Přejít na obsah | Přejít na navigaci

Osobní nástroje

Nacházíte se zde: Úvod / Anselm Cluster Documentation / Software / OMICS Master / images

images

Obrázek PNG image Fig 1
OMICS MASTER solution overview. Data is produced in the external labs and comes to IT4I (represented by the blue dashed line). The data pre-processor converts raw data into a list of variants and annotations for each sequenced patient. These lists files together with primary and secondary (alignment) data files are stored in IT4I sequence DB and uploaded to the discovery (candidate priorization) or diagnostic component where they can be analysed directly by the user that produced them, depending of the experimental design carried out.
Obrázek PNG image fig2.png
FASTQ file.
Obrázek PNG image table1.png
Mandatory fields in the SAM format.
Obrázek PNG image fig3.png
SAM format file. The ‘@SQ’ line in the header section gives the order of reference sequences. Notably, r001 is the name of a read pair. According to FLAG 163 (=1+2+32+128), the read mapped to position 7 is the second read in the pair (128) and regarded as properly paired (1 + 2); its mate is mapped to 37 on the reverse strand (32). Read r002 has three soft-clipped (unaligned) bases. The coordinate shown in SAM is the position of the first aligned base. The CIGAR string for this alignment contains a P (padding) operation which correctly aligns the inserted sequences. Padding operations can be absent when an aligner does not support multiple sequence alignment. The last six bases of read r003 map to position 9, and the first five to position 29 on the reverse strand. The hard clipping operation H indicates that the clipped sequence is not present in the sequence field. The NM tag gives the number of mismatches. Read r004 is aligned across an intron, indicated by the N operation.
Obrázek PNG image fig4.png
a) Example of valid VCF. The header lines ##fileformat and #CHROM are mandatory, the rest is optional but strongly recommended. Each line of the body describes variants present in the sampled population at one genomic position or region. All alternate alleles are listed in the ALT column and referenced from the genotype fields as 1-based indexes to this list; the reference haplotype is designated as 0. For multiploid data, the separator indicates whether the data are phased (|) or unphased (/). Thus, the two alleles C and G at the positions 2 and 5 in this figure occur on the same chromosome in SAMPLE1. The first data line shows an example of a deletion (present in SAMPLE1) and a replacement of two bases by another base (SAMPLE2); the second line shows a SNP and an insertion; the third a SNP; the fourth a large structural variant described by the annotation in the INFO column, the coordinate is that of the base before the variant. (b–f ) Alignments and VCF representations of different sequence variants: SNP, insertion, deletion, replacement, and a large deletion. The REF columns shows the reference bases replaced by the haplotype in the ALT column. The coordinate refers to the first reference base. (g) Users are advised to use simplest representation possible and lowest coordinate in cases where the position is ambiguous.
Obrázek PNG image fig5.png
Interface of the application. Panels for defining targeted regions of interest can be set up by just drag and drop known disease genes or disease definitions from the lists. Thus, virtual panels can be interactively improved as the knowledge of the disease increases.
Obrázek PNG image fig6.png
Web interface to the prioritization tool. This figure shows the interface of the web tool for candidate gene prioritization with the filters available. The tool includes a genomic viewer (Genome Maps 30) that enables the representation of the variants in the corresponding genomic coordinates.
Obrázek PNG image fig7.png
TEAM upload panel. Once the file has been uploaded, a panel must be chosen from the Panel list. Then, pressing the Run button the diagnostic process starts.
Obrázek PNG image fig7x.png
The panel manager. The elements used to define a panel are (A) disease terms, (B) diagnostic mutations and (C) genes. Arrows represent actions that can be taken in the panel manager. Panels can be defined by using the known mutations and genes of a particular disease. This can be done by dragging them to the Primary Diagnostic box (action D). This action, in addition to defining the diseases in the Primary Diagnostic box, automatically adds the corresponding genes to the Genes box. The panels can be customized by adding new genes (action F) or removing undesired genes (action G). New disease mutations can be added independently or associated to an already existing disease term (action E). Disease terms can be removed by simply dragging themback (action H).
Obrázek PNG image fig8.png
BierApp VCF upload panel. It is recommended to choose a name for the job as well as a description.
Obrázek PNG image fig9.png
This picture shows all the information associated to the variants. If a variant has an associated phenotype we could see it in the last column. In this case, the variant 7:132481242 C>T is associated to the phenotype: large intestine tumor.