
PBS Works is a division of

PBS Professional® 12.0

Programmer’s Guide

Altair PBS Professional

12 Programmer’s Guide, updated 1/25/13

Copyright © 2003-2012 Altair Engineering, Inc. All rights reserved.

PBS™, PBS Works™, PBS GridWorks®, PBS Professional®, PBS Analytics™, PBS Catalyst™,
e-Compute™, and e-Render™ are trademarks of Altair Engineering, Inc. and are protected under
U.S. and international laws and treaties. All other marks are the property of their respective own-
ers.

ALTAIR ENGINEERING INC. Proprietary and Confidential. Contains Trade Secret Information.
Not for use or disclosure outside ALTAIR and its licensed clients. Information contained herein
shall not be decompiled, disassembled, duplicated or disclosed in whole or in part for any pur-
pose. Usage of the software is only as explicitly permitted in the end user software license agree-
ment.

Copyright notice does not imply publication.

For documentation and the PBS Works forums, go to:
Web: www.pbsworks.com

For more information, contact Altair at:
Email: pbssales@altair.com

T

echnical Support

This document is proprietary information of

Altair Engineering, Inc.

Location

T

elephone e-mail

North

America +1 248 614 2425 pbssupport@altair.com

China +86 (0)21 6117 1666 es@altair.com.cn

France +33 (0)1 4133 0992 francesupport@altair.com

Germany +49 (0)7031 6208 22 hwsupport@altair.de

India +91 80 66 29 4500 pbs-support@india.altair.com

Italy +39 0832 315573
+39 800 905595

support@altairengineering.it

Japan +81 3 5396 2881 pbs@altairjp.co.jp

Korea +82 31 728 8600 support@altair.co.kr

Scandinavia +46 (0)46 286 2050 support@altair.se

UK +44 (0)1926 468 600 pbssupport@uk.altair.com

Table of Contents

Acknowledgements vii

About PBS Documentation ix

1 Introduction 1
1.1 Location of API Libraries . 1
1.2 Location of Header Files . 1
1.3 Example Compilation Line . 1
1.4 Deprecations . 1

2 Concepts and Components 3
2.1 PBS Components. 4

3 Server Functions 7
3.1 General Identifiers . 7
3.2 Batch Server Functions . 10
3.3 Server Management. 10
3.4 Queue Management. 13
3.5 Job Management . 13
3.6 Server to Server Requests . 19
3.7 Deferred Services . 22
3.8 Resource Management . 26
3.9 Network Protocol . 27

4 Batch Interface Library (IFL) 29
4.1 Interface Library Overview . 29
4.2 Interface Library Routines. 30
PBS Professional 12 Programmer’s Guide iii

Table of Contents

5 RPP Library 79
5.1 RPP Library Routines . 79

6 TM Library 85
6.1 TM Library Routines. 85

7 RM Library 93
7.1 RM Library Routines. 93

8 TCL/tk Interface 97
8.1 TCL/tk API Functions . 97

9 Hooks 105
9.1 Introduction . 105
9.2 How Hooks Work . 106
9.3 Interface to Hooks . 107

10 HPC Basic Profile 129
10.1 Introduction . 129
10.2 How PBS Works With HPC Basic Profile . 129
10.3 Examples . 134
10.4 Caveats . 142
10.5 See Also. 142

Appendix A: License Agreement 145

Index 155
iv PBS Professional 12 Programmer’s Guide

List of Manual Pages

openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq, fullresp 94
pbs_alterjob 31
pbs_connect 33
pbs_default 35
pbs_deljob 36
pbs_delresv 37
pbs_disconnect 38
pbs_geterrmsg 39
pbs_holdjob 40
pbs_locjob 41
pbs_manager 42
pbs_module 108
pbs_movejob 45
pbs_msgjob 46
pbs_orderjob 47
pbs_rerunjob 48
pbs_rescreserve, pbs_rescrelease 49
pbs_rlsjob 51
pbs_runjob, pbs_asyrunjob 52
pbs_selectjob 54
pbs_selstat 56
pbs_sigjob 59
pbs_stagein 60
pbs_statfree 61
pbs_stathook(3B) 126
pbs_statjob 62
pbs_statnode, pbs_statvnode, pbs_stathost 64
pbs_statque 66
pbs_statresv 68
pbs_statsched 70
pbs_statserver 72
PBS Professional 12 Programmer’s Guide v

pbs_submit 74
pbs_submit_resv 76
pbs_tclapi 98
pbs_terminate 78
rpp_open, rpp_bind, rpp_poll, rpp_io, rpp_read, rpp_write, rpp_close, rpp_getaddr,
rpp_flush, rpp_terminate, rpp_shutdown, rpp_rcommit, rpp_wcommit, rpp_eom, rpp_getc,
rpp_putc 80
tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo,
tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach 86
vi PBS Professional 12 Programmer’s Guide

Acknowledgements
PBS Professional is the enhanced commercial version of the PBS software originally devel-
oped for NASA. The NASA version had a number of corporate and individual contributors
over the years, for which the PBS developers and PBS community are most grateful. Below
we provide formal legal acknowledgements to corporate and government entities, then special
thanks to individuals.

The NASA version of PBS contained software developed by NASA Ames Research Center,
Lawrence Livermore National Laboratory, and MRJ Technology Solutions. In addition, it
included software developed by the NetBSD Foundation, Inc., and its contributors, as well as
software developed by the University of California, Berkeley and its contributors.

Other contributors to the NASA version of PBS include Bruce Kelly and Clark Streeter of
NERSC; Kent Crispin and Terry Heidelberg of LLNL; John Kochmar and Rob Pennington of
Pittsburgh Supercomputing Center; and Dirk Grunwald of University of Colorado, Boulder.
The ports of PBS to the Cray T3e and the IBM SP SMP were funded by DoD USAERDC,
Major Shared Research Center; the port of PBS to the Cray SV1 was funded by DoD MSIC.

No list of acknowledgements for PBS would possibly be complete without special recognition
of the first two beta test sites. Thomas Milliman of the Space Sciences Center of the Univer-
sity of New Hampshire was the first beta tester. Wendy Lin of Purdue University was the sec-
ond beta tester and holds the honor of submitting more problem reports than anyone else
outside of NASA.
PBS Professional 12 Programmer’s Guide vii

viii PBS Professional 12 Programmer’s Guide

About PBS Documentation
Where to Keep the Documentation

To make cross-references work, put all of the PBS guides in the same directory.

What is PBS Professional?

PBS is a workload management system that provides a unified batch queuing and job man-
agement interface to a set of computing resources.

The PBS Professional Documentation

The documentation for PBS Professional includes the following:

PBS Professional Administrator’s Guide:

Provides the PBS administrator with the information required to configure and manage
PBS Professional (PBS).

PBS Professional Quick Start Guide:

Provides a quick overview of PBS Professional installation and license file generation.

PBS Professional Installation & Upgrade Guide:

Contains information on installing and upgrading PBS Professional.

PBS Professional User’s Guide:

Covers user commands and how to submit, monitor, track, delete, and manipulate jobs.

PBS Professional Programmer’s Guide:

Discusses the PBS application programming interface (API).
PBS Professional 12 Programmer’s Guide ix

PBS Professional Reference Guide:

Contains PBS reference material.

PBS Manual Pages:

Describe PBS commands, resources, attributes, APIs

Ordering Software and Publications

To order additional copies of this manual and other PBS publications, or to purchase addi-
tional software licenses, contact your Altair sales representative. Contact information is
included on the copyright page of this book.

Document Conventions

PBS documentation uses the following typographic conventions:

abbreviation

The shortest acceptable abbreviation of a command or subcommand is underlined.

command

Commands such as qmgr and scp

input

Command-line instructions

manpage(x)

File and path names. Manual page references include the section number in parentheses
appended to the manual page name.

formats

Formats

Attributes

Attributes, parameters, objects, variable names, resources, types

Values

Keywords, instances, states, values, labels

Definitions

Terms being defined
x PBS Professional 12 Programmer’s Guide

Output

Output or example code

File contents
PBS Professional 12 Programmer’s Guide xi

xii PBS Professional 12 Programmer’s Guide

Chapter 1
Introduction
This book, the Programmer’s Guide for PBS Professional, is provided to document the
external application programming interfaces to the PBS Professional software.

1.1 Location of API Libraries

All of the libraries containing the PBS API are installed by default in $PBS_EXEC/lib/.

1.2 Location of Header Files

Header files used by customer-written code are found in $PBS_EXEC/include.

1.3 Example Compilation Line

An example of a compile command might look like the following:

cc mycode.c -I/usr/pbs/include -L/usr/pbs/lib -lpbs

1.4 Deprecations

The following are deprecated:

pbs_tclapi

pbs_rescquery
PBS Professional 12 Programmer’s Guide 1

Chapter 1 Introduction
2 PBS Professional 12 Programmer’s Guide

Chapter 2
Concepts and Components
PBS is a distributed workload management system. As such, PBS handles the management
and monitoring of the computational workload on a set of one or more computers. Modern
workload/resource management solutions like PBS include the features of traditional batch
queueing but offer greater flexibility and control than first generation batch systems (such as
the original batch system NQS).

Workload management systems have three primary roles:

Queuing
The collecting together of work or tasks to be run on a computer. Users sub-
mit tasks or “jobs” to the resource management system where they are held
until the system is ready to run them.

Scheduling
The process of selecting which jobs to run when and where, according to a
predetermined policy. Sites balance competing needs and goals on the sys-
tem(s) to maximize efficient use of resources (both computer time and peo-
ple time).

Monitoring
The act of tracking and reserving system resources and enforcing usage pol-
icy. This covers both user-level and system-level monitoring as well as
monitoring of the scheduling algorithms to see how well they are meeting
the stated goals
PBS Professional 12 Programmer’s Guide 3

Chapter 2 Concepts and Components
2.1 PBS Components

PBS consist of two major component types: system daemons and user-level commands. A
brief description of each is given here to help you make decisions during the installation pro-
cess.

Job Server
The Job Server daemon process is the central focus for PBS. Within this
document, it is generally referred to as the Server or by the execution name
pbs_server. All commands and daemons communicate with the Server via
an Internet Protocol (IP) network. The Server’s main function is to provide
the basic batch services such as receiving/creating a batch job, modifying
the job, protecting the job against system crashes, and running the job. Typ-
ically there is one Server managing a given set of resources.

Scheduler

MOM

Server
Jobs

 PBS
Commands

Kernel

Batch
 Job
4 PBS Professional 12 Programmer’s Guide

Concepts and Components Chapter 2
Job Executor (MOM)
The Job Executor is the daemon that actually places the job into execution.
This daemon, pbs_mom, is informally called MOM as it is the mother of all
executing jobs. (MOM is a reverse-engineered acronym that stands for
Machine Oriented Miniserver.) MOM places a job into execution when it
receives a copy of the job from a Server. MOM creates a new session that is
as identical to a user login session as is possible. For example, if the user’s
login shell is csh, then MOM creates a session in which .login is run as
well as .cshrc. MOM also has the responsibility for returning the job’s
output to the user when directed to do so by the Server. One MOM daemon
runs on each computer which will execute PBS jobs.

Job Scheduler
The Job Scheduler daemon, pbs_sched, implements the site’s policy con-
trolling when each job is run and on which resources. The Scheduler com-
municates with the various MOMs to query the state of system resources
and with the Server to learn about the availability of jobs to execute. The
interface to the Server is through the same API as used by the client com-
mands. Note that the Scheduler communicates with the Server with the
same privilege as the PBS Manager.

Commands
PBS supplies both command line programs that are POSIX 1003.2d con-
forming and a graphical interface. These are used to submit, monitor, mod-
ify, and delete jobs. These client commands can be installed on any system
type supported by PBS and do not require the local presence of any of the
other components of PBS.

There are three classifications of commands: user commands (which any
authorized user can use), operator commands, and manager (or administra-
tor) commands. Operator and Manager commands require specific access
privileges, as discussed in the PBS Professional Administrator’s Guide.
PBS Professional 12 Programmer’s Guide 5

Chapter 2 Concepts and Components
6 PBS Professional 12 Programmer’s Guide

Chapter 3
Server Functions
This chapter presents formal definitions for identifiers and names to be used throughout the
remainder of this document, followed by detailed discussion of the various functions of the
PBS Professional Server process.

3.1 General Identifiers

The following identifiers or names are referenced throughout this document. Unless other-
wise noted, their usage will conform to the definition and syntax described in the following
subsections and to the general rules described in the next paragraph. If allowed as part of the
identifier, when entering the identifier string on the command line or in a PBS job script direc-
tive, embedded single or double quote marks must be escaped by enclosing the string in the
other type of quote mark. Therefore, the string may not contain both types of quote marks. If
white space is allowed in the identifier string, the string must be quoted when it is entered on
the command line or in a PBS job directive.

3.1.1 Account String

An Account String is a string of characters that some Server implementations may use to pro-
vide addition accounting or charge information. The syntax is unspecified except that it must
be a single string. When provided on the command line to a PBS utility or in a directive in a
PBS job script, any embedded white space must be escaped by enclosing the string in quotes.
PBS Professional 12 Programmer’s Guide 7

Chapter 3 Server Functions
3.1.2 Attribute Name

An Attribute Name identifies an attribute or data item that is part of the information that
makes up a job, queue, or Server. The name must consist of alphanumeric characters plus the
underscore, ’_’, character. It should start with an alphanumeric character. The length is not
limited. The names recognized by PBS are listed in sections 2.2, 2.3, and 2.4.

3.1.3 Destination Identifiers

A destination identifier is a string used to specify a particular destination. The identifier may
be specified in one of three forms:

queue@server_name

queue

@server_name

where queue is an ASCII character string of up to 15 characters. Valid characters are alpha-
numerics, the hyphen and the underscore. The string must begin with a letter. Queue is the
name of a queue at the batch Server specified by server_name. That Server will interpret
the queue string. If queue is omitted, a null string is assumed. server_name is a string
identifying a Server; see server_name, below. If server_name is omitted, the default
Server is assumed.

3.1.4 Default Server

When a Server is not specified to a client, the client will send batch requests to the Server
identified as the default Server. A client identifies the default Server by (a) the setting of the
environment variable PBS_DEFAULT which contains a Server name, or (b) by editing the
PBS_SERVER variable in the /etc/pbs.conf file on the local host. Note that if both are
present, PBS_DEFAULT overrides the PBS_SERVER specification.

3.1.5 Host Name

A Host Name is a string that identifies a host or system on the network. The syntax of the
string must follow the rules established by the network. For IP, a host name is of the form
name.domain, where domain is a hierarchical, dot-separated List of subdomains. Therefore, a
host name cannot contain a dot, “.” as a legal character other than as a subdomain separator.
The name must not contain the commercial at sign, “@”, as this is often used to separate a file
from the host in a remote file name. Also, to prevent confusion with port numbers (see section
2.7.9) a host name cannot contain a colon, ":". The maximum length of a host name supported
by PBS is defined by PBS_MAXHOSTNAME, currently set to 64.
8 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
3.1.6 Job Identifiers

When the term job identifier is used, the identifier is specified as:
sequence_number[.server_name][@server] The sequence_number is the
number supplied by the Server when the job was submitted. The server_name component
is the name of the Server which created the job. If it is missing, the name of the default Server
will be assumed. @server specifies the current location of the job. When the term fully
qualified job identifier is used, the identifier is specified as:

sequence_number.server[@server]

The @server suffix is not required if the job is still resides at the original Server which cre-
ated the job. The qsub command will return a fully qualified job identifier.

3.1.7 Job Name

A Job Name is a string assigned by the user to provide a meaningful label to identify the job.
The job name is up to and including 15 characters in length and may contain any printable
characters other than white space. It must start with an alphanumeric character. If the user
does not assign a name, PBS will assign a default name as described under the -N option of
the qsub(1) command.

3.1.8 Resource Name

A Resource Name identifies a job resource requirement and may also identify a resource
usage limit. The name must consist of alphanumeric characters plus the underscore, “_”, char-
acter. It should start with an alphanumeric character. The length is not limited. Certain
resource names are identified and reserved by POSIX 1003.2d and by PBS. They are listed
below in section “Types of Resources”.

3.1.9 Server Name.

Server Name is an ASCII character string of the form: basic_server_name[:port]
The string identifies a batch Server. Basic Server names are identical to host names. The net-
work routine gethostbyname will be used to translate to a network address. The network
routine getservbyname will be used to determine the port number. An alternate port num-
ber may be specified by appending a colon, “:”, and the port number to the host name. This
provides the means of specifying an alternate (test) Server on a host
PBS Professional 12 Programmer’s Guide 9

Chapter 3 Server Functions
3.1.10 User Name

A User Name is a string which identifies a user on the system under PBS. It is also known as
the login name. PBS will accept names up to and including 16 characters. The name may con-
tain any printable, non white space character excluding the commercial at sign, “@”. The var-
ious systems on which PBS is executing may place additional limitations on the user name.

3.2 Batch Server Functions

A batch Server provides services in one of two ways, (1) the Server provides a service at the
request of a client; or (2) the Server provides a deferred service as a result of a change in con-
ditions monitored by the Server. The Server also performs a number of internal bookkeeping
functions that are described in this major section.

3.2.1 Client Service Requests

By definition, clients are processes that make requests of a batch Server. The requests may ask
for an action to be performed on one or more jobs, one or more queues, or the Server itself.
Those requests that cannot be successfully completed, are rejected. The reason for the rejec-
tion is returned in the reply to the client.

3.2.2 Deferred Services

The Server may, depending on conditions being monitored, defer a client service request until
a later time. (Deferred services include file staging, job scheduling, etc.) Detailed discussion
of the deferred services provided by the Server is given in section 3.7, “Deferred Services”,
on page 22 below.

