rot_Mesh(verts, matrix):
    from mathutils import Vector
    return [(matrix * Vector(v))[:] for v in verts]


# Returns a list of faces that has there index incremented by offset
def Copy_Faces(faces,offset):
    return [[(i + offset) for i in f] for f in faces]


# Much like Blenders built in SpinDup.
def SpinDup(VERTS,FACES,DEGREE,DIVISIONS,AXIS):
    verts=[]
    faces=[]

    if DIVISIONS == 0:
        DIVISIONS = 1

    step = DEGREE/DIVISIONS # set step so pieces * step = degrees in arc

    for i in range(int(DIVISIONS)):
        rotmat = Simple_RotationMatrix(step*i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis.
        Rot = Rot_Mesh(VERTS,rotmat)
        faces.extend(Copy_Faces(FACES,len(verts)))
        verts.extend(Rot)
    return verts,faces



# Returns a list of verts that have been moved up the z axis by DISTANCE
def Move_Verts_Up_Z(VERTS,DISTANCE):
    ret = []
    for v in VERTS:
        ret.append([v[0],v[1],v[2]+DISTANCE])
    return ret


# Returns a list of verts and faces that has been mirrored in the AXIS
def Mirror_Verts_Faces(VERTS,FACES,AXIS,FLIP_POINT =0):
    ret_vert = []
    ret_face = []
    offset = len(VERTS)
    if AXIS == 'y':
        for v in VERTS:
            Delta = v[0] - FLIP_POINT
            ret_vert.append([FLIP_POINT-Delta,v[1],v[2]])
    if AXIS == 'x':
        for v in VERTS:
            Delta = v[1] - FLIP_POINT
            ret_vert.append([v[0],FLIP_POINT-Delta,v[2]])
    if AXIS == 'z':
        for v in VERTS:
            Delta = v[2] - FLIP_POINT
            ret_vert.append([v[0],v[1],FLIP_POINT-Delta])

    for f in FACES:
        fsub = []
        for i in range(len(f)):
            fsub.append(f[i]+ offset)
        fsub.reverse() # flip the order to make norm point out
        ret_face.append(fsub)

    return ret_vert,ret_face



# Returns a list of faces that
# make up an array of 4 point polygon.
def Build_Face_List_Quads(OFFSET,COLUM,ROW,FLIP = 0):
    Ret =[]
    RowStart = 0;
    for j in range(ROW):
        for i in range(COLUM):
            Res1 = RowStart + i;
            Res2 = RowStart + i + (COLUM +1)
            Res3 = RowStart + i + (COLUM +1) +1
            Res4 = RowStart+i+1
            if FLIP:
                Ret.append([OFFSET+Res1,OFFSET+Res2,OFFSET+Res3,OFFSET+Res4])
            else:
                Ret.append([OFFSET+Res4,OFFSET+Res3,OFFSET+Res2,OFFSET+Res1])
        RowStart += COLUM+1
    return Ret


# Returns a list of faces that makes up a fill pattern for a
# circle
def Fill_Ring_Face(OFFSET,NUM,FACE_DOWN = 0):
    Ret =[]
    Face = [1,2,0]
    TempFace = [0,0,0]
    # A = 0  # UNUSED
    B = 1
    C = 2
    if NUM < 3:
        return None
    for i in range(NUM-2):
        if (i%2):
            TempFace[0] = Face[C];
            TempFace[1] = Face[C] + 1;
            TempFace[2] = Face[B];
            if FACE_DOWN:
                Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])
            else:
                Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
        else:
            TempFace[0] =Face[C];
            if Face[C] == 0:
                TempFace[1] = NUM-1;
            else:
                TempFace[1] = Face[C] - 1;
            TempFace[2] = Face[B];
            if FACE_DOWN:
                Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]])
            else:
                Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]])

        Face[0] = TempFace[0]
        Face[1] = TempFace[1]
        Face[2] = TempFace[2]
    return Ret

######################################################################################
##########################################################################################
##########################################################################################
##                    Create Allen Bit
##########################################################################################
##########################################################################################


def Allen_Fill(OFFSET,FLIP= 0):
    faces = []
    Lookup = [[19,1,0],
              [19,2,1],
              [19,3,2],
              [19,20,3],
              [20,4,3],
              [20,5,4],
              [20,6,5],
              [20,7,6],
              [20,8,7],
              [20,9,8],

              [20,21,9],

              [21,10,9],
              [21,11,10],
              [21,12,11],
              [21,13,12],
              [21,14,13],
              [21,15,14],

              [21,22,15],
              [22,16,15],
              [22,17,16],
              [22,18,17]
              ]
    for i in Lookup:
        if FLIP:
            faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
        else:
            faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])

    return faces

def Allen_Bit_Dia(FLAT_DISTANCE):
    Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
    return (Flat_Radius * 1.05) * 2.0

def Allen_Bit_Dia_To_Flat(DIA):
    Flat_Radius = (DIA/2.0)/1.05
    return (Flat_Radius * cos (radians(30)))* 2.0



def Create_Allen_Bit(FLAT_DISTANCE,HEIGHT):
    Div = 36
    verts = []
    faces = []

    Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30))
    OUTTER_RADIUS = Flat_Radius * 1.05
    Outter_Radius_Height = Flat_Radius * (0.1/5.77)
    FaceStart_Outside = len(verts)
    Deg_Step = 360.0 /float(Div)

    for i in range(int(Div/2)+1):    # only do half and mirror later
        x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
        y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
        verts.append([x,y,0])

    FaceStart_Inside = len(verts)

    Deg_Step = 360.0 /float(6)
    for i in range(int(6/2)+1):
        x = sin(radians(i*Deg_Step))* Flat_Radius
        y = cos(radians(i*Deg_Step))* Flat_Radius
        verts.append([x,y,0-Outter_Radius_Height])

    faces.extend(Allen_Fill(FaceStart_Outside,0))


    FaceStart_Bottom = len(verts)

    Deg_Step = 360.0 /float(6)
    for i in range(int(6/2)+1):
        x = sin(radians(i*Deg_Step))* Flat_Radius
        y = cos(radians(i*Deg_Step))* Flat_Radius
        verts.append([x,y,0-HEIGHT])

    faces.extend(Build_Face_List_Quads(FaceStart_Inside,3,1,True))
    faces.extend(Fill_Ring_Face(FaceStart_Bottom,4))