3.3 Server Management

The following sections describe the services provided by a batch Server in response to a
request from a client. The requests are grouped in the following subsections by the type of
object affected by the request: Server, queue, job, or resource. The batch requests described in
10 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
this section control the functioning of the batch Server. The control is either direct as in the
Shut Down request, or indirect as when Server attributes are modified. The following table
provides the numeric value of each of the batch request codes.

Table 3-1: Batch Request Codes

0 PBS_BATCH_Connect 24 PBS_BATCH_Rescq

1 PBS_BATCH_QueueJob 25 PBS_BATCH_ReserveResc

2 UNUSED 26 PBS_BATCH_ReleaseResc

3 PBS_BATCH_jobscript 27 PBS_BATCH_FailOver

4 PBS_BATCH_RdytoCommit 48 PBS_BATCH_StageIn

5 PBS_BATCH_Commit 49 PBS_BATCH_AuthenUser

6 PBS_BATCH_DeleteJob 50 PBS_BATCH_OrderJob

7 PBS_BATCH_HoldJob 51 PBS_BATCH_SelStat

8 PBS_BATCH_LocateJob 52 PBS_BATCH_RegistDep

9 PBS_BATCH_Manager 54 PBS_BATCH_CopyFiles

10 PBS_BATCH_MessJob 55 PBS_BATCH_DelFiles

11 PBS_BATCH_ModifyJob 56 PBS_BATCH_JobObit

12 PBS_BATCH_MoveJob 57 PBS_BATCH_MvJobFile

13 PBS_BATCH_ReleaseJob 58 PBS_BATCH_StatusNode

14 PBS_BATCH_Rerun 59 PBS_BATCH_Disconnect

15 PBS_BATCH_RunJob 60-61 UNUSED

16 PBS_BATCH_SelectJobs 62 PBS_BATCH_JobCred

17 PBS_BATCH_Shutdown 63 PBS_BATCH_CopyFiles_Cred

18 PBS_BATCH_SignalJob 64 PBS_BATCH_DelFiles_Cred

19 PBS_BATCH_StatusJob 65 PBS_BATCH_GSS_Context

20 PBS_BATCH_StatusQue 66-69 UNUSED

21 PBS_BATCH_StatusSvr 70 PBS_BATCH_SubmitResv
PBS Professional 12 Programmer’s Guide 11

Chapter 3 Server Functions
3.3.1 Manage Request

The Manage request supports the qmgr(8) command and several of the operator commands.
The command directs the Server to create, alter, or delete an object managed by the Server or
one of its attributes. For more information, see the qmgr command.

3.3.2 Server Status Request

The status of the Server may be requested with a Server Status request. The batch Server will
reject the request if the user of the client is not authorized to query the status of the Server. If
the request is accepted, the Server will return a Server Status Reply. See the qstat command
and the Data Exchange Format description for details of which Server attributes are returned
to the client.

3.3.3 Start Up

A batch request to start a Server cannot be sent to a Server since the Server is not running.
Therefore a batch Server must be started by a process local to the host on which the Server is
to run. The Server is started by a pbs_server command. The Server recovers the state of
managed objects, such as queues and jobs, from the information last recorded by the Server.
The.treatment of jobs which were in the running state when the Server previously shut down
is dictated by the start up mode, see the description of the pbs_server(8) command.

3.3.4 Shut Down

The batch Server is "shut down" when it no longer responds to requests from clients and does
not perform deferred services. The batch Server is requested to shut down by sending it a
Server Shutdown request. The Server will reject the request from a client not authorized to
shut down the Server. When the Server accepts a shut down request, it will terminate in the
manner described under the qterm command. When shutting down, the Server must record
the state of all managed objects (jobs, queues, etc.) in non-volatile memory. Jobs which were
running will be marked in the secondary state field for possible special treatment when the
Server is restarted. If checkpoint is supported, any job running at the time of the shut down
request whose Checkpoint attribute is not n, will be checkpointed. This includes jobs whose

22 PBS_BATCH_TrackJob 71 PBS_BATCH_StatusResv

23 PBS_BATCH_AsyrunJob 72 PBS_BATCH_DeleteResv

Table 3-1: Batch Request Codes
12 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
Checkpoint attribute value is “unspecified”, a value of u. If the Server receives either a SIG-
TERM or a SIGSHUTDN signal, the Server will act as if it had received a shut down immedi-
ate request.

3.4 Queue Management

The following client requests effect one or more queues managed by the Server. These
requests require a privilege level generally assigned to operators and administrators.

3.4.1 Queue Status Request

The status of a queue at the Server may be requested with a Queue Status request. The batch
Server will reject the request if any of the following conditions are true:

• The user of the client is not authorized to query the status of the designated queue.

• The designated queue does not exist on the Server.

If the request does not specify a queue, status of all the queues at the Server will be returned.
When the request is accepted, the Server will return a Queue Status Reply. See the qstat
command and the Data Exchange Format description for details of which queue attributes are
returned to the client.

3.5 Job Management

The following client requests effect one or more jobs managed by the Server. These requests
do not require any special privilege except when the job for which the request is issued is not
owned by the user making the request.

3.5.1 Queue Job Request

A Queue Job request is a complex request consisting of several subrequests: Initiate Job
Transfer, Job Data, Job Script, and Commit. The end result of a successful Queue Job request
is an additional job being managed by the Server. The job may have been created by the
request or it may have been moved from another Server. The job resides in a queue managed
by the Server. When a queue is not specified in the request, the job is placed in a queue
selected by the Server. This queue is known as the default queue. The default queue is an
PBS Professional 12 Programmer’s Guide 13

Chapter 3 Server Functions
attribute of the Server that is settable by the administrator. The queue, whether specified or
defaulted, is called the target queue. The batch Server will reject a Queue Job Request if any
of the following conditions are true:

• The client is not authorized to create a job in the target queue.

• The target queue does not exist at the Server.

• The target queue is not enabled.

• The target queue is an execution queue and a resource requirement of the job exceeds the
limits set upon the queue.

• The target queue is an execution queue and an unrecognized resource is requested by the
job.

• The job requires access to a user identifier that the client is not authorized to access.

When a job is placed in a execution queue, it is placed in the queued state unless one of the
following conditions applies:

• The job has an execution_time attribute that specifies a time in the future and the
Hold_Types attribute has value of {NONE}; in which case the job is placed in the
waiting state.

• The job has a Hold_Types attribute with a value other than {NONE}, wherein the job
is placed in the held state.

When a job is placed in a routing queue, its state may change based on the conditions
described in section 3.7.4, “Job Routing”, on page 24.

A Server that accepts a Queue Job Request for a new job will: (1) add the PBS_O_QUEUE
variable to the Variable_List attribute of the job and set the value to the name of the tar-
get queue; (2) add the PBS_JOBID variable to the Variable_List attribute of the job and
set the value to the job identifier assigned to the job; (3) add the PBS_JOBNAME variable to
the Variable_List attribute of the job and set the value to the value of the Job_Name
attribute of the job. When the Server accepts a Queue Job request for an existing job, the
Server will send a Track Job request to the Server which created the job.

3.5.2 Job Credential Request

The Job Credential sub-request is part of the Queue Job complex request. This sub-request
transfers a copy of the credential provided by the authentication facility explained below.
14 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
3.5.3 Job Script Request

The Job Script sub-request is part of the Queue Job complex request. This sub-request passes
a block of the job script file to the receiving Server. The script is broken into 8 kilobyte blocks
to prevent having to hold the entire script in memory. One or more Job Script sub-requests
may be required to transfer the script file.

3.5.4 Commit Request

The Commit sub-request is part of the Queue Job request. The Commit notifies the receiving
Server that all parts of the job have been transferred and the receiving Server should now
assume ownership of the job. Prior to sending the Commit, the sending client, command or
another Server, is the owner.

3.5.5 Message Job Request

A batch Server can be requested to write a string of characters to one or both output streams of
an executing job. This request is primarily used by an operator to record a message for the
user. The batch Server will reject a Message Job request if any of the following conditions are
true:

• The designated job is not in the running state.

• The user of the client is not authorized to post a message to the designated job.

• The designated job is not owned by the Server.

When the Server accepts the Message Job request, it will forward the request to the primary
MOM daemon for the job. (Upon receipt of the Message Job request from the Server, the
MOM will append the message string, followed by a new line character, to the file or files
indicated. If no file is indicated, the message will be written to the standard error of the job.)

3.5.6 Locate Job Request

A client may ask a Server to respond with the location of a job that was created or is owned by
the Server. When the Server accepts the Locate Job request, it returns a Locate Reply. The
request will be rejected if any of the following conditions are true:

• The Server does not own (manage) the job, and

• The Server did not create the job.

• The Server is not maintaining a record of the current location of the job.
PBS Professional 12 Programmer’s Guide 15

Chapter 3 Server Functions
3.5.7 Delete Job Request

A Delete Job request asks a Server to remove a job from the queue in which it exists and not
place it elsewhere. The batch Server will reject a Delete Job Request if any of the following
conditions are true:

• The user of the client is not authorized to delete the designated job.

• The designated job is not owned by the Server.

• The designated job is not in an eligible state. Eligible states are queued, held, waiting,
running, and transiting.

If the job is in the running state, the Server will forward the Delete Job request to the primary
MOM daemon responsible for the job. (Upon receipt, the MOM daemon will first send a SIG-
TERM signal to the job process group. After a delay specified by the delete request or if not
specified, the kill_delay queue attribute, the MOM will send a SIGKILL signal to the job
process group. The job is then placed into the exiting state.) Option arguments exist to specify
the “delay” time (seconds) between the SIGTERM and SIGKILL signals, as well as to
“force” the deletion of the job even if the node on it is running is not responding.

3.5.8 Modify Job Request

A batch client makes a Modify Job request to the Server to alter the attributes of a job. The
batch Server will reject a Modify Job Request if any of the following conditions are true:

• The user of the client is not authorized to make the requested modification to the job.

• The designated job is not owned by the Server.

• The requested modification is inconsistent with the state of the job.

• A requested resource change would exceed the limits of the queue or Server.

• An unrecognized resource is requested for a job in an execution queue.

When the batch Server accepts a Modify Job Request, it will modify all the specified
attributes of the job. When the batch Server rejects a Modify Job Request, it will modify none
of the attributes of the job.

3.5.9 Run Job

The "Run Job" request directs the Server to place the specified job into immediate execution.
The request is issued by a qrun operator command and by the PBS Job Scheduler.
16 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
3.5.9.1 Rerun Job Request

To rerun a job is to kill the members of the session (process) group of the job and leave the job
in the execution queue. If the Hold_Types attribute is not {NONE }, the job is eligible to be
re-scheduled for execution. The Server will reject the Rerun Job request if any of the follow-
ing conditions are true:

• The user of the client is not authorized to rerun the designated job.

• The Rerunnable attribute of the job has the value {FALSE}.

• The job is not in the running state.

• The Server does not own the job.

When the Server accepts the Rerun Job request, the request will be forwarded to the primary
MOM responsible for the job, who will then perform the following actions:

• Send a SIGKILL signal to the session (process) group of the job.

• Send an OBIT notice to the Server with resource usage information

• The Server will then requeue the job in the execution queue in which it was executing.

If the Hold_Types attribute is not {NONE}, the job will be placed in the held state. If the
execution_time attribute is a future time, the job will be placed in the waiting state. Oth-
erwise, the job is.placed in the queued state.

3.5.10 Hold Job Request

A client can request that one or more holds be applied to a job. The batch Server will reject a
Hold Job request if any of the following conditions are true:

• The user of the client is not authorized to add any of the specified holds.

• The batch Server does not manage the specified job.

When the Server accepts the Hold Job Request, it will add each type of hold listed which is
not already present to the value of the Hold_Types attribute of the job. If the job is in the
queued or waiting state, it is placed in the held state. If the job is in running state, then the fol-
lowing additional actions are taken: If check-point / restart is supported by the host system,
placing a hold on a running job will cause the job (1) to be checkpointed, (2) the resources
assigned to the job will be released, and (3) the job is placed in the held state in the execution
queue. If checkpoint / restart is not supported, the Server will only set the requested hold
attribute. This will have no effect unless the job is rerun or restarted.
PBS Professional 12 Programmer’s Guide 17

Chapter 3 Server Functions
3.5.11 Release Job Request

A client can request that one or more holds be removed from a job. A batch Server rejects a
Release Job request if any of the following conditions are true:

• The user of the client is not authorized to add (remove) any of the specified holds.

• The batch Server does not manage the specified job.

When the Server accepts the Release Job Request, it will remove each type of hold listed from
the value of the Hold_Types attribute of the job. Normally, the job will then be placed in
the queued state, unless another hold type is remaining on the job. However, if the job is in the
held state and all holds have been removed, the job is placed in the waiting state if the
Execution_Time attribute specifies a time in the future.

3.5.12 Move Job Request

A client can request a Server to move a job to a new destination. The batch Server will reject
a Move Job Request if any of the following conditions are true:

• The user of the client is not authorized to remove the designated job from the queue in
which the job resides.

• The user of the client is not authorized to submit a job to the new destination.

• The designated job is not owned by the Server.

• The designated job is not in the queued, held, or waiting state.

• The new destination is disabled.

• The new destination is inaccessible. When the Server accepts a Move Job request, it will

 - Queue the designated job at the new destination.

 - Remove the job from the current queue.

If the destination exists at a different Server, the current Server will transfer the job to the new
Server by sending a Queue Job request sequence to the target Server. The Server will insure
that a job is neither lost nor duplicated.

3.5.13 Select Jobs Request

A client is able to request from the Server a list of jobs owned by that Server that match a list
of selection criteria. The request is a Select Jobs request. All the jobs owned by the Server and
which the user is authorized to query are initially eligible for selection. Job attributes and
resources relationships listed in the request restrict the selection of jobs. Only jobs which have
attributes and resources that meet the specified relations will be selected. The Server will
18 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
reject the request if the queue portion of a specified destination does not exist on the Server.
When the request is accepted, the Server will return a Select Reply containing a list of zero or
more jobs that met the selection criteria.

3.5.14 Signal Job Request

A batch client is able to request that the Server signal the session (process) group of a job.
Such a request is called a Signal Job request. The batch Server will reject a Signal Job Request
if any of the following conditions are true:

• The user of the client is not authorized to signal the job.

• The job is not in the running state, except for the special signal “resume” when the job
must be in the Suspended state.

• The Server does not own the designated job.

• The requested signal is not supported by the host operating system. (The kill system call
returns [EINVAL].)

When the Server accepts a request to signal a job, it will forward the request to the primary
MOM daemon responsible for the job, who will then send the signal requested by the client to
the all processes in the job’s session.

3.5.15 Status Job Request

The status of a job or set of jobs at a destination may be requested with a Status Job request.
The batch Server will reject a Status Job Request if any of the following conditions are true:

• The user of the client is not authorized to query the status of the designated job.

• The designated job is not owned by the Server.

When the Server accepts the request, it will return a Job Status Message to the client. See the
qstat command and the Data Exchange Format description for details of which job attributes
are returned to the client. If the request specifies a job identifier, status will be returned only
for that job. If the request specifies a destination identifier, status will be returned for all jobs
residing within the specified queue that the user is authorized to query.

3.6 Server to Server Requests

Server to Server requests are a special category of client requests. They are only issued to a
Server by another Server.
PBS Professional 12 Programmer’s Guide 19

Chapter 3 Server Functions
3.6.1 Track Job Request

A client that wishes to request an action be performed on a job must send a batch request to
the Server that currently manages the job. As jobs are routed or moved through the batch net-
work, finding the location of the job can be difficult without a tracking service. The Track Job
request forms the basis for this service. A Server that queues a job sends a track job request to
the Server which created the job. Additional backup location Servers may be defined. A
Server that receives a track job request records the information contained therein. This infor-
mation is made available in response to a Locate Job request.

3.6.2 Synchronize Job Starts

PBS provides for synchronizing the initiation of separate jobs. This is done to support distrib-
uting processing. Job start synchronization is requested through a special dependency
attribute. The first job in the set, the “master”, specifies the dependency attribute as:

-W synccount=count

where count is an integer which is the number of other jobs to be synchronized with this job.
This job is the master only in the sense that it defines the rendezvous point for the semaphore
messages and that it must be submitted first so the identifier is known for the other jobs in the
set. The other jobs in the sync set specify the dependency attribute as:

-W syncwith=job_identifier

where job_identifier is the job identifier assigned to the job which contained the sync-
count resource, the master job. When the Server queues a job in an execution queue and the
job is a member of a sync set, including the “master”, the Server places a system hold on the
job. The secondary state is set to indicate the system hold is for sync. The Server managing
the non master jobs will register the job with the Server managing the master by sending a
Register Dependent request with a "Register" operation. When all jobs have registered, as
determined by the count on the master, the Server managing the master job will send a Regis-
ter Dependent request, with a "Release" operation, request to each job in turn in the set to
remove the system hold. The released jobs may now vie for resources. The jobs are released in
order of the “cheapest” resources first; the concept of “Resource Costs” will be explained
shortly. When the resources required by a released job are available, as determined by the
Scheduler, A run Job Request will be issued for that job. The Server which manages the job
will send a Register Dependent request with a “Ready” operation to the Server that owns the
master job. This request indicates that the dependent job is ready and the job with the next
cheapest resources can be released.
20 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
If the master of a sync set is aborted before all jobs in the set begin execution, an Abort Job
request is sent to all jobs in the set. This is done because the synchronous feature is intended
for a set jobs which need communication amount themselves during execution. If the master
is gone, (1) the rendezvous point for Server messages is lost, and (2) the job set is unlikely to
be able to establish the inter job communications required.