    M_Verts,M_Faces = Mirror_Verts_Faces(verts,faces,'y')
    verts.extend(M_Verts)
    faces.extend(M_Faces)

    return verts,faces,OUTTER_RADIUS * 2.0


##########################################################################################
##########################################################################################
##                    Create Phillips Bit
##########################################################################################
##########################################################################################


def Phillips_Fill(OFFSET,FLIP= 0):
    faces = []
    Lookup = [[0,1,10],
              [1,11,10],
              [1,2,11],
              [2,12,11],

              [2,3,12],
              [3,4,12],
              [4,5,12],
              [5,6,12],
              [6,7,12],

              [7,13,12],
              [7,8,13],
              [8,14,13],
              [8,9,14],


              [10,11,16,15],
              [11,12,16],
              [12,13,16],
              [13,14,17,16],
              [15,16,17,18]


              ]
    for i in Lookup:
        if FLIP:
            if len(i) == 3:
                faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
            else:
                faces.append([OFFSET+i[3],OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]])
        else:
            if len(i) == 3:
                faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]])
            else:
                faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2],OFFSET+i[3]])
    return faces



def Create_Phillips_Bit(FLAT_DIA,FLAT_WIDTH,HEIGHT):
    Div = 36
    verts = []
    faces = []

    FLAT_RADIUS = FLAT_DIA * 0.5
    OUTTER_RADIUS = FLAT_RADIUS * 1.05

    Flat_Half = float(FLAT_WIDTH)/2.0

    FaceStart_Outside = len(verts)
    Deg_Step = 360.0 /float(Div)
    for i in range(int(Div/4)+1):    # only do half and mirror later
        x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
        y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
        verts.append([x,y,0])


    # FaceStart_Inside = len(verts)  # UNUSED
    verts.append([0,FLAT_RADIUS,0]) #10
    verts.append([Flat_Half,FLAT_RADIUS,0]) #11
    verts.append([Flat_Half,Flat_Half,0])     #12
    verts.append([FLAT_RADIUS,Flat_Half,0])    #13
    verts.append([FLAT_RADIUS,0,0])            #14


    verts.append([0,Flat_Half,0-HEIGHT])        #15
    verts.append([Flat_Half,Flat_Half,0-HEIGHT])    #16
    verts.append([Flat_Half,0,0-HEIGHT])            #17

    verts.append([0,0,0-HEIGHT])            #18

    faces.extend(Phillips_Fill(FaceStart_Outside,True))

    Spin_Verts,Spin_Face = SpinDup(verts,faces,360,4,'z')

    return Spin_Verts,Spin_Face,OUTTER_RADIUS * 2


##########################################################################################
##########################################################################################
##                    Create Head Types
##########################################################################################
##########################################################################################

def Max_Pan_Bit_Dia(HEAD_DIA):
    HEAD_RADIUS = HEAD_DIA * 0.5
    XRad = HEAD_RADIUS * 1.976
    return (sin(radians(10))*XRad) * 2.0


def Create_Pan_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):

    DIV = 36
    HOLE_RADIUS = HOLE_DIA * 0.5
    HEAD_RADIUS = HEAD_DIA * 0.5
    SHANK_RADIUS = SHANK_DIA * 0.5

    verts = []
    faces = []
    Row = 0

    XRad = HEAD_RADIUS * 1.976
    ZRad = HEAD_RADIUS * 1.768
    EndRad = HEAD_RADIUS * 0.284
    EndZOffset = HEAD_RADIUS * 0.432
    HEIGHT = HEAD_RADIUS * 0.59

#    Dome_Rad =  5.6
#    RAD_Offset = 4.9
#    OtherRad = 0.8
#    OtherRad_X_Offset = 4.2
#    OtherRad_Z_Offset = 2.52
#    XRad = 9.88
#    ZRad = 8.84
#    EndRad = 1.42
#    EndZOffset = 2.16
#    HEIGHT = 2.95

    FaceStart = FACE_OFFSET

    z = cos(radians(10))*ZRad
    verts.append([HOLE_RADIUS,0.0,(0.0-ZRad)+z])
    Start_Height = 0 - ((0.0-ZRad)+z)
    Row += 1

    #for i in range(0,30,10):  was 0 to 30 more work needed to make this look good.
    for i in range(10,30,10):
        x = sin(radians(i))*XRad
        z = cos(radians(i))*ZRad
        verts.append([x,0.0,(0.0-ZRad)+z])
        Row += 1

    for i in range(20,140,10):
        x = sin(radians(i))*EndRad
        z = cos(radians(i))*EndRad
        if ((0.0 - EndZOffset)+z) < (0.0-HEIGHT):
            verts.append([(HEAD_RADIUS -EndRad)+x,0.0,0.0 - HEIGHT])
        else:
            verts.append([(HEAD_RADIUS -EndRad)+x,0.0,(0.0 - EndZOffset)+z])
        Row += 1


    verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)])
    Row += 1

    verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)-Start_Height])
    Row += 1


    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)        #add the start verts to the Spin verts to complete the loop

    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))

    # Global_Head_Height = HEIGHT  # UNUSED


    return Move_Verts_Up_Z(sVerts,Start_Height),faces,HEIGHT



def Create_Dome_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET):
    DIV = 36
    HOLE_RADIUS = HOLE_DIA * 0.5
    HEAD_RADIUS = HEAD_DIA * 0.5
    SHANK_RADIUS = SHANK_DIA * 0.5

    verts = []
    faces = []
    Row = 0
    # BEVEL = HEIGHT * 0.01  # UNUSED
    #Dome_Rad =  HEAD_RADIUS * (1.0/1.75)

    Dome_Rad =  HEAD_RADIUS * 1.12
    #Head_Height = HEAD_RADIUS * 0.78
    RAD_Offset = HEAD_RADIUS * 0.98
    Dome_Height = HEAD_RADIUS * 0.64
    OtherRad = HEAD_RADIUS * 0.16
    OtherRad_X_Offset = HEAD_RADIUS * 0.84
    OtherRad_Z_Offset = HEAD_RADIUS * 0.504


#    Dome_Rad =  5.6
#    RAD_Offset = 4.9
#    Dome_Height = 3.2
#    OtherRad = 0.8
#    OtherRad_X_Offset = 4.2
#    OtherRad_Z_Offset = 2.52
#

    FaceStart = FACE_OFFSET

    verts.append([HOLE_RADIUS,0.0,0.0])
    Row += 1


    for i in range(0,60,10):
        x = sin(radians(i))*Dome_Rad
        z = cos(radians(i))*Dome_Rad
        if ((0.0-RAD_Offset)+z) <= 0:
            verts.append([x,0.0,(0.0-RAD_Offset)+z])
            Row += 1


    for i in range(60,160,10):
        x = sin(radians(i))*OtherRad
        z = cos(radians(i))*OtherRad
        z = (0.0-OtherRad_Z_Offset)+z
        if z < (0.0-Dome_Height):
            z = (0.0-Dome_Height)
        verts.append([OtherRad_X_Offset+x,0.0,z])
        Row += 1

    verts.append([SHANK_RADIUS,0.0,(0.0-Dome_Height)])
    Row += 1


    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)        #add the start verts to the Spin verts to complete the loop

    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))

    return sVerts,faces,Dome_Height



def Create_CounterSink_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1):
    DIV = 36

    HOLE_RADIUS = HOLE_DIA * 0.5
    HEAD_RADIUS = HEAD_DIA * 0.5
    SHANK_RADIUS = SHANK_DIA * 0.5


    verts = []
    faces = []
    Row = 0

#    HEAD_RADIUS = (HEIGHT/tan(radians(60))) + SHANK_RADIUS
    HEIGHT = tan(radians(60)) * (HEAD_RADIUS - SHANK_RADIUS)
    #print (RAD1)

    FaceStart = len(verts)

    verts.append([HOLE_RADIUS,0.0,0.0])
    Row += 1

    #rad

    for i in range(0,100,10):
        x = sin(radians(i))*RAD1
        z = cos(radians(i))*RAD1
        verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z])
        Row += 1


    verts.append([SHANK_RADIUS,0.0,0.0-HEIGHT])
    Row += 1


    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)        #add the start verts to the Spin verts to complete the loop


    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))

    return sVerts,faces,HEIGHT




def Create_Cap_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2):
    DIV = 36

    HOLE_RADIUS = HOLE_DIA * 0.5
    HEAD_RADIUS = HEAD_DIA * 0.5
    SHANK_RADIUS = SHANK_DIA * 0.5

    verts = []
    faces = []
    Row = 0
    BEVEL = HEIGHT * 0.01


    FaceStart = len(verts)

    verts.append([HOLE_RADIUS,0.0,0.0])
    Row += 1

    #rad

    for i in range(0,100,10):
        x = sin(radians(i))*RAD1
        z = cos(radians(i))*RAD1
        verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z])
        Row += 1


    verts.append([HEAD_RADIUS,0.0,0.0-HEIGHT+BEVEL])
    Row += 1

    verts.append([HEAD_RADIUS-BEVEL,0.0,0.0-HEIGHT])
    Row += 1

    #rad2

    for i in range(0,100,10):
        x = sin(radians(i))*RAD2
        z = cos(radians(i))*RAD2
        verts.append([(SHANK_RADIUS+RAD2)-x,0.0,(0.0-HEIGHT-RAD2)+z])
        Row += 1


    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)        #add the start verts to the Spin verts to complete the loop


    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))

    return sVerts,faces,HEIGHT+RAD2


def Create_Hex_Head(FLAT,HOLE_DIA,SHANK_DIA,HEIGHT):

    verts = []
    faces = []
    HOLE_RADIUS = HOLE_DIA * 0.5
    Half_Flat = FLAT/2
    TopBevelRadius = Half_Flat - (Half_Flat* (0.05/8))
    Undercut_Height = (Half_Flat* (0.05/8))
    Shank_Bevel = (Half_Flat* (0.05/8))
    Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel
    #Undercut_Height = 5
    SHANK_RADIUS = SHANK_DIA/2
    Row = 0;

    verts.append([0.0,0.0,0.0])


    FaceStart = len(verts)
    #inner hole

    x = sin(radians(0))*HOLE_RADIUS
    y = cos(radians(0))*HOLE_RADIUS
    verts.append([x,y,0.0])


    x = sin(radians(60/6))*HOLE_RADIUS
    y = cos(radians(60/6))*HOLE_RADIUS
    verts.append([x,y,0.0])


    x = sin(radians(60/3))*HOLE_RADIUS
    y = cos(radians(60/3))*HOLE_RADIUS
    verts.append([x,y,0.0])


    x = sin(radians(60/2))*HOLE_RADIUS
    y = cos(radians(60/2))*HOLE_RADIUS
    verts.append([x,y,0.0])
    Row += 1

    #bevel

    x = sin(radians(0))*TopBevelRadius
    y = cos(radians(0))*TopBevelRadius
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/6))*TopBevelRadius
    y = cos(radians(60/6))*TopBevelRadius
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/3))*TopBevelRadius
    y = cos(radians(60/3))*TopBevelRadius
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/2))*TopBevelRadius
    y = cos(radians(60/2))*TopBevelRadius
    vec4 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])
    Row += 1

    #Flats

    x = tan(radians(0))*Half_Flat
    dvec = vec1 - mathutils.Vector([x,Half_Flat,0.0])
    verts.append([x,Half_Flat,-dvec.length])


    x = tan(radians(60/6))*Half_Flat
    dvec = vec2 - mathutils.Vector([x,Half_Flat,0.0])
    verts.append([x,Half_Flat,-dvec.length])


    x = tan(radians(60/3))*Half_Flat
    dvec = vec3 - mathutils.Vector([x,Half_Flat,0.0])
    Lowest_Point = -dvec.length
    verts.append([x,Half_Flat,-dvec.length])


    x = tan(radians(60/2))*Half_Flat
    dvec = vec4 - mathutils.Vector([x,Half_Flat,0.0])
    Lowest_Point = -dvec.length
    verts.append([x,Half_Flat,-dvec.length])
    Row += 1