3.6.3 Job Dependency

PBS provides support for job dependency. A job, the “child”, can be declared to be dependent
on one or more jobs, the “parents”. A parent may have any number of children. The depen-
dency is specified as an attribute on the qsub command with the -W option The general spec-
ification is of the form:

-W type=argument[,type=argument,...]

See the qalter(1B) or qsub(1B) man pages for the complete specification of the depen-
dency list, and the PBS Professional User’s Guide for detailed discussion of use.

When a Server queues a job with a dependency type of syncwith, after, afterok,
after notok, or after-any in an execution queue, the Server will send a Register
Dependent Job request to the Server managing the job specified by the associated
job_identifier. The request will specify that the Server is to register the dependency.
This actually creates a corresponding before type dependency attribute entry on the parent
(e.g. run job X before job Y). If the request is rejected because the parent job does not exist,
the child job is aborted. If the request is accepted, a system hold is placed on the child job.
When a parent job, with any of the before... types of dependency, reaches the required
state, started or terminated, the Server executing the parent job sends a Register Dependent
Job request to the Server managing the child job directing it to release the child job. If there
are no other dependencies on other jobs, the system hold on the child job is removed. When a
child job is submitted with an on dependency and the parent is submitted with any of the
before... types of dependencies, the parent will register with the child. This causes the
on dependency count to be reduced and a corresponding after... dependency to be cre-
ated for the child job. The result is a pairing between corresponding before... and
after... dependency types. If the parent job terminates in a manner that the child is not
released, it is up to the user to correct the situation by either deleting the child job or by cor-
recting the problem with the parent job and resubmitting it. If the parent job is resubmitted, it
must have a dependency type of before, beforeok, beforenotok, or beforeany
specified to connect it to the waiting child job.
PBS Professional 12 Programmer’s Guide 21

Chapter 3 Server Functions
3.7 Deferred Services

This section describes the deferred services performed by batch Servers: file staging, job
selection, job initiation, job routing, job exit, job abort, and the rerunning of jobs after a restart
of the Server. The following rules apply to deferred services on behalf of jobs:

• If the Server cannot complete a deferred service for a reason which is permanent, then the
job is aborted.

• If the service cannot be completed at the current time but may be later, the service is
retried a finite number of times.

3.7.1 Job Scheduling

If the Server attribute scheduling is set true, the Server will immediately request a scheduling
cycle of the PBS Job Scheduler. While it remains true, the Scheduler will be cycled when any
of four events occur:

• Enqueuing of a job in an execution queue or the change of state of a job in an execution
queue to Queued from Waiting or Held.

• Termination of a running job. The termination may be normal execution completion, or
because the job was deleted by request.

• Elapse of a specified cycle time as established by the administrator.

• The completion of a scheduling cycle in which one and only one job was scheduled for
execution. This provides for the implementation of scheduling scripts that must see the
impact of the new job on system resources before picking a second job.

While a request for a scheduling cycle is outstanding, the connection to the Scheduler is open,
the Server will not make another request of the Scheduler. If the Server attribute scheduling is
set false, the Server will not contact the scheduler. This condition is indicated by the
server_state attribute as Idle.

3.7.2 File Staging

Two types of file staging services exist, in-staging before execution and out-staging after exe-
cution. These services are requested by an attribute (via the -W option) which specifies the
files to be staged:

-Wstagein=local_file@host:remote_path [,local_file@host:remote_path,...]

-Wstageout=local_file@host:remote_path [,local_file@host:remote_path,...]
22 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
A request to stage in a file directs the Server to direct MOM to copy a file from a remote host
to the local host. The user must have authority to access the file under the same user name
under which the job will be run. The remote file is not modified or destroyed. The file will be
available before the job is initiated. If a file cannot be staged in for any reason, any files which
were staged-in are deleted and the job is placed into wait state and mail is sent to the job
owner.

A request to stage out a file directs the Server to direct MOM to move a file from the local
host to a remote host. This service is performed after the job has completed execution and
regardless of its exit status. If a file cannot be moved, mail is sent to the job owner. If a file is
successfully staged out, the local file is deleted. A version of the BSD 4.4-Lite system utility,
rcp(1), will be used to move files over the network. This version of rcp has been modified
to always return a non-zero exit status on any failure.

3.7.3 Job Initiation

Job initiation is to place a job into execution. The Server may receive a Run Job request from
the qrun command, or the PBS Job Scheduler. If the request is authenticated, then the Server
forwards the Run Job request to the appropriate MOM (as either specified in the Run Job
request, or as selected by the Server itself if unspecified).

The receiving MOM daemon will then create a session leader that runs the shell program indi-
cated by the Shell_Path_List attribute of the job. The pathname of the script and any
script arguments are passed as parameters to the shell. If the path name of the shell is a rela-
tive name, the MOM will search its execution path, $PATH, for the shell. If the path name of
the shell is omitted or is the null string, the MOM uses the login shell for the user under whose
name the job is to be run. The MOM will determine the user name under which the job is to be
run by the following rules:

1. Select the user identifier from the User_List job attribute which has a host name
that matches the execution host.

2. Select the user identifier from the User_List job attribute which has no associated
host name.

3. Use the user name from the job_owner attribute of the job.

The MOM will create, in the environment of the session leader of the job, the environment
variables named: PBS_ENVIRONMENT, the value of which is the string “PBS_BATCH”.
PBS_QUEUE has the value of the name of the execution queue. The MOM will also place in
the environment of the session leader of the job, all of the variables and their corresponding
values found in the variables attribute of the job. The MOM will place the required limits on
the resources for which the host system supports resource limits. If the job had been run
before and is now being rerun, the MOM will insure that the standard output and standard
error streams of the job are appended to the prior streams, if any. If the MOM and host system
PBS Professional 12 Programmer’s Guide 23

Chapter 3 Server Functions
support accounting, the MOM will use the value of the Account_Name job attribute as
required by the host system. If the MOM and host system support checkpoint, the MOM will
set up checkpointing of the job according to the value of the Checkpoint job attribute. If
checkpoint is supported and the Checkpoint attribute requests checkpointing at the minimum
interval or a interval less than the minimum interval for the queue, then checkpoint will be set
for an interval given by the queue attribute minimum_interval. The MOM will set up the
standard output stream and the standard error stream of the job according to the following
rules:

• The stream will be located in a temporary file in the MOM’s spool directory.

• If the job attribute Join_Path has the value eo or the value oe, the MOM connects the
standard error stream of the job to the same file as the standard output stream.

3.7.4 Job Routing

Job routing is moving a job from a routing queue to one of the destinations associated with the
queue. If the started queue attribute is {TRUE}, the Server will route all eligible jobs
which reside in the queue. All jobs in the queued state are eligible. If the queue attribute
route_held_jobs is {TRUE}, jobs in the held state are eligible for routing. If the queue
attribute route_waiting_jobs is {TRUE}, jobs in the waiting state are eligible. The
Server will execute the function specified by the queue attribute route_function to
select a destination for the job. Possible destinations are listed in the queue attribute
route_destinations. If the destination to which the job is to be routed is at another
Server, the current Server will use a Queue Job request sequence to move the job to the new
destination. If the Server is unable to route a job to a chosen destination, the Server will select
another destination from the list and retry the route. If the Server is unable to route a job to
any destination because of a temporary condition, such as being unable to connect with the
Server at the destination, the Server will retry the route after a delay specified by the queue
attribute route_retry_time. The Server will proceed to route other jobs in the queue.
The Server will retry the route up to the (queue attribute) number_retries times. If the
Server is unable to route a job to any destination and all failures are permanent (non-tempo-
rary), the Server will abort the job.

3.7.5 Job Exit

When the session leader of a batch job exits, the MOM will perform the following actions in
the order listed.

• Place the job in the exiting state.

• “Free” the resources allocated to the job. The actual releasing of resources assigned to the
processes of the job is performed by the kernel. PBS will free the resources which it
24 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
“reserved” for the job by decrementing the resources_used generic data item for the
queue and Server.

• Return the standard output and standard error streams of the job to the user. If the
Keep_Files attribute of the job contains {KEEP_OUTPUT}, the Server copies the
spooled file holding the standard output steam of the job to the home directory of the user
under whose name the job executed. The file name for the output is
job_name.oseq_number. See the qsub(1B) command description. If the
Keep_Files attribute of the job contains {KEEP_ERROR} and the Join_Path
attribute does not contain ’e’, the Server copies the spooled file holding the standard error
stream of the job to the home directory of the user under whose name the job executed.
The file name for the error file is job_name.eseq_number.

If the files are not to be kept on the execution host as described above, the temporary file
holding the standard output is copied or renamed to the host and path name specified by
the job attribute Output_Path. If the path name is relative, the file will be located rel-
ative to home directory of the user on the receiving host.

• If the Join_Path attribute does not contain the value e, the standard error of the job is
delivered according to the same rules as the standard output described above. If either
output file cannot be copied to its specified destination, the Server will send mail to the
job owner specifying the current location of the output.

• If the Mail_Points job attribute contains the value {EXIT}, the Server will send mail
to the users listed in the job attribute Mail_List.

• If out staging of files is supported, the files listed in the outfile resource will be copied to
the specified destination.

• The job will be removed from the execution queue.

3.7.6 Job Aborts

If the Server aborts a job and the Mail_Points job attribute contains the value {ABORT},
the Server will send mail to the users listed in the job attribute Mail_List. The mail mes-
sage will contain the reason the job was aborted. In addition, the stdout and stderr files
specified for the job, if they exist, will be copied back to the specified location.

3.7.7 Timed Events

The Server performs certain events at a specified time or after a specified time delay. A job
may have an execution_time attribute set to a time in the future. When that time is
reached, the job state is updated. If the Server is unable to make connection with another
Server, it is to retry after a time specified by the routing queue attribute
route_retry_time.
PBS Professional 12 Programmer’s Guide 25

Chapter 3 Server Functions
3.7.8 Event Logging

The PBS Server maintains an event logfile, the format and contents of which are documented
in the PBS Professional Administrator’s Guide.

3.7.9 Accounting.

The PBS Server maintains an accounting file, the format and contents of which are docu-
mented in the PBS Professional Administrator’s Guide.

3.8 Resource Management

PBS performs resource allocation at job initiation in two ways depending on the support pro-
vided by the host system. Resources are either reservable or non reservable.

3.8.1 Resource Limits

When submitting a job, a user may specify the hard limit of usage for resources known to the
system on which the job will run. If the executing job usage of resources exceed the specified
limit, the job is aborted. If the user does not specify a limit for a resource type, the limit may
be set to a default established by the PBS administrator. The default limit is taken from the
first of the following attributes which is set:

1. The current queue’s attribute resources_default.

2. The Server’s attribute resources_default.

3. The current queue’s attribute resources_max.

4. The Server’s attribute resources_max.

If the user does not specify a limit for a resource and a default is not established via one of the
above attributes, the usage of the resource is unlimited.

3.8.2 Resource Names

For additional information, see the PBS Professional User’s Guide where all resource names
are documented.
26 PBS Professional 12 Programmer’s Guide

Server Functions Chapter 3
3.9 Network Protocol

The PBS system fits into a client - Server model, with a batch client making a request of a
batch Server and the Server replying. This client - Server communication necessitates an
interprocess communication method and a data exchange (data encoding) format. Since the
client and Server may reside on different systems, the interprocess communication must be
supportable over a network.

While the basic PBS system fits nicely into the client - Server model, it also has aspects of a
transaction system. When jobs are being moved between Servers, it is critical that the jobs are
not lost or replicated. Updates to a batch job must be applied once and only once. Thus the
operation must be atomic. Most of the client to Server requests consist of a single message.
Treating these requests as an atomic operation is simple. One request, "Queue Job", is more
complex and involves several messages, or subrequests, between the client and the Server.
Any of these subrequests might be rejected by the Server. It is important that either side of the
connection be able to abort the request (transaction) without losing or replicating the job. The
network connection also might be lost during the request. Recovery from a partially transmit-
ted request sequence is critical. The sequence of recovery from lost connections is discussed
in the Queue Job Request description.

The batch system data exchange protocol must be built on top of a reliable stream connection
protocol. PBS uses TCP/IP and the socket interface to the network. Either the Simple Net-
work Interface, SNI, or the Detailed Network Interface, DNI, as specified by POSIX.12, Pro-
tocol Independent Interfaces, could be used as a replacement.

3.9.1 General DIS Data Encoding

The purpose of the “Data is Strings” encoding is to provide a simple, fast, small, machine
independent form for encoding data to a character string and back again. Because data can be
decoded directly into the final internal data structures, the number of data copy operations are
reduced. Data items are represented as people think of them, but preceded with a count of the
length of each data item. For small positive integers, it is impossible to tell from the encoded
data whether they came from signed or unsigned chars, shorts, ints, or longs.
Similarly, for small negative numbers, the only thing that can be determined from the encoded
data is that the source datum was not unsigned. It is impossible to tell the word size of the
encoding machine, or whether it uses 2’s complement, one’s complement or sign - magnitude
representation, or.even if it uses binary arithmetic. All of the basic C data types are handled.
Signed and unsigned chars, shorts, ints, longs produce integers. NULL terminated and
counted strings produce counted strings (with the terminating NULL removed). Floats, dou-
bles, and long doubles produce real numbers. Complex data must be built up from the basic
types. Note that there is no type tagging, so the type and sequence of data to be decoded must
be known in advance.
PBS Professional 12 Programmer’s Guide 27

Chapter 3 Server Functions
28 PBS Professional 12 Programmer’s Guide

Chapter 4
Batch Interface Library (IFL)
The primary external application programming interface to PBS is the Batch Interface
Library, or IFL. This library provides a means of building new batch clients. Any batch ser-
vice request can be invoked through calls to the batch interface library. Users may wish to
build a job which could status itself or spawn off new jobs. Or they may wish to customize the
job status display rather than use qstat. Administrators may use the interface library to build
new control commands.

4.1 Interface Library Overview

The IFL provides a user-callable function corresponding to each batch client command. There
is (approximately) a one to one correlation between commands and batch service requests.
Additional routines are provided for network connection management. The user callable rou-
tines are declared in the header file PBS_ifl.h. Users open a connection with a batch
Server via a call to pbs_connect(). Multiple connections are supported. Before a connec-
tion is established, pbs_connect() will fork and exec an pbs_iff process, as shown in
figure 4-1 below. The purpose of pbs_iff is to provide the user a credential which validates
the user’s identity. This credential is included in each batch request. The provided credential
prevents a user from spoofing another user’s identity.

The credential that is sent to the server consists of: a) user's name from the password file
based on running pbs_iff's "real uid" value, and b) unprivileged, client-side port value associ-
ated with the original pbs_connect request message to the server. The server looks at the
entries in its connection table to try and find the entry having these two pieces of information,
and which is not yet marked authenticated. To be believed, this information must be gotten
from a connection having a privileged, remote-end, port value.
PBS Professional 12 Programmer’s Guide 29

Chapter 4 Batch Interface Library (IFL)
After all requests have been made to a Server, its connection is closed via a call to
pbs_disconnect().

Users request service of a batch Server by calling the appropriate library routine and passing it
the required parameters. The parameters correspond to the options and operands on the com-
mands. It is the user’s responsibility to ensure the parameters have correct syntax. Each func-
tion will return zero upon success and a non-zero error code on failure. These error codes are
available in the header file PBS_error.h. The library routine will accept the parameters
and build the corresponding batch request, then pass it to the Server.

To use pbs_connect with Windows, initialize the network library and link with winsock2. Call
winsock_init() before calling pbs_connect(), and link against the ws2_32.lib library.

Any user-written programs using the IFL API must link with the pthread library.

4.2 Interface Library Routines

The following manual pages describe the user-callable functions in the IFL.

Client

pbs_connect()

any port

pbs_iff

reserved port

pbs_server

1. connect

2. local port number

3. local port, user, host

4. ACK

5. request
6. reply

Figure 4-1: Interface Between Client, IFF, and Server
30 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_alterjob

alter pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_alterjob(int connect, char *job_id, struct attrl *attrib,
 char *extend)

DESCRIPTION
 Issue a batch request to alter a batch job.

 A Modify Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 The argument, job_id , identifies which job is to be altered. It is
 specified in the form:

 sequence_number.server

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:

 struct attrl {
 char *name;
 char *resource;
 char *value
 struct attrl *next;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer.

 The name member points to a string which is the name of the attribute.
 The value member points to a string which is the value of the
 attribute. The attribute names are defined in pbs_ifl.h.

 If attrib itself is a null pointer, then no attributes are altered.
PBS Professional 12 Programmer’s Guide 31

Chapter 4 Batch Interface Library (IFL)
 Associated with an attribute of type ATTR_l (the letter ell) is a
 resource name indicated by resource in the attrl structure. All other
 attribute types should have a pointer to a null string (““) for
 resource .

 If the resource of the specified resource name is already present in
 the job’s Resource_List attribute, it will be altered to the specified
 value. If the resource is not present in the attribute, it is added.

 Certain attributes of a job may or may not be alterable depending on
 the state of the job; see qalter(1B).

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qalter(1B), qhold(1B), qrls(1B), qsub(1B), pbs_connect(3B),
 pbs_holdjob(3B), and pbs_rlsjob(3B)

DIAGNOSTICS
 When the batch request generated by pbs_alterjob() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
32 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_connect

connect to a PBS batch server

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_connect(char *server)
 extern char *pbs_server;

DESCRIPTION
 A virtual stream (TCP/IP) connection is established with the server
 specified by server.

 This function must be called before any of the other pbs_ functions.
 They will transmit their batch requests over the connection established
 by this function. Multiple requests may be issued over the connection
 before it is closed.