    #down Bits Tri
    x = tan(radians(0))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])

    x = tan(radians(60/6))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])

    x = tan(radians(60/3))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])

    x = tan(radians(60/2))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])
    Row += 1

    #down Bits

    x = tan(radians(0))*Half_Flat
    verts.append([x,Half_Flat,-Flat_Height])

    x = tan(radians(60/6))*Half_Flat
    verts.append([x,Half_Flat,-Flat_Height])

    x = tan(radians(60/3))*Half_Flat
    verts.append([x,Half_Flat,-Flat_Height])

    x = tan(radians(60/2))*Half_Flat
    verts.append([x,Half_Flat,-Flat_Height])
    Row += 1


    #under cut

    x = sin(radians(0))*Half_Flat
    y = cos(radians(0))*Half_Flat
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height])

    x = sin(radians(60/6))*Half_Flat
    y = cos(radians(60/6))*Half_Flat
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height])

    x = sin(radians(60/3))*Half_Flat
    y = cos(radians(60/3))*Half_Flat
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height])

    x = sin(radians(60/2))*Half_Flat
    y = cos(radians(60/2))*Half_Flat
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height])
    Row += 1

    #under cut down bit
    x = sin(radians(0))*Half_Flat
    y = cos(radians(0))*Half_Flat
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/6))*Half_Flat
    y = cos(radians(60/6))*Half_Flat
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/3))*Half_Flat
    y = cos(radians(60/3))*Half_Flat
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/2))*Half_Flat
    y = cos(radians(60/2))*Half_Flat
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])
    Row += 1

    #under cut to Shank BEVEAL
    x = sin(radians(0))*(SHANK_RADIUS+Shank_Bevel)
    y = cos(radians(0))*(SHANK_RADIUS+Shank_Bevel)
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
    y = cos(radians(60/6))*(SHANK_RADIUS+Shank_Bevel)
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
    y = cos(radians(60/3))*(SHANK_RADIUS+Shank_Bevel)
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])

    x = sin(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
    y = cos(radians(60/2))*(SHANK_RADIUS+Shank_Bevel)
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height])
    Row += 1

    #under cut to Shank BEVEAL
    x = sin(radians(0))*SHANK_RADIUS
    y = cos(radians(0))*SHANK_RADIUS
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])

    x = sin(radians(60/6))*SHANK_RADIUS
    y = cos(radians(60/6))*SHANK_RADIUS
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])

    x = sin(radians(60/3))*SHANK_RADIUS
    y = cos(radians(60/3))*SHANK_RADIUS
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])

    x = sin(radians(60/2))*SHANK_RADIUS
    y = cos(radians(60/2))*SHANK_RADIUS
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel])
    Row += 1


    #Global_Head_Height = 0 - (-HEIGHT-0.1)
    faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))


    Mirror_Verts,Mirror_Faces = Mirror_Verts_Faces(verts,faces,'y')
    verts.extend(Mirror_Verts)
    faces.extend(Mirror_Faces)

    Spin_Verts,Spin_Faces = SpinDup(verts,faces,360,6,'z')


    return Spin_Verts,Spin_Faces,0 - (-HEIGHT)


##########################################################################################
##########################################################################################
##                    Create External Thread
##########################################################################################
##########################################################################################



def Thread_Start3(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):


    Ret_Row = 0;

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Height_Start = Height_Offset - PITCH
    Height_Step = float(PITCH)/float(DIV)
    Deg_Step = 360.0 /float(DIV)

    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0

#theard start

    Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
    for j in range(4):

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z])
        Height_Offset -= Crest_Height
        Ret_Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z ])
        Height_Offset -= Crest_to_Root_Height
        Ret_Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
        Height_Offset -= Root_Height
        Ret_Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS

            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
        Height_Offset -= Root_to_Crest_Height
        Ret_Row += 1

    return Ret_Row,Height_Offset


def Create_Shank_Verts(START_DIA,OUTTER_DIA,LENGTH,Z_LOCATION = 0):

    verts = []
    DIV = 36

    START_RADIUS = START_DIA/2
    OUTTER_RADIUS = OUTTER_DIA/2

    Opp = abs(START_RADIUS - OUTTER_RADIUS)
    Taper_Lentgh = Opp/tan(radians(31));

    if Taper_Lentgh > LENGTH:
        Taper_Lentgh = 0

    Stright_Length = LENGTH - Taper_Lentgh

    Deg_Step = 360.0 /float(DIV)

    Row = 0

    Lowest_Z_Vert = 0;

    Height_Offset = Z_LOCATION


        #ring
    for i in range(DIV+1):
        x = sin(radians(i*Deg_Step))*START_RADIUS
        y = cos(radians(i*Deg_Step))*START_RADIUS
        z =  Height_Offset - 0
        verts.append([x,y,z])
        Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Height_Offset -= Stright_Length
    Row += 1

    for i in range(DIV+1):
        x = sin(radians(i*Deg_Step))*START_RADIUS
        y = cos(radians(i*Deg_Step))*START_RADIUS
        z =  Height_Offset - 0
        verts.append([x,y,z])
        Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Height_Offset -= Taper_Lentgh
    Row += 1


    return verts,Row,Height_Offset


def Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):

    verts = []
    DIV = 36

    INNER_RADIUS = INNER_DIA/2
    OUTTER_RADIUS = OUTTER_DIA/2

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Deg_Step = 360.0 /float(DIV)
    Height_Step = float(PITCH)/float(DIV)

    Row = 0

    Lowest_Z_Vert = 0;

    Height_Offset = Z_LOCATION

    Height_Start = Height_Offset

    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0

    Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)

    Height_Offset = Z_LOCATION + PITCH
    Cut_off = Z_LOCATION


    for j in range(1):

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            if z > Cut_off : z = Cut_off
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            if z > Cut_off : z = Cut_off
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_to_Root_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            if z > Cut_off : z = Cut_off
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            if z > Cut_off : z = Cut_off
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_to_Crest_Height
        Row += 1


    for j in range(2):
        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_Height
        Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z ])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_to_Root_Height
        Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_Height
        Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS

            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_to_Crest_Height
        Row += 1


    return verts,Row,Height_Offset



def Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
    verts = []