 The connection should be closed by a call to pbs_disconnect() when
 all requests have been sent to the server.

 The parameter called server is of the form
 host_name[:port].
 If port is not specified, the standard PBS port number will be used.

 If the parameter, server, is either the null string or a null pointer,
 a connection will be opened to the default server. The default server
 is defined by (a) the setting of the environment variable
 PBS_DEFAULT which contains a destination, or (b) by adding the
 parameter PBS_SERVER to the global configuration file /etc/pbs.conf.

 The variable pbs_server, declared in pbs_ifl.h, is set on return to
 point to the server name to which pbs_connect() connected or
 attempted to connect.

 pbs_connect() determines whether or not the complex has a failover
 server configured. It also determines which server is the primary and
 which is the secondary. pbs_connect() is called by client commands,
 and directs traffic to the correct server.
PBS Professional 12 Programmer’s Guide 33

Chapter 4 Batch Interface Library (IFL)
 In order to use pbs_connect with Windows, initialize the network
 library and link with winsock2. To do this, call winsock_init() before
 calling pbs_connect(), and link against the ws2_32.lib library.

SEE ALSO
 qsub(1B), pbs_alterjob(3B), pbs_deljob(3B), pbs_disconnect(3B),
 pbs_geterrmsg(3B), pbs_holdjob(3B), pbs_locate(3B),
 pbs_manager(3B), pbs_movejob(3B), pbs_msgjob(3B),
 pbs_rerunjob(3B), pbs_rlsjob(3B), pbs_runjob(3B),
 pbs_selectjob(3B), pbs_selstat(3B), pbs_sigjob(3B),
 pbs_statjob(3B), pbs_statque(3B), pbs_statserver(3B),
 pbs_submit(3B), pbs_terminate(3B), pbs_server(8B), and the PBS
 Professional Programmer’s Guide

DIAGNOSTICS
 When the connection to batch server has been successfully created, the
 routine will return a connection identifier which is positive. Other-
 wise, a negative value is returned. The error number is set in
 pbs_errno.
34 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_default

return the name of the default PBS server

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char *pbs_default()

DESCRIPTION
 A character string is returned containing the name of the default PBS
 server. The default server is defined by (a) the setting of the envi-
 ronment variable PBS_DEFAULT which contains a destination, or
 (b) by adding the parameter PBS_SERVER to the global
 configuration file /etc/pbs.conf.

DIAGNOSTICS
 If the default server cannot be determined, a NULL value is returned.

SEE ALSO
 qsub(1B), pbs_connect(3B), pbs_disconnect(3B), and the PBS
 Professional Programmer’s Guide
PBS Professional 12 Programmer’s Guide 35

Chapter 4 Batch Interface Library (IFL)
pbs_deljob

delete a PBS batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_deljob(int connect, char *job_id, char *extend)

DESCRIPTION
 Issue a batch request to delete a batch job. If the batch job is running,
 the execution server will send the SIGTERM signal followed by
 SIGKILL .

 A Delete Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 The argument, job_id , identifies which job is to be deleted. It is
 specified in the form:
 “sequence_number.server”

 The argument, extend , is overloaded to serve more than one purpose.
 If extend points to a string other than the above, it is taken as text
 to be appended to the message mailed to the job owner. This mailing
 occurs if the job is deleted by a user other than the job owner.

SEE ALSO
 qdel(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by the pbs_deljob() function has
 been completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
36 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_delresv

delete a reservation

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_delresv(int connect, char *resv_id, char *extend)

DESCRIPTION
 Issue a batch request to delete a reservation. If the reservation is
 in state RESV_RUNNING, and there are jobs remaining in the
 reservation queue, the jobs will be deleted before the reservation is
 deleted.

 A Delete Reservation batch request is generated and sent to the server
 over the connection specified by connect which is the return value of
 pbs_connect().

 The argument, resv_id , identifies which reservation is to be deleted,
 it is specified in the form:
 “R<sequence_number>.<server>”

 The argument, extend is currently unused.

SEE ALSO
 pbs_rdel(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by the pbs_delresv() function has
 been completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 37

Chapter 4 Batch Interface Library (IFL)
pbs_disconnect

disconnect from a pbs batch server

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_disconnect(int connect)

DESCRIPTION
 The virtual stream connection specified by connect , which was estab-
 lished with a server by a call to pbs_connect(), is closed.

SEE ALSO
 pbs_connect(3B)

DIAGNOSTICS
 When the connection to batch server has been successfully closed, the
 routine will return zero. Otherwise, a non zero error is returned.
 The error number is also set in pbs_errno.
38 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_geterrmsg

get error message for last pbs batch operation

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char *pbs_geterrmsg(int connect)

DESCRIPTION
 Return the error message text associated with a batch server request.

 If the preceding batch interface library call over the connection spec-
 ified by connect resulted in an error return from the server, there may
 be an associated text message. If it exists, this function will return
 a pointer to the null terminated text string.

SEE ALSO
 pbs_connect(3B)

DIAGNOSTICS
 If an error text message was returned by a server in reply to the pre-
 vious call to a batch interface library function, pbs_geterrmsg() will
 return a pointer to it. Otherwise, pbs_geterrmsg() returns the null
 pointer.
PBS Professional 12 Programmer’s Guide 39

Chapter 4 Batch Interface Library (IFL)
pbs_holdjob

place a hold on a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_holdjob(int connect, char *job_id, char *hold_type,
 char *extend)

DESCRIPTION
 Issue a batch request to place a hold upon a job.

 A Hold Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 The argument, job_id , identifies which job is to be held, it is speci-
 fied in the form:
 “sequence_number.server”

 The parameter, hold_type , contains the type of hold to be applied.
 The possible values are defined in pbs_ifl.h.

 If hold_type is either a null pointer or points to a null string,
 USER_HOLD will be applied.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qhold(1B), pbs_connect(3B), pbs_alterjob(3B), and pbs_rlsjob(3B)

DIAGNOSTICS
 When the batch request generated by pbs_holdjob () function has
 been completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
40 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_locjob

locate current location of a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char *pbs_locjob(int connect, char *job_id, char *extend)

DESCRIPTION
 Issue a batch request to locate a batch job. If the server currently
 manages the batch job, or knows which server does currently manage
 the job, it will reply with the location of the job.

 A Locate Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 The argument, job_id , identifies which job is to be located, it is
 specified in the form:
 “sequence_number.server”

 The argument, extend , is reserved for implementation defined exten-
 sions. It is not currently used by this function.

 The return value is a pointer to a character sting which contains the
 current location if known. The syntax of the location string is:
 “server_name” .
 If the location of the job is not known, the return value is the NULL
 pointer.

SEE ALSO
 qsub(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by the pbs_locjob() function has
 been completed successfully by a batch server, the routine will return a
 non null pointer to the destination. Otherwise, a null pointer is
 returned. The error number is set in pbs_errno.
PBS Professional 12 Programmer’s Guide 41

Chapter 4 Batch Interface Library (IFL)
pbs_manager

modifies a PBS batch object

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_manager(int connect, int command, int obj_type, char *obj_name,
 struct attropl *attrib, char *extend)

DESCRIPTION
 Issue a batch request to perform administration functions at a server.
 With this request, server objects such as queues can be created and
 deleted, and have their attributes set and unset.

 A Manage batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect(). This request requires full batch administrator privilege.

 The parameter, command , specifies the operation to be performed. See
 pbs_ifl.h:

 MGR_CMD_CREATE creates the object
 MGR_CMD_DELETE deletes the object
 MGR_CMD_SET sets the value
 MGR_CMD_UNSET unsets the value
 MGR_CMD_IMPORT imports the hook
 MGR_CMD_EXPORT exports the hook

 The parameter, obj_type , declares the type of object upon which the
 command operates. See pbs_ifl.h:

 MGR_OBJ_SERVER Server object
 MGR_OBJ_QUEUE Queue object
 MGR_OBJ_NODE Node object
 MGR_OBJ_HOOK Hook object

 The parameter, obj_name , is the name of the specific object.

 The parameter, attrib , is a pointer to an attropl structure which is
 defined in pbs_ifl.h as:
42 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 struct attropl {
 char *name;
 char *resource;
 char *value;
 enum batch_op op;
 struct attropl *next;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer.

 The name member points to a string which is the name of the attribute.

 If the attribute is one which contains a set of resources, the specific
 resource is specified in the structure member resource . Otherwise,
 the member resource is pointer to a null string.

 The value member points to a string which is the new value of the
 attribute. For parameterized limit attributes, this string contains
 all parameters for the attribute.

 The op member defines the manner in which the new value is assigned to
 the attribute. The operators are:
 “enum batch_op { ..., SET, UNSET, INCR, DECR };”

 For MGR_CMD_IMPORT, specify attropl “name” as “content-type”,
 “content- encoding”, and “input-file” along with the corresponding
 “value” and an “op” of SET.

 For MGR_CMD_EXPORT, specify attropl “name” as “content-type”,
 “content-encoding”, and “output-file” along with the corresponding
 “value” and an “op” of SET.

 The parameter extend is reserved for implementation-defined extensions.

 Privilege required for functions depends on whether those functions are
 used with hooks.
 When not used with hooks:

 Functions MGR_CMD_CREATE and MGR_CMD_DELETE require
 PBS Manager privilege.
PBS Professional 12 Programmer’s Guide 43

Chapter 4 Batch Interface Library (IFL)
 Functions MGR_CMD_SET and MGR_CMD_UNSET require PBS
 Manager or Operator privilege.

 When used with hooks:

 All commands require root privilege on the server host.

 Functions MGR_CMD_IMPORT, MGR_CMD_EXPORT, and
 MGR_OBJ_HOOK are used only with hooks, and therefore require root
 privilege on the server host.

DIAGNOSTICS
 When the batch request generated by pbs_manager() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.

SEE ALSO
 The PBS Professional Programmer’s Guide,
 qmgr(1B), pbs_connect(3B)
44 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_movejob

move a pbs batch job to a new destination

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_movejob(int connect, char *job_id, char *destination, char *extend)

DESCRIPTION
 Issue a batch request to move a job to a new destination. The job is
 removed from the present queue and instantiated in a new queue.

 A Move Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_connect().

 The job_id parameter identifies which job is to be moved; it is specified in the form:
 “sequence_number.server”

 The destination parameter specifies the new destination for the job. It is specified as:
 [queue][@server] .
 If destination is a null pointer or a null string, the destination will
 be the default queue at the current server. If destination specifies a
 queue but not a server, the destination will be the named queue at the
 current server. If destination specifies a server but not a queue, the
 destination will be the default queue at the named server. If destina-
 tion specifies both a queue and a server, the destination is that queue at that server.

 A job in the Running , Transiting , or Exiting state cannot be moved.

 The parameter, extend , is reserved for implementation defined extensions.

SEE ALSO
 qmove(1B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_movejob() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 45

Chapter 4 Batch Interface Library (IFL)
pbs_msgjob

record a message for a running pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_msgjob(int connect, char *job_id, int file, char *message,
 char *extend)

DESCRIPTION
 Issue a batch request to write a message in an output file of a batch
 job.

 A Message Job batch request is generated and sent to the server over
 the connection specified by connect which is the return value of
 pbs_connect().

 The argument, job_id , identifies the job to which the message is to
 be sent; it is specified in the form:
 “sequence_number.server”

 The parameter, file , indicates the file or files to which the message
 string is to be written. See pbs_ifl.h for acceptable values.

 The parameter, message , is the message string to be written.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qmsg(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_msgjob() function has been com-
 pleted successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
46 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_orderjob

reorder pbs batch jobs in a queue

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_orderjob(int connect, char *job_id1, char *job_id2,
 char *extend)

DESCRIPTION
 Issue a batch request to swap the order of two jobs with in a single
 queue.

 An Order Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 The parameters job_id1 and job_id2 identify which jobs are to be
 swapped. They are specified in the form:
 “sequence_number.server” .

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qorder(1B), qmove(1B), qsub(1M), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_orderjob() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 47

Chapter 4 Batch Interface Library (IFL)
pbs_rerunjob

rerun a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_rerunjob(int connect, char *job_id, char *extend)

DESCRIPTION
 Issue a batch request to rerun a batch job.

 A Rerun Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect().

 If the job is marked as being not rerunnable, the request will fail and
 an error will be returned.

 The argument, job_id , identifies which job is to be rerun it is speci-
 fied in the form:
 “sequence_number.server”

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qrerun(1B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_rerunjob() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
48 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_rescreserve, pbs_rescrelease

reserve/free batch resources

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_rescreserve(int connect, char **resourcelist, int arraysize,
 resource_t *resource_id)

 int pbs_rescrelease(int connect, resource_t resource_id)

DESCRIPTION
 pbs_rescreserve
 Issue a request to the batch server to reserve specified resources.
 connect is the connection returned by pbs_connect(). resourcelist is
 an array of one or more strings specifying the resources to be
 queried. arraysize is the is the number of strings in resourcelist.
 resource_id is a pointer to a resource handle. The pointer cannot be
 null. If the present value of the resource handle is RESOURCE_T_NULL
 , this request is for a new reservation and if successful, a resource
 handle will be returned in resource_id.

 If the value of resource_id as supplied by the caller is not
 RESOURCE_T_NULL , this is a existing (partial) reservation.
 Resources currently reserved for this handle will be released and the
 full reservation will be attempted again. If the caller wishes to
 release the resources allocated to a partial reservation, the caller
 should pass the resource handle to pbs_rescrelease().

 At the present time the only resources which may be specified are
 “nodes”. It should be specified as
 nodes=specification
 where specification is what a user specifies in the -l option argu-
 ment list for nodes, see qsub (1B).

 pbs_rescrelease
 The pbs_rescrelease() call releases or frees resources reserved with
 the resource handle of resource_id returned from a prior pbs_rescre-
 serve() call. connect is the connection returned by pbs_connect().
PBS Professional 12 Programmer’s Guide 49

Chapter 4 Batch Interface Library (IFL)
 Both functions require that the issuing user have operator or adminis-
 trator privilege.

SEE ALSO
 qsub(1B), pbs_connect(3B), pbs_disconnect(3B) and pbs_resources(7B)

DIAGNOSTICS
 pbs_rescreserve() and pbs_rescrelease() return zero on success. Other-
 wise, a non zero error is returned. The error number is also set in
 pbs_errno.

 PBSE_RMPART
 is a special case indicating that some but not all of the
 requested resources could be reserved; a partial reservation was
 made. The reservation request should either be rerequested with
 the returned handle or the partial resources released.

 PBSE_RMBADPARAM
 a parameter is incorrect, such as a null for the pointer to the
 resource_id.

 PBSE_RMNOPARAM
 a parameter is missing, such as a null resource list.
50 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_rlsjob

release a hold on a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_rlsjob(int connect, char *job_id, char *hold_type, char *extend)

DESCRIPTION
 Issue a batch request to release a hold from a job.

 A Release Job batch request is generated and sent to the server over
 the connection specified by connect which is the return value of
 pbs_connect().

 The argument, job_id , identifies the job from which the hold is to be
 released, it is specified in the form:
 “sequence_number.server”

 The parameter, hold_type , contains the type of hold to be released.
 The possible values are defined in pbs_ifl.h.

 If hold_type is either a null pointer or points to a null string,
 USER_HOLD will be released.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

SEE ALSO
 qrls(1B), qhold(1B), qalter(1B), pbs_alterjob(3B), pbs_connect(3B), and
 pbs_holdjob(3B)

DIAGNOSTICS
 When the batch request generated by pbs_rlsjob() function has been com-
 pleted successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 51

Chapter 4 Batch Interface Library (IFL)
pbs_runjob, pbs_asyrunjob

run a PBS batch job, asynchronous batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_runjob(int connect, char *job_id, char *location, char *extend)

 int pbs_asyrunjob(int connect, char *job_id, char *location, char *extend)

DESCRIPTION
 Issue a batch request to run a batch job.

 For pbs_runjob() a "Run Job" batch request is generated and sent to the
 server over the connection specified by connect which is the return
 value of pbs_connect(). The server will reply when the job has started
 execution unless file in-staging is required. In that case, the server
 will reply when the staging operations are started.

 For pbs_asyrunjob() an "Asynchronous Run Job" request is generated and
 sent to the server over the connection. The server will validate the
 request and reply before initiating the execution of the job. This
 version of the call can be used to reduce latency in scheduling, especially
 when the scheduler must start a large number of jobs.

 These requests requires that the issuing user have operator or
 administrator privilege.

 The argument, job_id, identifies which job is to be run it is specified
 in the form:

 sequence_number.server

 The argument, location, if not the null pointer or null string, specifies
 the location where the job should be run, and optionally the
 resources to use. The location is the same as the -H option to the
 qrun command. See the description of qurn -H, both with and without
 resources specified, in the qrun.8B man page.

 The argument, extend, is reserved for implementation-defined extensions.
52 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
SEE ALSO
 qrun(8B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by the pbs_runjob() or pbs_asyrunjob()
 functions has been completed successfully by a batch server, the rou-
 tines will return 0 (zero). Otherwise, a non zero error is returned.
 The error number is also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 53

Chapter 4 Batch Interface Library (IFL)
pbs_selectjob

select pbs batch jobs

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char **pbs_selectjob(int connect, struct attropl *attrib, char *extend)

DESCRIPTION
 Issue a batch request to select jobs which meet certain criteria.
 pbs_selectjob() returns an array of job identifiers which met the criteria.

 The attropl struct contains the list of selection criteria.

 Initially all batch jobs are selected for which the user is authorized to query status. This set
 may be reduced or filtered by specifying certain attributes of the jobs.