    DIV = 36

    INNER_RADIUS = INNER_DIA/2
    OUTTER_RADIUS = OUTTER_DIA/2

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Deg_Step = 360.0 /float(DIV)
    Height_Step = float(PITCH)/float(DIV)

    NUM_OF_START_THREADS = 4.0
    NUM_OF_END_THREADS = 3.0
    Num = int((HEIGHT- ((NUM_OF_START_THREADS*PITCH) + (NUM_OF_END_THREADS*PITCH) ))/PITCH)
    Row = 0


    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0


    Height_Offset = Z_LOCATION

    Lowest_Z_Vert = 0;

    for j in range(Num):

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            z = Height_Offset - (Height_Step*i)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_to_Root_Height
        Row += 1


        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            z = Height_Offset - (Height_Step*i)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            z = Height_Offset - (Height_Step*i)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_to_Crest_Height
        Row += 1

    return verts,Row,Height_Offset



def Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0):
    verts = []

    DIV = 36

    INNER_RADIUS = INNER_DIA/2
    OUTTER_RADIUS = OUTTER_DIA/2

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Deg_Step = 360.0 /float(DIV)
    Height_Step = float(PITCH)/float(DIV)

    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0

    # Col = 0  # UNUSED
    Row = 0

    Height_Offset = Z_LOCATION

    Tapper_Height_Start = Height_Offset - PITCH - PITCH

    Max_Height = Tapper_Height_Start - PITCH

    Lowest_Z_Vert = 0;

    # FaceStart = len(verts)  # UNUSED
    for j in range(4):

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            z = max(z,Max_Height)
            Tapper_Radius = OUTTER_RADIUS
            if z < Tapper_Height_Start:
                Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)

            x = sin(radians(i*Deg_Step))*(Tapper_Radius)
            y = cos(radians(i*Deg_Step))*(Tapper_Radius)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_Height
        Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            z = max(z,Max_Height)
            Tapper_Radius = OUTTER_RADIUS
            if z < Tapper_Height_Start:
                Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)

            x = sin(radians(i*Deg_Step))*(Tapper_Radius)
            y = cos(radians(i*Deg_Step))*(Tapper_Radius)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Crest_to_Root_Height
        Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            z = max(z,Max_Height)
            Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
            if Tapper_Radius > INNER_RADIUS:
                Tapper_Radius = INNER_RADIUS

            x = sin(radians(i*Deg_Step))*(Tapper_Radius)
            y = cos(radians(i*Deg_Step))*(Tapper_Radius)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_Height
        Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            z = max(z,Max_Height)
            Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z)
            if Tapper_Radius > INNER_RADIUS:
                Tapper_Radius = INNER_RADIUS

            x = sin(radians(i*Deg_Step))*(Tapper_Radius)
            y = cos(radians(i*Deg_Step))*(Tapper_Radius)
            verts.append([x,y,z])
            Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Height_Offset -= Root_to_Crest_Height
        Row += 1

    return verts,Row,Height_Offset,Lowest_Z_Vert




def Create_External_Thread(SHANK_DIA,SHANK_LENGTH,INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT):

    verts = []
    faces = []

    DIV = 36

    Total_Row = 0
    # Thread_Len = 0  # UNUSED

    Face_Start = len(verts)
    Offset = 0.0;


    Shank_Verts,Shank_Row,Offset = Create_Shank_Verts(SHANK_DIA,OUTTER_DIA,SHANK_LENGTH,Offset)
    Total_Row += Shank_Row

    Thread_Start_Verts,Thread_Start_Row,Offset = Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset)
    Total_Row += Thread_Start_Row


    Thread_Verts,Thread_Row,Offset = Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT,Offset)
    Total_Row += Thread_Row


    Thread_End_Verts,Thread_End_Row,Offset,Lowest_Z_Vert = Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset )
    Total_Row += Thread_End_Row


    verts.extend(Shank_Verts)
    verts.extend(Thread_Start_Verts)
    verts.extend(Thread_Verts)
    verts.extend(Thread_End_Verts)

    faces.extend(Build_Face_List_Quads(Face_Start,DIV,Total_Row -1,0))
    faces.extend(Fill_Ring_Face(len(verts)-DIV,DIV,1))

    return verts,faces,0.0 - Lowest_Z_Vert


##########################################################################################
##########################################################################################
##                    Create Nut
##########################################################################################
##########################################################################################

def add_Hex_Nut(FLAT,HOLE_DIA,HEIGHT):
    global Global_Head_Height
    global Global_NutRad

    verts = []
    faces = []
    HOLE_RADIUS = HOLE_DIA * 0.5
    Half_Flat = FLAT/2
    Half_Height = HEIGHT/2
    TopBevelRadius = Half_Flat - 0.05

    Global_NutRad =  TopBevelRadius

    Row = 0;
    Lowest_Z_Vert = 0.0;

    verts.append([0.0,0.0,0.0])


    FaceStart = len(verts)
    #inner hole

    x = sin(radians(0))*HOLE_RADIUS
    y = cos(radians(0))*HOLE_RADIUS
    #print ("rad 0 x;",  x,  "y:" ,y )
    verts.append([x,y,0.0])


    x = sin(radians(60/6))*HOLE_RADIUS
    y = cos(radians(60/6))*HOLE_RADIUS
    #print ("rad 60/6x;",  x,  "y:" ,y )
    verts.append([x,y,0.0])


    x = sin(radians(60/3))*HOLE_RADIUS
    y = cos(radians(60/3))*HOLE_RADIUS
    #print ("rad 60/3x;",  x,  "y:" ,y )
    verts.append([x,y,0.0])


    x = sin(radians(60/2))*HOLE_RADIUS
    y = cos(radians(60/2))*HOLE_RADIUS
    #print ("rad 60/2x;",  x,  "y:" ,y )
    verts.append([x,y,0.0])
    Row += 1


    #bevel

    x = sin(radians(0))*TopBevelRadius
    y = cos(radians(0))*TopBevelRadius
    vec1 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/6))*TopBevelRadius
    y = cos(radians(60/6))*TopBevelRadius
    vec2 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/3))*TopBevelRadius
    y = cos(radians(60/3))*TopBevelRadius
    vec3 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])


    x = sin(radians(60/2))*TopBevelRadius
    y = cos(radians(60/2))*TopBevelRadius
    vec4 = mathutils.Vector([x,y,0.0])
    verts.append([x,y,0.0])
    Row += 1

    #Flats

    x = tan(radians(0))*Half_Flat
    dvec = vec1 - mathutils.Vector([x,Half_Flat,0.0])
    verts.append([x,Half_Flat,-dvec.length])
    Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)


    x = tan(radians(60/6))*Half_Flat
    dvec = vec2 - mathutils.Vector([x,Half_Flat,0.0])
    verts.append([x,Half_Flat,-dvec.length])
    Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)


    x = tan(radians(60/3))*Half_Flat
    dvec = vec3 - mathutils.Vector([x,Half_Flat,0.0])
    Lowest_Point = -dvec.length
    verts.append([x,Half_Flat,-dvec.length])
    Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)

    x = tan(radians(60/2))*Half_Flat
    dvec = vec4 - mathutils.Vector([x,Half_Flat,0.0])
    Lowest_Point = -dvec.length
    verts.append([x,Half_Flat,-dvec.length])
    Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length)
    Row += 1

    #down Bits Tri
    x = tan(radians(0))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])


    x = tan(radians(60/6))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])
    x = tan(radians(60/3))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])

    x = tan(radians(60/2))*Half_Flat
    verts.append([x,Half_Flat,Lowest_Point])
    Lowest_Z_Vert = min(Lowest_Z_Vert,Lowest_Point)
    Row += 1

    #down Bits

    x = tan(radians(0))*Half_Flat
    verts.append([x,Half_Flat,-Half_Height])

    x = tan(radians(60/6))*Half_Flat
    verts.append([x,Half_Flat,-Half_Height])

    x = tan(radians(60/3))*Half_Flat
    verts.append([x,Half_Flat,-Half_Height])

    x = tan(radians(60/2))*Half_Flat
    verts.append([x,Half_Flat,-Half_Height])
    Lowest_Z_Vert = min(Lowest_Z_Vert,-Half_Height)
    Row += 1

    faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1))

    Global_Head_Height = HEIGHT

    Tvert,tface = Mirror_Verts_Faces(verts,faces,'z',Lowest_Z_Vert)
    verts.extend(Tvert)
    faces.extend(tface)


    Tvert,tface = Mirror_Verts_Faces(verts,faces,'y')
    verts.extend(Tvert)
    faces.extend(tface)

    S_verts,S_faces = SpinDup(verts,faces,360,6,'z')

    #return verts,faces,TopBevelRadius
    return S_verts,S_faces,TopBevelRadius



def add_Nylon_Head(OUTSIDE_RADIUS,Z_LOCATION = 0):
    DIV = 36
    verts = []
    faces = []
    Row = 0

    INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.25/4.75))
    EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
    RAD1 = (OUTSIDE_RADIUS * (0.5/4.75))
    OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))


    FaceStart = len(verts)

    # Start_Height = 0 - 3  # UNUSED
    Height_Offset = Z_LOCATION
    Lowest_Z_Vert = 0

    x = INNER_HOLE
    z = (Height_Offset - OVER_ALL_HEIGTH) + EDGE_THICKNESS
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1

    x = INNER_HOLE
    z = (Height_Offset - OVER_ALL_HEIGTH)
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1


    for i in range(180,80,-10):
        x = sin(radians(i))*RAD1
        z = cos(radians(i))*RAD1
        verts.append([(OUTSIDE_RADIUS-RAD1)+x,0.0,((Height_Offset - OVER_ALL_HEIGTH)+RAD1)+z])
        Lowest_Z_Vert = min(Lowest_Z_Vert,z)
        Row += 1


    x = OUTSIDE_RADIUS - 0
    z = Height_Offset
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1

    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)        #add the start verts to the Spin verts to complete the loop

    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV))

    return Move_Verts_Up_Z(sVerts,0),faces,Lowest_Z_Vert



def add_Nylon_Part(OUTSIDE_RADIUS,Z_LOCATION = 0):
    DIV = 36
    verts = []
    faces = []
    Row = 0

    INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.5/4.75))
    EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75))
    # RAD1 = (OUTSIDE_RADIUS * (0.5/4.75))  # UNUSED
    OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75))
    PART_THICKNESS = OVER_ALL_HEIGTH - EDGE_THICKNESS
    PART_INNER_HOLE = (OUTSIDE_RADIUS * (2.5/4.75))

    FaceStart = len(verts)

    # Start_Height = 0 - 3  # UNUSED
    Height_Offset = Z_LOCATION
    Lowest_Z_Vert = 0


    x = INNER_HOLE + EDGE_THICKNESS
    z = Height_Offset
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1

    x = PART_INNER_HOLE
    z = Height_Offset
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1

    x = PART_INNER_HOLE
    z = Height_Offset - PART_THICKNESS
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1

    x = INNER_HOLE + EDGE_THICKNESS
    z = Height_Offset - PART_THICKNESS
    verts.append([x,0.0,z])
    Lowest_Z_Vert = min(Lowest_Z_Vert,z)
    Row += 1


    sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z')
    sVerts.extend(verts)  #add the start verts to the Spin verts to complete the loop

    faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1))

    return sVerts,faces,0 - Lowest_Z_Vert


##########################################################################################
##########################################################################################
##                    Create Internal Thread
##########################################################################################
##########################################################################################


def Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):


    Ret_Row = 0;

    Height_Offset = Height_Offset + PITCH  #Move the offset up so that the verts start at
                                           #at the correct place  (Height_Start)

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Height_Start = Height_Offset - PITCH
    Height_Step = float(PITCH)/float(DIV)
    Deg_Step = 360.0 /float(DIV)

    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0


    Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)
    for j in range(1):  #FIXME - for j in range(1) what?!