 A Select Jobs batch request is generated and sent to the server over
 the connection specified by connect which is the return value of pbs_connect().

 The argument, attrib , is a pointer to an attropl structure which is defined in pbs_ifl.h as:

 struct attropl {
 struct attropl *next;
 char *name;
 char *resource;
 char *value;
 enum batch_op op;
 };

 The attrib list is terminated by the first entry where next is a null pointer.

 The name member points to a string which is the name of the attribute. Not all of the job
 attributes may be used as a selection criteria. The resource member points to a string which is
 the name of a resource. This member is only used when name is set to ATTR_l. Otherwise,
 resource should be a pointer to a null string. The value member points to a string which is the
 value of the attribute or resource. The attribute names are listed in pbs_job_attributes.7B.

 The op member defines the operator in the logical expression:
 value operator current_value
54 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 The logical expression must evaluate as true for the job to be
 selected. The permissible values of op are defined in pbs_ifl.h as:
 “enum batch_op { ..., EQ, NE, GE, GT, LE, LT, ... };” .
 The attributes marked with (E) in the description above may only be
 selected with the equal, EQ, or not equal, NE, operators.

 If attrib itself is a null pointer, then no selection is done on the basis of attributes.

 The return value is a pointer to a null terminated array of character
 pointers. Each character pointer in the array points to a character
 string which is a job_identifier in the form:
 sequence_number.server@server

 The array is allocated by pbs_selectjob via malloc(). When the array
 is no longer needed, the user is responsible for freeing it by a call to free().

 The parameter, extend , is reserved for implementation defined extensions.

 Finished and Moved Jobs
 In order to get information on finished and moved jobs, you must add an
 ‘x’ character to the extend parameter. The extend parameter is a char-
 acter string; set one character to be the ‘x’ character. For example:
 pbs_selectjob (..., ..., extend) ...

 To get information on finished and moved jobs only, specify the Fin-
 ished (‘F’) and moved (‘M’) job states. You must also use the extend
 character string containing the ‘x’ character.

 Subjobs are not considered finished until the parent array job is finished.

SEE ALSO
 qselect(1B), pbs_alterjob(3B), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_selectjob() function has been
 completed successfully by a batch server, the routine will return a
 pointer to the array of job identifiers. If no jobs met the criteria,
 the first pointer in the array will be the null pointer.

 If an error occurred, a null pointer is returned and the error is
 available in the global integer pbs_errno.
PBS Professional 12 Programmer’s Guide 55

Chapter 4 Batch Interface Library (IFL)
pbs_selstat

obtain status of selected pbs batch jobs

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_selstat(int connect, struct attropl *sel_list,
 struct attrl *rattrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to examine the status of jobs which meet certain
 criteria. pbs_selstat() returns a list of batch_status structures for
 those jobs which met the selection criteria.

 The sel_list struct holds the selection criteria. The rattrib struct
 holds the list of attributes whose values are to be returned.

 This function is a combination of pbs_selectjobs() and pbs_statjob().
 It is an extension to the POSIX Batch standard.

 Initially all batch jobs are selected for which the user is authorized
 to query status. This set may be reduced or filtered by specifying
 certain attributes of the jobs.

 A Select Status batch request is generated and sent to the server over
 the connection specified by connect which is the return value of pbs_connect().

 The parameter, sel_list , is a pointer to an attropl structure which is defined in pbs_ifl.h as:

 struct attropl {
 struct attropl *next;
 char *name;
 char *resource;
 char *value;
 enum batch_op op;
 };

 The sel_list list is terminated by the first entry where next is a null pointer.
56 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 The name member points to a string which is the name of the attribute.
 Not all of the job attributes may be used as a selection criteria. The
 resource member points to a string which is the name of a resource.
 This member is only used when name is set to ATTR_l, otherwise it
 should be a pointer to a null string. The value member points to a
 string which is the value of the attribute or resource. The attribute
 names are listed in pbs_job_attributes.7B.

 The op member defines the operator in the logical expression:
 value operator current_value
 The logical expression must evaluate as true for the job to be
 selected. The permissible values of op are defined in pbs_ifl.h as:
 “enum batch_op { ..., EQ, NE, GE, GT, LE, LT, ... };” .
 The attributes marked with (E) in the description above may only be
 selected with the equal, EQ, or not equal, NE, operators.

 If sel_list itself is a null pointer, then no selection is done on the basis of attributes.

 The parameter, rattrib , is a pointer to an attrl structure which is
 defined below. The rattrib list is terminated by the first entry where
 next is a null pointer. If attrib is given, then only the attributes
 in the list are returned by the server. Otherwise, all the attributes
 of a job are returned. When an attrib list is specified, the name mem-
 ber is a pointer to a attribute name as listed in pbs_alter(3) and
 pbs_submit(3). The resource member is only used if the name member is
 ATTR_l, otherwise it should be a pointer to a null string. The value
 member should always be a pointer to a null string.

 The return value is a pointer to a list of batch_status structures or
 the null pointer if no jobs can be queried for status. The batch_sta-
 tus structure is defined in pbs_ifl.h as

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 The entry, attribs , is a pointer to a list of attrl structures defined in pbs_ifl.h as:
PBS Professional 12 Programmer’s Guide 57

Chapter 4 Batch Interface Library (IFL)
 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 It is up the user to free the list of batch_status structures when no
 longer needed, by calling pbs_statfree().

 The extend parameter is for optional features and or additions. Nor-
 mally, this should be null pointer.

 When pbs_selstat is used to retrieve the Submit_arguments job attribute,
 PBS returns an XML-encoded string value according to the HPCBP specification.

 Finished and Moved Jobs
 In order to get information on finished and moved jobs, you must add an
 ‘x’ character to the extend parameter. The extend parameter is a char-
 acter string; set one character to be the ‘x’ character. For example:
 pbs_selstat (..., ..., ..., extend) ...

 To get information on finished and moved jobs only, specify the Fin-
 ished (‘F’) and moved (‘M’) job states. You must also use the extend
 character string containing the ‘x’ character. For example:
 sel_list->next = sel_list;
 sel_list->name = ATTR_state;
 sel_list->value = “MF”;
 sel_list->op = EQ;
 pbs_selstat (..., sel_list, ..., extend) ...

 Subjobs are not considered finished until the parent array job is finished.

SEE ALSO
 qselect(1B), pbs_alterjob(3B), pbs_connect(3B), pbs_statjob(3B), and pbs_selectjob(3B).

DIAGNOSTICS
 When the batch request generated by pbs_selstat() function has been
 completed successfully by a batch server, the routine will return a
 pointer to the list of batch_status structures. If no jobs met the
 criteria or an error occurred, the return will be the null pointer. If
 an error occurred, the global integer pbs_errno will be set to a non-zero value.
58 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_sigjob

send a signal to a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_sigjob(int connect, char *job_id, char *signal, char *extend)

DESCRIPTION
 Issue a batch request to send a signal to a batch job.

 A Signal Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect(). If the batch job is in the running state, the batch server
 will send the job the signal number corresponding to the signal named
 in signal .

 The argument, job_id , identifies which job is to be signaled, it is
 specified in the form:
 “sequence_number.server”

 The signal argument is the name of a signal. It may be the alphabetic
 form with or without the SIG prefix, or it may be a numeric string for
 the signal number. Two special names are recognized, suspend and
 resume . If the name of the signal is not a recognized signal name on
 the execution host, no signal is sent and an error is returned. If the
 job is not in the running state, no signal is sent and an error is
 returned, except when the signal is resume and the job is suspended.

 The parameter, extend , is reserved for implementation defined extensions.

SEE ALSO
 qsig(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_sigjob() function has been com-
 pleted successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
PBS Professional 12 Programmer’s Guide 59

Chapter 4 Batch Interface Library (IFL)
pbs_stagein

request that files for a pbs batch job be staged in.

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_stagein(int connect, char *job_id, char *location, char *extend)

DESCRIPTION
 Issue a batch request to start the stage in of files specified in the
 stagein attribute of a batch job.

 A stage in batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_connect().

 This request directs the server to begin the stage in of files speci-
 fied in the job’s stage in attribute. This request requires that the
 issuing user have operator or administrator privilege.

 The argument, job_id , identifies which job for which file staging is
 to begin. It is specified in the form:
 “sequence_number.server”

 The argument, location , if not the null pointer or null string, speci-
 fies the location where the job will be run and hence to where the
 files will be staged. The location is the name of a host in the clus-
 ter managed by the server. If the job is then directed to run at dif-
 ferent location, the run request will be rejected.

 The argument, extend , is reserved for implementation defined extensions.

SEE ALSO
 qrun(8B), qsub(1B), and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_stagein() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
60 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
pbs_statfree

NAME
 pbs_statfree - free a PBS status object

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Frees the specified PBS status object returned by pbs_statque,
 pbs_statserver, pbs_stathook, etc.

 The argument is a pointer to a batch_status structure. The batch_status
 structure is defined in pbs_ifl.h as

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 No error information is returned.
PBS Professional 12 Programmer’s Guide 61

Chapter 4 Batch Interface Library (IFL)
pbs_statjob

obtain status of pbs batch jobs

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_statjob(int connect, char *id, struct attrl *attrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of a specified batch job or a set of jobs at a destination.

 A Status Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_connect().

 The parameter, id, may be either a job identifier or a destination identifier.

 If id is a job identifier, it is the identifier of the job for which status is requested. It is specified
 in the form:
 “sequence_number.server”

 If id is a destination identifier, it specifies that status of all jobs at the destination (queue) which
 the user is authorized to see be returned. If id is the null pointer or a null string, the status
 of each job at the server which the user is authorized to see is returned.

 The parameter, attrib , is a pointer to an attrl structure which is defined in pbs_ifl.h as:

 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null pointer. If attrib is given,
 then only the attributes in the list are returned by the server. Otherwise, all the attributes of a
 job are returned. When an attrib list is specified, the name member is a pointer to a
 attribute name as listed in pbs_alter(3) and pbs_submit(3). The resource member is only
 used if the name member is ATTR_l, otherwise it should be a pointer to a null string. The
62 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 value member should always be a pointer to a null string.

 The parameter, extend , is reserved for implementation defined extensions.

 The return value is a pointer to a list of batch_status structures or the null pointer
 if no jobs can be queried for status. The batch_status structure is defined in pbs_ifl.h as

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up to the user to free the structure when no longer needed, by calling pbs_statfree().

 When pbs_statjob is used to retrieve the Submit_arguments job
 attribute, PBS returns an XML-encoded string value according to the HPCBP specification.

 Finished and Moved Jobs
 When querying for multiple jobs, to get information on finished and
 moved jobs, you must add an ‘x’ character to the extend parameter. The
 extend parameter is a character string; set one character to be the ‘x’ character.

 When querying for multiple jobs, to get information on finished and moved jobs only,
 specify the Finished (‘F’) and moved (‘M’) job states. You must also use the extend character
 string containing the ‘x’ character.

 When querying for a single finished job, the extend string does not need to contain
 the ‘x’ character.

 Subjobs are not considered finished until the parent array job is finished.

SEE ALSO
 qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_statjob() function has been completed successfully
 and the status of each job has been returned by the batch server, the routine will return a
 pointer to the list of batch_status structures. If no jobs were available to query or an error
 occurred, a null pointer is returned. The global integer pbs_errno should be examined to
 determine the cause.
PBS Professional 12 Programmer’s Guide 63

Chapter 4 Batch Interface Library (IFL)
pbs_statnode, pbs_statvnode, pbs_stathost

obtain status of PBS vnodes or hosts

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_stathost(int connect, char *id,
 struct attrl *attrib, char *extend)

 struct batch_status *pbs_statnode(int connect, char *id,
 struct attrl *attrib, char *extend)

 struct batch_status *pbs_statvnode(int connect, char *id,
 struct attrl *attrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of PBS execution hosts or vnodes.

 pbs_stathost returns information about the single host named in the
 call or about all hosts known to the PBS Server.

 pbs_statnode is identical to pbs_stathost in function. It is retained
 for backward compatibility.

 pbs_statvnode returns information about the single virtual node (vnode)
 named in the call or about all vnodes known to the PBS Server.

 A Status Node batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_connect().

 The id is the name of a host for pbs_stathost, or a vnode for
 pbs_statvnode, or the null string. If id specifies a name, the status
 of that host or vnode will be returned. If the id is a null string (or
 null pointer), the status of all hosts or vnodes at the server will be
 returned.

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:
64 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer. If attrib is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of a node are
 returned. When an attrib list is specified, the name member is a
 pointer to a attribute name. The resource member is not used and must
 be a pointer to a null string. The value member should always be a
 pointer to a null string.

 The parameter, extend, is reserved for implementation defined extensions.

 The return value is a pointer to a list of batch_status structures,
 which is defined in pbs_ifl.h as:

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up the user to free the structure when no longer needed, by call-
 ing pbs_statfree().

DIAGNOSTICS
 When the batch request generated by pbs_stathost(), pbs_statnode(), or
 pbs_statvnode() function has been completed successfully by a batch
 server, the routine will return a pointer to the batch_status struc-
 ture. Otherwise, a null pointer is returned and the error code is set
 in the global integer pbs_errno.

SEE ALSO
 qstat(1B), pbs_connect(3B)
PBS Professional 12 Programmer’s Guide 65

Chapter 4 Batch Interface Library (IFL)
pbs_statque

obtain status of pbs batch queues

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_statque(int connect, char *id,
 struct attrl *attrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of a batch queue.

 A Status Queue batch request is generated and sent to the server over
 the connection specified by connect which is the return value of
 pbs_connect().

 The id is the name of a queue, in the form:
 queue_name
 or the null string. If
 queue_name
 is specified, the status of the queue named
 queue_name
 at the server is returned. If the id is a null string or null pointer,
 the status of all queues at the server is returned.

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:

 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer. If attrib is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of a queue are
66 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 returned. When an attrib list is specified, the name member is a
 pointer to an attribute name as listed in pbs_alterjob(3B) and pbs_sub-
 mit(3B). The resource member is only used if the name member is
 ATTR_l, otherwise it should be a pointer to a null string. The value
 member should always be a pointer to a null string.

 When pbs_statque is used to get the attributes of an object, a single
 attrl data structure is returned for each parameterized attribute.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

 The return value is a pointer to a list of batch_status structures,
 which is defined in pbs_ifl.h as:

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up the user to free the structure when no longer needed, by call-
 ing pbs_statfree().

SEE ALSO
 qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_statque() function has been
 completed successfully by a batch server, the routine will return a
 pointer to the batch_status structure. Otherwise, a null pointer is
 returned and the error code is set in the global integer pbs_errno.
PBS Professional 12 Programmer’s Guide 67

Chapter 4 Batch Interface Library (IFL)
pbs_statresv

obtain status information about reservations

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_statresv(int connect, char *id,
 struct attrl *attrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of a specified reservation
 or a set of reservations at a destination.

 A Status Reservation batch request is generated and sent to the server
 over the connection specified by connect which is the return value of
 pbs_connect().

 The parameter, id , is a reservation identifier. A reservation identi-
 fier is of the form:
 “R<sequence_number>.<server>”

 If id is the null pointer or a null string, the status of each reserva-
 tion at the server which the user is authorized to see is returned.

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:

 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer. If attrib is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of a reservation
 are returned. When an attrib list is specified, the name member is a
68 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 pointer to a attribute name as listed in pbs_submit_resv(3). The
 resource member is only used if the name member is ATTR_l, otherwise it
 should be a pointer to a null string. The value member should always
 be a pointer to a null string.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

 The return value is a pointer to a list of batch_status structures or
 the null pointer if no reservations can be queried for status. The
 batch_status structure is defined in pbs_ifl.h as

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up the user to free the structure when no longer needed, by call-
 ing pbs_statfree().

SEE ALSO
 pbs_rstat(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_statresv() function has been
 completed successfully and the status of each reservation has been
 returned by the batch server, the routine will return a pointer to the
 list of batch_status structures. If no reservations were available to
 query or an error occurred, a null pointer is returned. The global
 integer pbs_errno should be examined to determine the cause.
PBS Professional 12 Programmer’s Guide 69

Chapter 4 Batch Interface Library (IFL)
pbs_statsched

obtain status of PBS scheduler

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_statsched(int connect, struct attrl *attrib,
 char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of PBS scheduler.

 A Status Scheduler batch request is generated and sent to the server.
 The parameter connect is the return value of pbs_connect().

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:

 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer. If attrib is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of the scheduler
 are returned. When an attrib list is specified, the name member is a
 pointer to an attribute name as listed in pbs_alter(3) and pbs_sub-
 mit(3). The resource member is only used if the name member is ATTR_l,
 otherwise it should be a pointer to a null string. The value member
 should always be a pointer to a null string.

 The parameter, extend , is reserved for implementation-defined exten-
 sions.

 The return value of pbs_statsched() is a pointer to a list of
70 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 batch_status structures, which is defined in pbs_ifl.h as:

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up the user to free the batch_status structure when it is no
 longer needed, by calling pbs_statfree().

SEE ALSO
 qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_statsched() has been completed
 successfully by the PBS server, pbs_statsched() will return a pointer
 to a batch_status structure. Otherwise, a null pointer is returned and
 the error code is set in pbs_errno.
PBS Professional 12 Programmer’s Guide 71

Chapter 4 Batch Interface Library (IFL)
pbs_statserver

obtain status of a pbs batch server

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_statserver(int connect, struct attrl *attrib,
 char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of a batch server.

 A Status Server batch request is generated and sent to the server over
 the connection specified by connect which is the return value of
 pbs_connect().