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z])
        Height_Offset -= Crest_Height
        Ret_Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z ])
        Height_Offset -= Crest_to_Root_Height
        Ret_Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
        Height_Offset -= Root_Height
        Ret_Row += 1

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z > Height_Start:
                z = Height_Start

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS

            if j == 0:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank))
            verts.append([x,y,z ])
        Height_Offset -= Root_to_Crest_Height
        Ret_Row += 1

    return Ret_Row,Height_Offset


def Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset):


    Ret_Row = 0;

    # Half_Pitch = float(PITCH)/2  # UNUSED
    #Height_End = Height_Offset - PITCH - PITCH - PITCH- PITCH - PITCH- PITCH
    Height_End = Height_Offset - PITCH
    #Height_End = -2.1
    Height_Step = float(PITCH)/float(DIV)
    Deg_Step = 360.0 /float(DIV)

    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0


    Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV)

    Num = 0

    for j in range(2):

        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z < Height_End:
                z = Height_End
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z])
        Height_Offset -= Crest_Height
        Ret_Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z < Height_End:
                z = Height_End

            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,z ])
        Height_Offset -= Crest_to_Root_Height
        Ret_Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z < Height_End:
                z = Height_End

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            if j == Num:
                x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
                y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
            if j > Num:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS)
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )

            verts.append([x,y,z ])
        Height_Offset -= Root_Height
        Ret_Row += 1


        for i in range(DIV+1):
            z = Height_Offset - (Height_Step*i)
            if z < Height_End:
                z = Height_End

            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS

            if j == Num:
                x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
                y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank))
            if j > Num:
                x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS )
                y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS )

            verts.append([x,y,z ])
        Height_Offset -= Root_to_Crest_Height
        Ret_Row += 1


    return Ret_Row,Height_End  # send back Height End as this is the lowest point


def Create_Internal_Thread(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,INTERNAL = 1):
    verts = []
    faces = []

    DIV = 36

    INNER_RADIUS = INNER_DIA/2
    OUTTER_RADIUS = OUTTER_DIA/2

    # Half_Pitch = float(PITCH)/2  # UNUSED
    Deg_Step = 360.0 /float(DIV)
    Height_Step = float(PITCH)/float(DIV)

    Num = int(round((HEIGHT- PITCH)/PITCH))  # less one pitch for the start and end that is 1/2 pitch high

    # Col = 0  # UNUSED
    Row = 0


    Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100)
    Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100)
    Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0

    Height_Offset = 0
    FaceStart = len(verts)

    Row_Inc,Height_Offset = Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
    Row += Row_Inc

    for j in range(Num):

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,Height_Offset - (Height_Step*i) ])
        Height_Offset -= Crest_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*OUTTER_RADIUS
            y = cos(radians(i*Deg_Step))*OUTTER_RADIUS
            verts.append([x,y,Height_Offset - (Height_Step*i) ])
        Height_Offset -= Crest_to_Root_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            verts.append([x,y,Height_Offset - (Height_Step*i) ])
        Height_Offset -= Root_Height
        Row += 1

        for i in range(DIV+1):
            x = sin(radians(i*Deg_Step))*INNER_RADIUS
            y = cos(radians(i*Deg_Step))*INNER_RADIUS
            verts.append([x,y,Height_Offset - (Height_Step*i) ])
        Height_Offset -= Root_to_Crest_Height
        Row += 1


    Row_Inc,Height_Offset = Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset)
    Row += Row_Inc

    faces.extend(Build_Face_List_Quads(FaceStart,DIV,Row -1,INTERNAL))

    return verts,faces,0 - Height_Offset


def Nut_Mesh(props, context):

    verts = []
    faces = []
    Head_Verts = []
    Head_Faces= []
    #sc = context.scene

    New_Nut_Height = 5

    Face_Start = len(verts)
    Thread_Verts,Thread_Faces,New_Nut_Height = Create_Internal_Thread(props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Hex_Nut_Height,props.bf_Crest_Percent,props.bf_Root_Percent,1)
    verts.extend(Thread_Verts)
    faces.extend(Copy_Faces(Thread_Faces,Face_Start))

    Face_Start = len(verts)
    Head_Verts,Head_Faces,Lock_Nut_Rad = add_Hex_Nut(props.bf_Hex_Nut_Flat_Distance,props.bf_Major_Dia,New_Nut_Height)
    verts.extend((Head_Verts))
    faces.extend(Copy_Faces(Head_Faces,Face_Start))

    LowZ = 0 - New_Nut_Height

    if props.bf_Nut_Type == 'bf_Nut_Lock':
        Face_Start = len(verts)
        Nylon_Head_Verts,Nylon_Head_faces,LowZ = add_Nylon_Head(Lock_Nut_Rad,0-New_Nut_Height)
        verts.extend((Nylon_Head_Verts))
        faces.extend(Copy_Faces(Nylon_Head_faces,Face_Start))

        Face_Start = len(verts)
        Nylon_Verts,Nylon_faces,Temp_LowZ = add_Nylon_Part(Lock_Nut_Rad,0-New_Nut_Height)
        verts.extend((Nylon_Verts))
        faces.extend(Copy_Faces(Nylon_faces,Face_Start))


    return Move_Verts_Up_Z(verts,0 - LowZ),faces



##########################################################################################
##########################################################################################
##########################################################################################
##                    Create Bolt
##########################################################################################
##########################################################################################



def Bolt_Mesh(props, context):


    verts = []
    faces = []
    Bit_Verts = []
    Bit_Faces = []
    Bit_Dia = 0.001
    Head_Verts = []
    Head_Faces= []
    Head_Height = 0.0
    #sc = context.scene

    ReSized_Allen_Bit_Flat_Distance = props.bf_Allen_Bit_Flat_Distance   # set default


    Head_Height = props.bf_Hex_Head_Height # will be changed by the Head Functions


    if props.bf_Bit_Type == 'bf_Bit_Allen' and props.bf_Head_Type == 'bf_Head_Pan':
        #need to size Allen bit if it is too big.
        if  Allen_Bit_Dia(props.bf_Allen_Bit_Flat_Distance) > Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia):
            ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Dia_To_Flat(Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia)) * 1.05
            #print ("Resized Allen Bit Flat Distance to ",ReSized_Allen_Bit_Flat_Distance)

    #bit Mesh
    if props.bf_Bit_Type == 'bf_Bit_Allen':
        Bit_Verts,Bit_Faces,Bit_Dia = Create_Allen_Bit(ReSized_Allen_Bit_Flat_Distance,props.bf_Allen_Bit_Depth)

    if props.bf_Bit_Type == 'bf_Bit_Philips':
        Bit_Verts,Bit_Faces,Bit_Dia = Create_Phillips_Bit(props.bf_Philips_Bit_Dia,props.bf_Philips_Bit_Dia*(0.5/1.82),props.bf_Phillips_Bit_Depth)


    #Head Mesh

    if props.bf_Head_Type =='bf_Head_Hex':
        Head_Verts,Head_Faces,Head_Height = Create_Hex_Head(props.bf_Hex_Head_Flat_Distance,Bit_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height)

    elif props.bf_Head_Type == 'bf_Head_Cap':
        Head_Verts,Head_Faces,Head_Height = Create_Cap_Head(Bit_Dia,props.bf_Cap_Head_Dia,props.bf_Shank_Dia,props.bf_Cap_Head_Height,props.bf_Cap_Head_Dia*(1.0/19.0),props.bf_Cap_Head_Dia*(1.0/19.0))

    elif props.bf_Head_Type =='bf_Head_Dome':
        Head_Verts,Head_Faces,Head_Height = Create_Dome_Head(Bit_Dia,props.bf_Dome_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0)

    elif props.bf_Head_Type == 'bf_Head_Pan':
        Head_Verts,Head_Faces,Head_Height = Create_Pan_Head(Bit_Dia,props.bf_Pan_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0)

    elif props.bf_Head_Type == 'bf_Head_CounterSink':
        Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(0.09/6.31))
#Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(1.0/19.0))

    Face_Start = len(verts)
    verts.extend(Move_Verts_Up_Z(Bit_Verts,Head_Height))
    faces.extend(Copy_Faces(Bit_Faces,Face_Start))

    Face_Start = len(verts)
    verts.extend(Move_Verts_Up_Z(Head_Verts,Head_Height))
    faces.extend(Copy_Faces(Head_Faces,Face_Start))

    Face_Start = len(verts)
    Thread_Verts,Thread_Faces,Thread_Height = Create_External_Thread(props.bf_Shank_Dia,props.bf_Shank_Length,props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Thread_Length,props.bf_Crest_Percent,props.bf_Root_Percent)

    verts.extend(Move_Verts_Up_Z(Thread_Verts,00))
    faces.extend(Copy_Faces(Thread_Faces,Face_Start))

    return Move_Verts_Up_Z(verts,Thread_Height),faces

# calculates the matrix for the new object
# depending on user pref
def align_matrix(context):
    loc = Matrix.Translation(context.scene.cursor_location)
    obj_align = context.user_preferences.edit.object_align
    if (context.space_data.type == 'VIEW_3D'
        and obj_align == 'VIEW'):
        rot = context.space_data.region_3d.view_matrix.to_3x3().inverted().to_4x4()
    else:
        rot = Matrix()
    align_matrix = loc * rot
    return align_matrix


# Create a new mesh (object) from verts/edges/faces.
# verts/edges/faces ... List of vertices/edges/faces for the
#                       new mesh (as used in from_pydata).
# name ... Name of the new mesh (& object).
# edit ... Replace existing mesh data.
# Note: Using "edit" will destroy/delete existing mesh data.
def create_mesh_object(context, verts, edges, faces, name, edit, align_matrix):
    scene = context.scene
    obj_act = scene.objects.active

    # Can't edit anything, unless we have an active obj.
    if edit and not obj_act:
        return None

    # Create new mesh
    mesh = bpy.data.meshes.new(name)

    # Make a mesh from a list of verts/edges/faces.
    mesh.from_pydata(verts, edges, faces)

    # Update mesh geometry after adding stuff.
    mesh.update()

    # Deselect all objects when in object mode
    if bpy.ops.object.select_all.poll():
        bpy.ops.object.select_all(action='DESELECT')

    if edit:
        # Replace geometry of existing object

        # Use the active obj and select it.
        ob_new = obj_act
        ob_new.select = True

        if obj_act.mode == 'OBJECT':
            # Get existing mesh datablock.
            old_mesh = ob_new.data

            # Set object data to nothing
            ob_new.data = None

            # Clear users of existing mesh datablock.
            old_mesh.user_clear()

            # Remove old mesh datablock if no users are left.
            if (old_mesh.users == 0):
                bpy.data.meshes.remove(old_mesh)

            # Assign new mesh datablock.
            ob_new.data = mesh

    else:
        # Create new object
        ob_new = bpy.data.objects.new(name, mesh)

        # Link new object to the given scene and select it.
        scene.objects.link(ob_new)
        ob_new.select = True

        # Place the object at the 3D cursor location.
        # apply viewRotaion
        ob_new.matrix_world = align_matrix

    if obj_act and obj_act.mode == 'EDIT':
        if not edit:
            # We are in EditMode, switch to ObjectMode.
            bpy.ops.object.mode_set(mode='OBJECT')

            # Select the active object as well.
            obj_act.select = True

            # Apply location of new object.
            scene.update()

            # Join new object into the active.
            bpy.ops.object.join()

            # Switching back to EditMode.
            bpy.ops.object.mode_set(mode='EDIT')

            ob_new = obj_act

    else:
        # We are in ObjectMode.
        # Make the new object the active one.
        scene.objects.active = ob_new

    return ob_new


def Create_New_Mesh(props, context, align_matrix):

    verts = []
    faces = []
    # sMeshName =''  # UNUSED
    sObjName =''

    if props.bf_Model_Type == 'bf_Model_Bolt':
        #print('Create Bolt')
        verts, faces = Bolt_Mesh(props, context)
        # sMeshName = 'Bolt'  # UNUSED
        sObjName = 'Bolt'

    if props.bf_Model_Type == 'bf_Model_Nut':
        #print('Create Nut')
        verts, faces = Nut_Mesh(props, context)
        # sMeshName = 'Nut'  # UNUSED
        sObjName = 'Nut'


    verts, faces = RemoveDoubles(verts, faces)

    verts = Scale_Mesh_Verts(verts,GLOBAL_SCALE)

    obj = create_mesh_object(context, verts, [], faces,sObjName,
            props.edit, align_matrix)

    return obj