 The parameter, attrib , is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:

 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer. If attrib is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of the server
 are returned. When an attrib list is specified, the name member is a
 pointer to an attribute name as listed in pbs_alterjob(3B) and pbs_sub-
 mit(3B). The resource member is only used if the name member is
 ATTR_l, otherwise it should be a pointer to a null string. The value
 member should always be a pointer to a null string.

 When pbs_statserver is used to get the attributes of an object, a sin-
 gle attrl data structure is returned for each parameterized attribute.
72 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 The parameter, extend , is reserved for implementation defined exten-
 sions.

 The return value is a pointer to a list of batch_status structures,
 which is defined in pbs_ifl.h as:

 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }

 It is up the user to free the space when no longer needed, by calling
 pbs_statfree().

SEE ALSO
 qstat(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_statserver() function has been
 completed successfully by a batch server, the routine will return a
 pointer to a batch_status structure. Otherwise, a null pointer is
 returned and the error code is set in pbs_errno.
PBS Professional 12 Programmer’s Guide 73

Chapter 4 Batch Interface Library (IFL)
pbs_submit

submit a pbs batch job

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char *pbs_submit(int connect, struct attropl *attrib,
 char *script, char *destination, char *extend)

DESCRIPTION
 Issue a batch request to submit a new batch job.

 A Queue Job batch request is generated and sent to the server over the
 connection specified by connect which is the return value of pbs_con-
 nect(). The job will be submitted to the queue specified by destina-
 tion .

 The parameter, attrib , is a list of attropl structures which is
 defined in pbs_ifl.h as:

 struct attrl {
 char *name;
 char *resource;
 char *value;
 struct attrl *next;
 enum batch_op op;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer.

 The name member points to a string which is the name of the attribute.
 The value member points to a string which is the value of the
 attribute. The attribute names are defined in pbs_job_attributes(7B).

 If an attribute is not named in the attrib array, the default action
 will be taken. It will either be assigned the default value or will
 not be passed with the job. The action depends on the attribute. If
 attrib itself is a null pointer, then the default action will be taken
 for each attribute.
74 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 Associated with an attribute of type ATTR_l (the letter ell) is a
 resource name indicated by resource in the attrl structure. All other
 attribute types should have a pointer to a null string for resource .

 The op member is forced to a value of
 SET
 by pbs_submit().

 The parameter, script , is the path name to the job script. If the
 path name is relative, it will be expanded to the processes current
 working directory. If script is a null pointer or the path name
 pointed to is specified as the null string, no script is passed with
 the job.

 The destination parameter specifies the destination for the job. It is
 specified as:
 [queue]
 If destination is the null string or the queue is not specified, the
 destination will be the default queue at the connected server.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

 The return value is a character string which is the job_identifier
 assigned to the job by the server. The space for the job_identifier
 string is allocated by pbs_submit() and should be released via a call
 to free() by the user when no longer needed.

SEE ALSO
 qsub(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_submit() function has been com-
 pleted successfully by a batch server, the routine will return a
 pointer to a character string which is the job identifier of the sub-
 mitted batch job. Otherwise, a null pointer is returned and the error
 code is set in pbs_error.
PBS Professional 12 Programmer’s Guide 75

Chapter 4 Batch Interface Library (IFL)
pbs_submit_resv

submit a pbs reservation

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 char *pbs_submit_resv(int connect, struct attropl *attrib, char *extend)

DESCRIPTION
 Issue a batch request to submit a new reservation.

 A Submit Reservation batch request is generated and sent to the server
 over the connection specified by connect which is the return value of
 pbs_connect().

 The parameter, attrib , is a list of attropl structures which is
 defined in pbs_ifl.h as:

 struct attrl {
 char *name;
 char *resource;
 char *value;
 struct attrl *next;
 enum batch_op op;
 };

 The attrib list is terminated by the first entry where next is a null
 pointer.

 The name member points to a string which is the name of the attribute.
 The value member points to a string which is the value of the
 attribute. The attribute names are defined in pbs_ifl.h.

 If an attribute is not named in the attrib array, the default action
 will be taken. It will either be assigned the default value or will
 not be passed with the reservation. The action depends on the
 attribute. If attrib itself is a null pointer, then the default action
 will be taken for each attribute.

 Associated with an attribute of type ATTR_l (the letter ell) is a
76 PBS Professional 12 Programmer’s Guide

Batch Interface Library (IFL) Chapter 4
 resource name indicated by resource in the attrl structure. All other
 attribute types should have a pointer to a null string for resource .

 The op member is forced to a value of
 SET
 by pbs_submit_resv().

 The parameter, extend , is reserved for implementation defined exten-
 sions.

 The return value is a character string which is the reservation_identi-
 fier assigned to the job by the server. The space for the reserva-
 tion_identifier string is allocated by pbs_submit_resv() and should be
 released via a call to free() by the user when no longer needed.

SEE ALSO
 pbs_rsub(1B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_submit_resv() function has been
 completed successfully by a batch server, the routine will return a
 pointer to a character string which is the job identifier of the sub-
 mitted batch job. Otherwise, a null pointer is returned and the error
 code is set in pbs_error.
PBS Professional 12 Programmer’s Guide 77

Chapter 4 Batch Interface Library (IFL)
pbs_terminate

terminate a pbs batch server

SYNOPSIS
 #include <pbs_error.h>
 #include <pbs_ifl.h>

 int pbs_terminate(int connect, int manner, char *extend)

DESCRIPTION
 Issue a batch request to shut down a batch server. This request
 requires the privilege level usually reserved for batch operators and
 administrators.

 A Server Shutdown batch request is generated and sent to the server
 over the connection specified by connect which is the return value of
 pbs_connect().

 The parameter, manner , specifies the manner in which the server is
 shut down. The available manners are defined in pbs_ifl.h.

 The server will not respond to the batch request until the server has
 completed its termination procedure.

 The parameter, extend , is reserved for implementation defined exten-
 sions.

 This call requires PBS Operator or Manager privilege.

SEE ALSO
 qterm(8B) and pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by pbs_terminate() function has been
 completed successfully by a batch server, the routine will return 0
 (zero). Otherwise, a non zero error is returned. The error number is
 also set in pbs_errno.
78 PBS Professional 12 Programmer’s Guide

Chapter 5
RPP Library
This chapter discusses the Reliable Packet Protocol (RPP) used by PBS. These functions pro-
vide reliable, flow-controlled, two-way transmission of data. Each data path will be called a
"stream" in this document. The advantage of RPP over TCP is that many streams can be mul-
tiplexed over one socket. This allows simultaneous connections over many streams without
regard to the system imposed file descriptor limit.

5.1 RPP Library Routines

The following manual pages document the application programming interface provided by
the RPP library.
PBS Professional 12 Programmer’s Guide 79

Chapter 5 RPP Library
rpp_open, rpp_bind, rpp_poll, rpp_io, rpp_read, rpp_write, rpp_close,
rpp_getaddr, rpp_flush, rpp_terminate, rpp_shutdown, rpp_rcommit,
rpp_wcommit, rpp_eom, rpp_getc, rpp_putc

reliable packet protocol

SYNOPSIS
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <rpp.h>

 int rpp_open(addr)
 struct sockadd_in *addr;

 int rpp_bind(port)
 int port;

 int rpp_poll()

 int rpp_io()

 int rpp_read(stream, buf, len)
 u_int stream;
 char *buf;
 int len;

 int rpp_write(stream, buf, len)
 u_int stream;
 char *buf;
 int len;

 int rpp_close(stream)
 u_int stream;

 struct sockadd_in *rpp_getaddr(stream)
 u_int stream;

 int rpp_flush(stream)
 u_int stream;

 int rpp_terminate()
80 PBS Professional 12 Programmer’s Guide

RPP Library Chapter 5
 int rpp_shutdown()

 int rpp_rcommit(stream, flag)
 u_int stream;
 int flag;

 int rpp_wcommit(stream, flag)
 u_int stream;
 int flag;

 int rpp_eom(stream)
 u_int stream;

 int rpp_getc(stream)
 u_int stream;

 int rpp_putc(stream, c)
 u_int stream;
 int c;

DESCRIPTION
 These functions provide reliable, flow-controlled, two-way transmission
 of data. Each data path will be called a “stream” in this document.
 The advantage of RPP over TCP is that many streams can be multiplexed
 over one socket. This allows simultaneous connections over many
 streams without regard to the system imposed file descriptor limit.

 Data is sent and received in “messages”. A message may be of any
 length and is either received completely or not at all. Long messages
 will cause the library to use large amounts of memory in the heap by
 calling malloc(3V).

 In order to use any of the above with Windows, initialize the network
 library and link with winsock2. To do this, call winsock_init() before
 calling the function and link against the ws2_32.lib library.

 rpp_open() initializes a new stream connection to addr and returns the
 stream identifier. This is an integer with a value greater than or
 equal to zero. A negative number indicates an error. In this case,
 errno will be set.
PBS Professional 12 Programmer’s Guide 81

Chapter 5 RPP Library
 rpp_bind() is an initialization call which is used to bind the UDP
 socket used by RPP to a particular port. The file descriptor of the
 UDP socket used by the library is returned.

 rpp_poll() returns the stream identifier of a stream with data to read.
 If no stream is ready to read, a -2 is returned. A -1 is returned if
 an error occurs.

 rpp_io() processes any packets which are waiting to be sent or received
 over the UDP socket. This routine should be called if a section of
 code could be executing for more than a few (~10) seconds without call-
 ing any other rpp function. A -1 is returned if an error occurs, 0
 otherwise.

 rpp_read() transfers up to len characters of a message from stream into
 buf. If all of a message has been read, the return value will be less
 than len. The return value could be zero if all of a message had pre-
 viously been read. A -1 is returned on error. A -2 is returned if the
 peer has closed its connection. If rpp_poll() is used to determine the
 stream is ready for reading, the call to rpp_read() will return immedi-
 ately. Otherwise, the call will block waiting for a message to arrive.

 rpp_write() adds information to the current message on a stream. The
 data in buf numbering len characters is transferred to the stream. The
 number of characters added to the stream are returned or a -1 on error.
 In this case, errno will be set. A -2 is returned if the peer has
 closed its connection.

 rpp_close() disconnects the stream from its peer and frees all
 resources associated with the stream. The return value is -1 on error
 and 0 otherwise.

 rpp_getaddr() returns the address which a stream is connected to. If
 the stream is not open, a NULL pointer is returned.

 rpp_flush() marks the end of a message and commits all the data which
 has been written to the specified stream. A zero is returned if the
 message has been successfully committed. A -1 is returned on error.

 rpp_terminate() is used to free all memory associated with all streams
 and close the UDP socket. This is done without attempting to send any
 final messages that may be waiting. If a process is using rpp and
82 PBS Professional 12 Programmer’s Guide

RPP Library Chapter 5
 calls fork() , the child must call rpp_terminate() so it will not cause
 a conflict with the parent’s communication.

 rpp_shutdown() is used to free all memory associated with all streams
 and close the UDP socket. An attempt is made to send all outstanding
 messages before returning.

 rpp_rcommit() is used to “commit” or “de-commit” the information read
 from a message. As calls are made to rpp_read(), the number of charac-
 ters transferred out of the message are counted. If rpp_rcommit() is
 called with flag being non-zero (TRUE), the current position in the
 message is marked as the commit point. If rpp_rcommit() is called with
 flag being zero (FALSE), a subsequent call to rpp_read() will return
 characters from the message following the last commit point. If an
 entire message has been read, rpp_read() will continue to return zero
 as the number of bytes transferred until rpp_eom() is called to commit
 the complete message.

 rpp_wcommit() is used to “commit” or “de-commit” the information writ-
 ten to a stream. As calls are made to rpp_write(), the number of char-
 acters transferred into the message are counted. If rpp_wcommit() is
 called with flag being non-zero (TRUE), the current position in the
 message is marked as the commit point. If rpp_wcommit() is called with
 flag being zero (FALSE), a subsequent call to rpp_write() will transfer
 characters into the stream following the last commit point. A call to
 rpp_flush() does an automatic write commit to the current position.

 rpp_eom() is called to terminate processing of the current message.

SEE ALSO
 tcp(4P), udp(4P)
PBS Professional 12 Programmer’s Guide 83

Chapter 5 RPP Library
84 PBS Professional 12 Programmer’s Guide

Chapter 6
TM Library
This chapter describes the PBS Task Management library. The TM library is a set of routines
used to manage multi-process, parallel, and distributed applications. The current version is an
implementation of the proposed (draft) PSCHED standard sponsored by NASA. Altair has
since submitted this draft to the DRAMA working group of the international Global Grid
Forum standards body.

6.1 TM Library Routines

The following manual pages document the application programming interface provided by
the TM library.
PBS Professional 12 Programmer’s Guide 85

Chapter 6 TM Library
tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit,
tm_taskinfo, tm_atnode, tm_rescinfo, tm_publish, tm_subscribe,
tm_finalize, tm_attach

task management API

SYNOPSIS
 #include <tm.h>

 int tm_init(info, roots)
 void *info;
 struct tm_roots *roots;

 int tm_nodeinfo(list, nnodes)
 tm_node_id **list;
 int *nnodes;

 int tm_poll(poll_event, result_event, wait, tm_errno)
 tm_event_t poll_event;
 tm_event_t *result_event;
 int wait;
 int *tm_errno;

 int tm_notify(tm_signal)
 int tm_signal;

 int tm_spawn(argc, argv, envp, where, tid, event)
 int argc;
 char **argv;
 char **envp;
 tm_node_id where;
 tm_task_id *tid;
 tm_event_t *event;

 int tm_kill(tid, sig, event)
 tm_task_id tid;
 int sig;
 tm_event_t *event;

 int tm_obit(tid, obitval, event)
 tm_task_id tid;
86 PBS Professional 12 Programmer’s Guide

TM Library Chapter 6
 int *obitval;
 tm_event_t *event;

 int tm_taskinfo(node, tid_list, list_size, ntasks, event)
 tm_node_id node;
 tm_task_id *tid_list;
 int list_size;
 int *ntasks;
 tm_event_t *event;

 int tm_atnode(tid, node)
 tm_task_id tid;
 tm_node_id *node;

 int tm_rescinfo(node, resource, len, event)
 tm_node_id node;
 char *resource;
 int len;
 tm_event_t *event;

 int tm_publish(name, info, len, event)
 char *name;
 void *info;
 int len;
 tm_event_t *event;

 int tm_subscribe(tid, name, info, len, info_len, event)
 tm_task_id tid;
 char *name;
 void *info;
 int len;
 int *info_len;
 tm_event_t *event;

 int tm_attach(jobid, cookie, pid, tid, host, port)
 char *jobid;
 char *cookie;
 pid_t pid;
 tm_task_id *tid;
 char *host;
 int port;
PBS Professional 12 Programmer’s Guide 87

Chapter 6 TM Library
 int tm_finalize()

DESCRIPTION
 These functions provide a partial implementation of the task management
 interface part of the PSCHED API. In PBS, MOM provides the task man-
 ager functions. This library opens a tcp socket to the MOM running on
 the local host and sends and receives messages using the DIS protocol
 (described in the PBS IDS). The tm interface can only be used by a
 process within a PBS job.

 The PSCHED Task Management API description used to create this
 library was committed to paper on November 15, 1996 and was given the
 version number 0.1. Changes may have taken place since that time which
 are not reflected in this library.

 The API description uses several data types that it purposefully does
 not define. This was done so an implementation would not be confined
 in the way it was written. For this specific work, the definitions follow:

 typedef int tm_node_id; /* job-relative node id */
 #define TM_ERROR_NODE ((tm_node_id)-1)
 typedef int tm_event_t; /* > 0 for real events */
 #define TM_NULL_EVENT ((tm_event_t)0)
 #define TM_ERROR_EVENT ((tm_event_t)-1)
 typedef unsigned long tm_task_id;
 #define TM_NULL_TASK (tm_task_id)0

 There are a number of error values defined as well: TM_SUCCESS,
 TM_ESYSTEM, TM_ENOEVENT, TM_ENOTCONNECTED,
 TM_EUNKNOWNCMD, TM_ENOTIMPLEMENTED,
 TM_EBADENVIRONMENT, TM_ENOTFOUND.

 The functions listed here are not supported on Windows.

 tm_init() initializes the library by opening a socket to the MOM on the
 local host and sending a TM_INIT message, then waiting for the reply.
 The info parameter has no use and is included to conform with the
 PSCHED document. The roots pointer will contain valid data after the
 function returns and has the following structure:

 struct tm_roots {
 tm_task_id tm_me;
88 PBS Professional 12 Programmer’s Guide

TM Library Chapter 6
 tm_task_id tm_parent;
 int tm_nnodes;
 int tm_ntasks;
 int tm_taskpoolid;
 tm_task_id *tm_tasklist;
 };

 tm_me The task id of this calling task.

 tm_parent The task id of the task which spawned this task or
 TM_NULL_TASK if the calling task is the initial
 task started by PBS.

 tm_nnodes The number of nodes allocated to the job.

 tm_ntasks This will always be 0 for PBS.

 tm_taskpoolid PBS does not support task pools so this will always
 be -1.

 tm_tasklist This will be NULL for PBS.

 The tm_ntasks, tm_taskpoolid and tm_tasklist fields are not filled with data specified by the
 PSCHED document. PBS does not support task pools and, at this time, does not return
 information about current running tasks from tm_init. There is a separate call to get
 information for current running tasks called tm_taskinfo which is described below. The
 return value from tm_init is TM_SUCCESS if the library initialization was successful, or an
 error is returned otherwise.

 tm_nodeinfo() places a pointer to a malloc’ed array of tm_node_id’s in the pointer pointed at
 by list. The order of the tm_node_id’s in list is the same as that specified to MOM in the
 “exec_host” attribute. The int pointed to by nnodes contains the number of nodes allocated to
 the job. This is information that is returned during initialization and does not require
 communication with MOM. If tm_init has not been called, TM_ESYSTEM is returned,
 otherwise TM_SUCCESS is returned.

 tm_poll() is the function which will retrieve information about the task management system
 to locations specified when other routines request an action take place. The bookkeeping
 for this is done by generating an event for each action. When the task manager (MOM) sends
 a message that an action is complete, the event is reported by tm_poll and information is
 placed where the caller requested it. The argument poll_event is meant to be used to
 request a specific event. This implementation does not use it and it must be set to
PBS Professional 12 Programmer’s Guide 89

Chapter 6 TM Library
 TM_NULL_EVENT or an error is returned. Upon return, the argument result_event will
 contain a valid event number or TM_ERROR_EVENT on error. If wait is zero and there are
 no events to report, result_event is set to TM_NULL_EVENT. If wait is non-zero and
 there are no events to report, the function will block waiting for an event. If no local error
 takes place, TM_SUCCESS is returned. If an error is reported by MOM for an event, then the
 argument tm_errno will be set to an error code.

 tm_notify() is described in the PSCHED documentation, but is not imple-
 mented for PBS yet. It will return TM_ENOTIMPLEMENTED.

 tm_spawn() sends a message to MOM to start a new task. The node id of
 the host to run the task is given by where. The parameters argc, argv
 and envp specify the program to run and its arguments and environment
 very much like exec(). The full path of the program executable must be
 given by argv[0] and the number of elements in the argv array is given
 by argc. The array envp is NULL terminated. The argument event points
 to a tm_event_t variable which is filled in with an event number. When
 this event is returned by tm_poll , the tm_task_id pointed to by tid
 will contain the task id of the newly created task.

 tm_kill() sends a signal specified by sig to the task tid and puts an
 event number in the tm_event_t pointed to by event.

 tm_obit() creates an event which will be reported when the task tid
 exits. The int pointed to by obitval will contain the exit value of
 the task when the event is reported.

 tm_taskinfo() returns the list of tasks running on the node specified
 by node. The PSCHED documentation mentions a special ability to
 retrieve all tasks running in the job. This is not supported by PBS.
 The argument tid_list points to an array of tm_task_id’s which contains
 list_size elements. Upon return, event will contain an event number.
 When this event is polled, the int pointed to by ntasks will contain
 the number of tasks running on the node and the array will be filled in
 with tm_task_id’s. If ntasks is greater than list_size, only list_size
 tasks will be returned.

 tm_atnode() will place the node id where the task tid exists in the
 tm_node_id pointed to by node.

 tm_rescinfo() makes a request for a string specifying the resources
 available on a node given by the argument node. The string is returned
90 PBS Professional 12 Programmer’s Guide

TM Library Chapter 6
 in the buffer pointed to by resource and is terminated by a NUL charac-
 ter unless the number of characters of information is greater than
 specified by len. The resource string PBS returns is formatted as follows:

 A space separated set of strings from the uname system call. The order
 of the strings is sysname, nodename, release, version, machine.

 A comma separated set of strings giving the components of the
 “Resource_List” attribute of the job, preceded by a colon (:). Each
 component has the resource name, an equal sign, and the limit value.

 tm_publish() causes len bytes of information pointed at by info to be
 sent to the local MOM to be saved under the name given by name.

 tm_subscribe() returns a copy of the information named by name for the
 task given by tid. The argument info points to a buffer of size len
 where the information will be returned. The argument info_len will be
 set with the size of the published data. If this is larger than the
 supplied buffer, the data will have been truncated.

 tm_attach() commands MOM to create a new PBS “attached task” out of a
 session running on MOM’s host. The jobid parameter specifies the job
 which is to have a new task attached. If it is NULL, the system will
 try to determine the correct jobid. The cookie parameter must be NULL.
 The pid parameter must be a non-zero process id for the process which
 is to be added to the job specified by jobid. If tid is non-NULL, it
 will be used to store the task id of the new task. The host and port
 parameters specify where to contact MOM. host should be NULL. The
 return value will be 0 if a new task has been successfully created and
 non-zero on error. The return value will be one of the TM error num-
 bers defined in tm.h as follows:
 TM_ESYSTEM MOM cannot be contacted
 TM_ENOTFOUND No matching job was found
 TM_ENOTIMPLEMENTED The call is not implemented/supported
 TM_ESESSION The session specified is already attached
 TM_EUSER The calling user is not permitted to attach
 TM_EOWNER The process owner does not match the job
 TM_ENOPROC The process does not exist

 tm_finalize() may be called to free any memory in use by the library
 and close the connection to MOM.
PBS Professional 12 Programmer’s Guide 91

Chapter 6 TM Library
92 PBS Professional 12 Programmer’s Guide

Chapter 7
RM Library
This chapter describes the PBS Resource Monitor library. The RM library contains functions
to facilitate communication with the PBS Professional resource monitor. It is set up to make it
easy to connect to several resource monitors and handle the network communication effi-
ciently.

7.1 RM Library Routines

The following “manual” pages document the application programming interface provided by
the RM library.
PBS Professional 12 Programmer’s Guide 93

Chapter 7 RM Library
openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq,
activereq, fullresp

resource monitor API

SYNOPSIS
 #include <sys/types.h>
 #include <netinet/in.h>
 #include <rm.h>

 int openrm (host, port)
 char *host;
 unsigned int port;

 int closerm (stream)
 int stream;

 int downrm (stream)
 int stream;

 int configrm (stream, file)
 int stream;
 char *file;

 int addreq (stream, line)
 int stream;
 char *line;

 int allreq (line)
 char *line;

 char *getreq(stream)
 int stream;

 int flushreq()

 int activereq()

 void fullresp(flag)
 int flag;

DESCRIPTION
94 PBS Professional 12 Programmer’s Guide

RM Library Chapter 7
 The resource monitor library contains functions to facilitate communi-
 cation with the PBS Professional resource monitor. It is set up to make
 it easy to connect to several resource monitors and handle the network
 communication efficiently.

 In all these routines, the variable pbs_errno will be set when an error
 is indicated. The lower levels of network protocol are handled by the
 “Data Is Strings” DIS library and the “Reliable Packet Protocol” RPP library.

 configrm() causes the resource monitor to read the file named. Deprecated.

 addreq() begins a new message to the resource monitor if necessary.
 Then adds a line to the body of an outstanding command to the resource monitor.

 allreq() begins, for each stream, a new message to the resource monitor if necessary. Then
 adds a line to the body of an outstanding command to the resource monitor.

 getreq() finishes and sends any outstanding message to the resource
 monitor. If fullresp() has been called to turn off “full response”
 mode, the routine searches down the line to find the equal sign just
 before the response value. The returned string (if it is not NULL) has
 been allocated by malloc and thus free must be called when it is no
 longer needed to prevent memory leaks.

 flushreq() finishes and sends any outstanding messages to all resource
 monitors. For each active resource monitor structure, it checks if any
 outstanding data is waiting to be sent. If there is, it is sent and the
 internal structure is marked to show “waiting for response”.

 fullresp() turns on, if flag is true, “full response” mode where getreq() returns a
 pointer to the beginning of a line of response. This is the default. If flag is false, the line
 returned by getreq() is just the answer following the equal sign.

 activereq() Returns the stream number of the next stream with something
 to read or a negative number (the return from rpp_poll) if there is no stream to read.

 In order to use any of the above with Windows, initialize the network
 library and link with winsock2. To do this, call winsock_init() before
 calling the function and link against the ws2_32.lib library.

SEE ALSO
 rpp(3B), tcp(4P), udp(4P)
PBS Professional 12 Programmer’s Guide 95

Chapter 7 RM Library
96 PBS Professional 12 Programmer’s Guide

Chapter 8
TCL/tk Interface
The PBS Professional software includes a TCL/tk interface to PBS. Wrapped versions of
many of the API calls are compiled into a special version of the TCL shell, called
pbs_tclsh. (A special version of the tk window shell is also provided, called pbs_wish.).
This chapter documents the TCL/tk interface to PBS.

The pbs_tclapi is a subset of the PBS external API wrapped in a TCL library. This func-
tionality allows the creation of scripts that query the PBS system. Specifically, it permits the
user to query the pbs_server about the state of PBS, jobs, queues, and nodes, and commu-
nicate with pbs_mom to get information about the status of running jobs, available resources
on nodes, etc.

8.1 TCL/tk API Functions

A set of functions to communicate with the PBS Server and resource monitor have been
added to those normally available with Tcl. All these calls will set the Tcl variable
pbs_errno to a value to indicate if an error occurred. In all cases, the value "0" means no
error. If a call to a Resource Monitor function is made, any error value will come from the sys-
tem supplied errno variable. If the function call communicates with the PBS Server, any
error value will come from the error number returned by the Server. This is the same TCL
interface used by the pbs_tclsh and pbs_wish commands.

Note that the pbs_tclapi pbsrescquery command, which calls the C API pbs_rescquery, is dep-
recated. Any attempt to use it will result in a PBSE_NOSUPPORT error being returned.
PBS Professional 12 Programmer’s Guide 97

Chapter 8 TCL/tk Interface
pbs_tclapi

PBS TCL Application Programming Interface

DESCRIPTION
 The pbs_tclapi is a subset of the PBS external API wrapped in a TCL
 library. This functionality allows the creation of scripts that query
 the PBS system. Specifically, it permits the user to query the
 pbs_server about the state of PBS, jobs, queues, and nodes, and commu-
 nicate with pbs_mom to get information about the status of running
 jobs, available resources on nodes, etc.

USAGE
 A set of functions to communicate with the PBS server and resource mon-
 itor have been added to those normally available with Tcl. All these
 calls will set the Tcl variable “pbs_errno” to a value to indicate if
 an error occurred. In all cases, the value “0” means no error. If a
 call to a Resource Monitor function is made, any error value will come
 from the system supplied errno variable. If the function call communi-
 cates with the PBS Server, any error value will come from the error
 number returned by the server. This is the same TCL interface used by
 the pbs_tclsh and pbs_wish commands.

 openrm host ?port?
 Creates a connection to the PBS Resource Monitor on host using
 port as the port number or the standard port for the resource
 monitor if it is not given. A connection handle is returned. If
 the open is successful, this will be a non-negative integer. If
 not, an error occurred.

 closerm connection
 The parameter connection is a handle to a resource monitor which
 was previously returned from openrm. This connection is closed.
 Nothing is returned.

 downrm connection
 Sends a command to the connected resource monitor to shutdown.
 Nothing is returned.

 configrm connection filename
 Sends a command to the connected resource monitor to read the
 configuration file given by filename. If this is successful, a
98 PBS Professional 12 Programmer’s Guide

TCL/tk Interface Chapter 8
 “0” is returned, otherwise, “-1” is returned.

 addreq connection request
 A resource request is sent to the connected resource monitor. If
 this is successful, a “0” is returned, otherwise, “-1” is
 returned.

 getreq connection
 One resource request response from the connected resource monitor
 is returned. If an error occurred or there are no more
 responses, an empty string is returned.

 allreq request
 A resource request is sent to all connected resource monitors.
 The number of streams acted upon is returned.

 flushreq
 All resource requests previously sent to all connected resource
 monitors are flushed out to the network. Nothing is returned.

 activereq
 The connection number of the next stream with something to read
 is returned. If there is nothing to read from any of the connec-
 tions, a negative number is returned.

 fullresp flag
 Evaluates flag as a boolean value and sets the response mode used
 by getreq to full if flag evaluates to “true”. The full return
 from a resource monitor includes the original request followed by
 an equal sign followed by the response. The default situation is
 only to return the response following the equal sign. If a
 script needs to “see” the entire line, this function may be used.

 pbsstatserv
 The server is sent a status request for information about the
 server itself. If the request succeeds, a list with three ele-
 ments is returned, otherwise an empty string is returned. The
 first element is the server’s name. The second is a list of
 attributes. The third is the “text” associated with the server
 (usually blank).

 pbsstatjob
PBS Professional 12 Programmer’s Guide 99

Chapter 8 TCL/tk Interface
 The server is sent a status request for information about the all
 jobs resident within the server. If the request succeeds, a list
 is returned, otherwise an empty string is returned. The list
 contains an entry for each job. Each element is a list with
 three elements. The first is the job’s jobid. The second is a
 list of attributes. The attribute names which specify resources
 will have a name of the form “Resource_List:name” where “name” is
 the resource name. The third is the “text” associated with the
 job (usually blank).

 pbsstatque
 The server is sent a status request for information about all
 queues resident within the server. If the request succeeds, a
 list is returned, otherwise an empty string is returned. The
 list contains an entry for each queue. Each element is a list
 with three elements. This first is the queue’s name. The second
 is a list of attributes similar to pbsstatjob. The third is the
 “text” associated with the queue (usually blank).

 pbsstatnode
 The server is sent a status request for information about all
 nodes defined within the server. If the request succeeds, a list
 is returned, otherwise an empty string is returned. The list
 contains an entry for each node. Each element is a list with
 three elements. This first is the node’s name. The second is a
 list of attributes similar to pbsstatjob. The third is the
 “text” associated with the node (usually blank).

 pbsselstat
 The server is sent a status request for information about the all
 runnable jobs resident within the server. If the request suc-
 ceeds, a list similar to pbsstatjob is returned, otherwise an
 empty string is returned.

 pbsrunjob jobid ?location?
 Run the job given by jobid at the location given by location. If
 location is not given, the default location is used. If this is
 successful, a “0” is returned, otherwise, “-1” is returned.

 pbsasyrunjob jobid ?location?
 Run the job given by jobid at the location given by location
 without waiting for a positive response that the job has actually
100 PBS Professional 12 Programmer’s Guide

TCL/tk Interface Chapter 8
 started. If location is not given, the default location is used.
 If this is successful, a “0” is returned, otherwise, “-1” is
 returned.

 pbsrerunjob jobid
 Re-runs the job given by jobid. If this is successful, a “0” is
 returned, otherwise, “-1” is returned.

 pbsdeljob jobid
 Delete the job given by jobid. If this is successful, a “0” is
 returned, otherwise, “-1” is returned.

 pbsholdjob jobid
 Place a hold on the job given by jobid. If this is successful, a
 “0” is returned, otherwise, “-1” is returned.

 pbsmovejob jobid ?location?
 Move the job given by jobid to the location given by location.
 If location is not given, the default location is used. If this
 is successful, a “0” is returned, otherwise, “-1” is returned.

 pbsqenable queue
 Set the “enabled” attribute for the queue given by queue to true.
 If this is successful, a “0” is returned, otherwise, “-1” is
 returned.

 pbsqdisable queue
 Set the “enabled” attribute for the queue given by queue to
 false. If this is successful, a “0” is returned, otherwise, “-1”
 is returned.

 pbsqstart queue
 Set the “started” attribute for the queue given by queue to true.
 If this is successful, a “0” is returned, otherwise, “-1” is
 returned.

 pbsqstop queue
 Set the “started” attribute for the queue given by queue to
 false. If this is successful, a “0” is returned, otherwise, “-1”
 is returned.

 pbsalterjob jobid attribute_list
PBS Professional 12 Programmer’s Guide 101

Chapter 8 TCL/tk Interface
 Alter the attributes for a job specified by jobid. The parameter
 attribute_list is the list of attributes to be altered. There
 can be more than one. Each attribute consists of a list of three
 elements. The first is the name, the second the resource and the
 third is the new value. If the alter is successful, a “0” is
 returned, otherwise, “-1” is returned.

 pbsrescquery resource_list
 Deprecated. Obtain information about the resources specified by
 resource_list. This will be a list of strings. If the request
 succeeds, a list with the same number of elements as
 resource_list is returned. Each element in this list will be a
 list with four numbers. The numbers specify available, allo-
 cated, reserved, and down in that order.

 pbsrescreserve resource_id resource_list
 Deprecated. Make (or extend) a reservation for the resources
 specified by resource_list which will be given as a list of
 strings. The parameter resource_id is a number which provides a
 unique identifier for a reservation being tracked by the server.
 If resource_id is given as “0”, a new reservation is created. In
 this case, a new identifier is generated and returned by the
 function. If an old identifier is used, that same number will be
 returned. The Tcl variable “pbs_errno” will be set to indicate
 the success or failure of the reservation.

 pbsrescrelease resource_id
 Deprecated. The reservation specified by resource_id is
 released.

 The two following commands are not normally used by the scheduler.
 They are included here because there could be a need for a scheduler to
 contact a server other than the one which it normally communicates
 with. Also, these commands are used by the Tcl tools.

 pbsconnect ?server?
 Make a connection to the named server or the default server if a
 parameter is not given. Only one connection to a server is
 allowed at any one time.

 pbsdisconnect
 Disconnect from the currently connected server.
102 PBS Professional 12 Programmer’s Guide

TCL/tk Interface Chapter 8
 The above Tcl functions use PBS interface library calls for communica-
 tion with the server and the PBS resource monitor library to communi-
 cate with pbs_mom.

 datetime ?day? ?time?
 The number of arguments used determine the type of date to be
 calculated. With no arguments, the current POSIX date is
 returned. This is an integer in seconds.

 With one argument there are two possible formats. The first is a
 12 (or more) character string specifying a complete date in the
 following format:
 YYMMDDhhmmss
 All characters must be digits. The year (YY) is given by the
 first two (or more) characters and is the number of years since
 1900. The month (MM) is the number of the month [01-12]. The
 day (DD) is the day of the month [01-32]. The hour (hh) is the
 hour of the day [00-23]. The minute (mm) is minutes after the
 hour [00-59]. The second (ss) is seconds after the minute
 [00-59]. The POSIX date for the given date/time is returned.

 The second option with one argument is a relative time. The for-
 mat for this is
 HH:MM:SS
 With hours (HH), minutes (MM) and seconds (SS) being separated by
 colons “:”. The number returned in this case will be the number
 of seconds in the interval specified, not an absolute POSIX date.

 With two arguments a relative date is calculated. The first
 argument specifies a day of the week and must be one of the fol-
 lowing strings: “Sun”, “Mon”, “Tue”, “Wed”, “Thr”, “Fri”, or
 “Sat”. The second argument is a relative time as given above.
 The POSIX date calculated will be the day of the week given which
 follows the current day, and the time given in the second argu-
 ment. For example, if the current day was Monday, and the two
 arguments were “Fri” and “04:30:00”, the date calculated would be
 the POSIX date for the Friday following the current Monday, at
 four-thirty in the morning. If the day specified and the current
 day are the same, the current day is used, not the day one week
 later.
PBS Professional 12 Programmer’s Guide 103

Chapter 8 TCL/tk Interface
 strftime format time
 This function calls the POSIX function strftime(). It requires
 two arguments. The first is a format string. The format con-
 ventions are the same as those for the POSIX function strf-
 time(). The second argument is POSIX calendar time in second as
 returned by datetime. It returns a string based on the format
 given. This gives the ability to extract information about a
 time, or format it for printing.

 logmsg tag message
 This function calls the internal PBS function log_err(). It will
 cause a log message to be written to the scheduler’s log file.
 The tag specifies a function name or other word used to identify
 the area where the message is generated. The message is the
 string to be logged.

SEE ALSO
 pbs_tclsh(8B), pbs_wish(8B), pbs_mom(8B), pbs_server(8B),
 pbs_sched(8B)
104 PBS Professional 12 Programmer’s Guide

Chapter 9
Hooks
This chapter describes the PBS hook APIs. For more information on hooks, see the PBS Pro-
fessional Administrator’s Guide.

9.1 Introduction

A hook is a block of Python code that is triggered in response to queueing a job, modifying a
job, moving a job, running a job, submitting a PBS reservation, MoM receiving a job, MoM
starting a job, MoM killing a job, a job finishing, and MoM cleaning up a job. Each hook can
accept (allow) or reject (prevent) the action that triggers it. The hook can modify the input
parameters given for the action. The hook can also make calls to functions external to PBS.
PBS provides an interface for use by hooks. This interface allows hooks to read and/or mod-
ify things such as job and server attributes, the server, queues, and the event that triggered the
hook.

The Administrator creates any desired hooks.

This chapter contains the following man pages:

• pbs_module(7B)

• pbs_stathook(3B)
PBS Professional 12 Programmer’s Guide 105

Chapter 9 Hooks
See the following additional man pages:

• qmgr(1B)

• qsub(1B)

• qmove(1B)

• qalter(1B)

• pbs_rsub(1B)

• pbs_manager(3B)

9.2 How Hooks Work

9.2.1 Hook Contents and Permissions

A hook contains a Python script. The script is evaluated by a Python 2.5 or later interpreter,
embedded in PBS.

Hooks have a default UNIX umask of 022. File permissions are inherited from the current
working directory of the hook script.

9.2.2 Accepting and Rejecting Actions

The hook script always accepts the current event request action unless an unhandled excep-
tion occurs in the script, a hook alarm timeout is triggered or there's an explicit call to
“pbs.event().reject()”.
106 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
9.2.3 Exceptions

A hook script can catch an exception and evaluate whether or not to accept or reject the event
action. In this example, while referencing the non-existent attribute pbs.event().job.interac-
tive, an exception is triggered, but the event action is still accepted:

…

try:

e = pbs.event()

if e.job.interactive:

 e.reject(“Interactive jobs not allowed”)

except SystemExit:

pass

except:

e.accept()

9.2.4 Unsupported Interfaces and Uses

Site hooks which read, write, close, or alter stdin, stdout, or stderr, are not supported. Hooks
which use any interfaces other than those described are unsupported.

9.3 Interface to Hooks

Two PBS APIs are used with hooks. These are pbs_manager() and pbs_stathook(). The pbs
module provides a Python interface to PBS.

9.3.1 The pbs Module

Hooks have access to a special module called “pbs”, which contains functions that perform
PBS-related actions. This module must be explicitly loaded by the hook writer via the call
“import pbs” .

The pbs module provides an interface to PBS and the hook environment. The interface is
made up of Python objects, which have attributes and methods. You can operate on these
objects using Python code.
PBS Professional 12 Programmer’s Guide 107

Chapter 9 Hooks
9.3.1.1 Description of pbs Module

pbs_module

The interface is made up of Python objects, which have attributes and methods. You can operate
on these objects using Python code. For a description of each object, see the PBS Professional
Administrator’s Guide.

9.3.1.2 pbs Module Objects

 pbs.acl
 Represents a PBS ACL type.

 pbs.args
 Represents a space-separated list of PBS arguments to commands like qsub, qdel.

 pbs.BadAttributeValueError
 Raised when setting the attribute value of a pbs.* object to an invalid value.

 pbs.BadAttributeValueTypeError
 Raised when setting the attribute value of a pbs.* object to an invalid value type.

 pbs.BadResourceValueError
 Raised when setting the resource value of a pbs.* object to an invalid value.

 pbs.BadResourceValueTypeError
 Raised when setting the resource value of a pbs.* object to an invalid value type.

 pbs.checkpoint
 Represents a job’s Checkpoint attribute.

 pbs.depend
 Represents a job’s depend attribute.

 pbs.duration
 Represents a time interval.

 pbs.email_list
 Represents the set of users to whom mail may be sent.

 pbs.event
 Represents a PBS event.
108 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 pbs.EventIncompatibleError
 Raised when referencing a non-existent attribute in pbs.event().

 pbs.EXECHOST_PERIODIC
 The exechost_periodic event type.

 pbs.EXECJOB_BEGIN
 The execjob_begin event type.

 pbs.EXECJOB_END
 The execjob_end event type.

 pbs.EXECJOB_EPILOGUE
 The execjob_epilogue event type.

 pbs.EXECJOB_PRETERM
 The execjob_preterm event type.

 pbs.EXECJOB_PROLOGUE
 The execjob_prologue event type.

 pbs.exec_host
 Represents a job’s exec_host attribute.

 pbs.exec_vnode
 Represents a job’s exec_vnode attribute.

 pbs.group_list
 Represents a list of group names.

 pbs.hold_types
 Represents a job’s Hold_Types attribute.

 pbs.job
 Represents a PBS job.

 pbs.job_sort_formula
 Represents the server’s job_sort_formula attribute.

 pbs.JOB_STATE_BEGUN
 Represents the job array state of having started.
PBS Professional 12 Programmer’s Guide 109

Chapter 9 Hooks
 pbs.JOB_STATE_EXITING
 Represents the job state of exiting.

 pbs.JOB_STATE_EXPIRED
 Represents the subjob state of expiring.

 pbs.JOB_STATE_FINISHED
 Represents the job state of finished.

 pbs.JOB_STATE_HELD
 Represents the job state of held.

 pbs.JOB_STATE_MOVED
 Represents the job state of moved.

 pbs.JOB_STATE_QUEUED
 Represents the job state of queued.

 pbs.JOB_STATE_RUNNING
 Represents the job state of running.

 pbs.JOB_STATE_SUSPEND
 Represents the job state of suspended.

 pbs.JOB_STATE_SUSPEND_USERACTIVE
 Represents the job state of suspended due to user activity.

 pbs.JOB_STATE_TRANSIT
 Represents the job state of transiting.

 pbs.JOB_STATE_WAITING
 Represents the job state of waiting.

 pbs.join_path
 Represents a job’s Join_Path attribute.

 pbs.keep_files
 Represents a job’s Keep_Files attribute.

 pbs.license_count
 Represents a set of licensing-related counters.
110 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 pbs.LOG_DEBUG
 Log level 004.

 pbs.LOG_ERROR
 Log level 004.

 pbs.LOG_WARNING
 Log level 004.

 pbs.mail_points
 Represents a job’s Mail_Points attribute.

 pbs.MODIFYJOB
 The modifyjob event type.

 pbs.MOVEJOB
 The movejob event type.

 pbs.ND_BUSY
 Represents busy vnode state.

 pbs.ND_DEFAULT_EXCL
 Represents default_excl sharing vnode attribute value

 pbs.ND_DEFAULT_SHARED
 Represents default_shared sharing vnode attribute value.

 pbs.ND_DOWN
 Represents down vnode state

 pbs.ND_FORCE_EXCL
 Represents force_excl sharing vnode attribute value.

 pbs.ND_FREE
 Represents free vnode state.

 pbs.ND_GLOBUS
 PBS no longer supports Globus. The Globus functionality has been removed from PBS.
 Represents globus value for vnode ntype attribute.

 pbs.ND_IGNORE_EXCL
PBS Professional 12 Programmer’s Guide 111

Chapter 9 Hooks
 Represents ignore_excl sharing vnode attribute value.

 pbs.ND_JOBBUSY
 Represents job-busy vnode state.

 pbs.ND_JOB_EXCLUSIVE
 Represents job-exclusive vnode state.

 pbs.ND_OFFLINE
 Represents offline vnode state.

 pbs.ND_PBS
 Represents pbs value for vnode ntype attribute.

 pbs.ND_PROV
 Represents provisioning vnode state.

 pbs.ND_RESV_EXCLUSIVE
 Represents resv-exclusive vnode state.

 pbs.ND_STALE
 Represents stale vnode state.

 pbs.ND_STATE_UNKNOWN
 Represents state-unknown, down vnode state.

 pbs.ND_UNRESOLVABLE
 Represents unresolvable vnode state.

 pbs.ND_WAIT_PROV
 Represents wait-provisioning vnode state.

 pbs.node_group_key
 Represents the server or queue node_group_key attribute.

 pbs.path_list
 Represents a list of pathnames.

 pbs.place
 Represents the place job submission specification.

 pbs.QTYPE_EXECUTION
112 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 The execution queue type.

 pbs.QTYPE_ROUTE
 The route queue type.

 pbs.queue
 Represents a PBS queue.

 pbs.QUEUEJOB
 The queuejob event type.

 pbs.range
 Represents a range of numbers referring to array indices.

 pbs.resv
 Represents a PBS reservation.

 pbs.RESVSUB
 The resvsub event type.

 pbs.RESV_STATE_BEING_DELETED
 Represents the reservation state RESV_BEING_DELETED.

 pbs.RESV_STATE_CONFIRMED
 Represents the reservation state RESV_CONFIRMED.

 pbs.RESV_STATE_DEGRADED
 Represents the reservation state RESV_DEGRADED.

 pbs.RESV_STATE_DELETED
 Represents the reservation state RESV_DELETED.

 pbs.RESV_STATE_DELETING_JOBS
 Represents the reservation state RESV_DELETING_JOBS.

 pbs.RESV_STATE_FINISHED
 Represents the reservation state RESV_FINISHED.

 pbs.RESV_STATE_NONE
 Represents the reservation state RESV_NONE.

 pbs.RESV_STATE_RUNNING
PBS Professional 12 Programmer’s Guide 113

Chapter 9 Hooks
 Represents the reservation state RESV_RUNNING.

 pbs.RESV_STATE_TIME_TO_RUN
 Represents the reservation state RESV_TIME_TO_RUN.

 pbs.RESV_STATE_UNCONFIRMED
 Represents the reservation state RESV_UNCONFIRMED.

 pbs.RESV_STATE_WAIT
 Represents the reservation state RESV_WAIT.

 pbs.route_destinations
 Represents a queue’s route_destinations attribute.

 pbs.RUNJOB
 The runjob event type.

 pbs.select
 Represents the select job submission specification.

 pbs.server
 Represents the local PBS server.

 pbs.size
 Represents a PBS size type.

 pbs.software
 Represents a site-dependent software specification resource.

 pbs.staging_list
 Represents a list of file stagein or stageout parameters.

 pbs.state_count
 Represents a set of job-related state counters.

 pbs.SV_STATE_ACTIVE
 Represents the server state “Scheduling”.

 pbs.SV_STATE_HOT
 Represents the server state “Hot_Start”.

 pbs.SV_STATE_IDLE
114 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 Represents the server state “Idle”.

 pbs.SV_STATE_SHUTDEL
 Represents the server state “Terminating, Delayed”.

 pbs.SV_STATE_SHUTIMM
 Represents the server state “Terminating”.

 pbs.SV_STATE_SHUTSIG
 Represents the server state “Terminating”, when a signal has been caught.

 pbs.UnsetAttributeNameError
 Raised when referencing a non-existent name of a pbs.* object.

 pbs.UnsetResourceNameError
 Raised when referencing a non-existent name of a pbs.* object.

 pbs.user_list
 Represents a list of user names.

 pbs.vchunk
 Represents a resource chunk assigned to a job.

 pbs.version
 Represents PBS version information.

 pbs.vnode
 Represents a PBS vnode.

 SystemExit
 Raised when accepting or rejecting an action.

9.3.1.3 pbs Module Global Attribute Creation Methods

 pbs.acl(“[+|-]<entity>][,...]”)
 Creates an object representing a PBS ACL, using the given string
 parameter. Instantiation of these objects requires a formatted input string.

 pbs.checkpoint(“<checkpoint_string>”)
 where <checkpoint_string> must be one of “n”, “s”, “c”, “c=mmm”, “w”, or
 “w=mmm” Creates an object representing the job’s Checkpoint attribute, using the
 given string. Instantiation of these objects requires a formatted input string.
PBS Professional 12 Programmer’s Guide 115

Chapter 9 Hooks
 pbs.depend(“<depend_string>”)
 <depend_string> must be of format “<type>:<jobid>[,<jobid>...]”,
 or “on:<count>”, and where <type> is one of “after”, “afterok”,
 “afterany”, “before”, “beforeok”, and “beforenotok”. Creates a
 PBS dependency specification object representing the job’s depend

 attribute, using the given <depend_string>. Instantiation of
 these objects requires a formatted input string.

 pbs.duration(“[[hours:]minutes:]seconds[.milliseconds]”)
 Creates a time specification duration instance, returning the
 equivalent number of seconds from the given time string. Repre-
 sents an interval or elapsed time in number of seconds. Duration
 objects can be specified using either a time or an integer. See
 the “pbs.duration(<integer>)” creation method.

 pbs.duration(<integer>)
 Creates an integer duration instance using the specified number
 of seconds. A pbs.duration instance can be operated on by any
 of the Python int functions. When performing arithmetic opera-
 tions on a pbs.duration type, ensure the resulting value is a
 pbs.duration() type, before assigning to a job member that
 expects such a type.

 pbs.email_list(“<email_address1>[,<email_address2>...]”)
 Creates an object representing a mail list. Instantiation of
 these objects requires a formatted input string.

 pbs.exec_host(“host/N[*C][+...]”)
 Create an object representing the exec_host job attribute, using
 the given host and resource specification. Instantiation of
 these objects requires a formatted input string.

 pbs.exec_vnode(“<vchunk>[+<vchunk>...]”)
 <vchunk> is (<vnodename:ncpus=N:mem=M>) Creates an object repre-
 senting the exec_vnode job attribute, using the given vnode and
 resource specification. When the qrun -H command is used, or
 when the scheduler runs a job, the pbs.job.exec_vnode object
 contains the vnode specification for the job. Instantiation of
 these objects requires a formatted input string. Example:
 pbs.exec_vnode((vnodeA:ncpus=N:mem=X)+(nodeB:ncpus=P:mem=Y+

 nodeC:mem=Z))
116 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 This object is managed and accessed via the str() or repr() functions.
 Example:
 Python> ev = pbs.server().job(“10”).exec_vnode
 Python> str(ev)
 (vnodeA:ncpus=2:mem=200m)+(vnodeB:ncpus=5:mem=1g)”

 pbs.group_list(“<group_name>[@<host>][,<group_name>[@<host>]...]”)
 Creates an object representing a PBS group list. To use a group list object:
 pbs.job.group_list = pbs.group_list(....)
 Instantiation of these objects requires a formatted input string.

 pbs.hold_types(“<hold_type_str>”)
 where <hold_type_str> is one of “u”, “o”, “s”, or “n”. Creates
 an object representing the Hold_Types job attribute. Instantia-
 tion of these objects requires a formatted input string.

 pbs.job_sort_formula(“<formula_string>”)
 where <formula_string> is a string containing a math formula.
 Creates an object representing the job_sort_formula server
 attribute. Instantiation of these objects requires a formatted input string.

 pbs.join_path({“oe”|”eo”|”n”})
 Creates an object representing the Join_Path job attribute.
 Instantiation of these objects requires a formatted input string.

 pbs.keep_files(“<keep_files_str>”)
 where <keep_files_str> is one of “o”, “e”, “oe”, “eo”. Creates
 an object representing the Keep_Files job attribute. Instantia-
 tion of these objects requires a formatted input string.

 pbs.license_count(“Avail_Global:<W>Avail_Local:<X>Used:<Y>High_Use:<Z>”)
 Instantiates an object representing a license_count attribute.
 Instantiation of these objects requires a formatted input string.

 pbs.mail_points(“<mail_points_string>”)
 where <mail_points_string> is “a”, “b”, and/or “e”, or “n”.
 Creates an object representing a Mail_Points attribute. Instan-
 tiation of these objects requires a formatted input string.

 pbs.node_group_key(“<resource>”)
 Creates an object representing the resource to be used for node
 grouping, using the specified resource.
PBS Professional 12 Programmer’s Guide 117

Chapter 9 Hooks
 pbs.path_list(“<path>[@<host>][,<path>@<host>...]”)
 Creates an object representing a PBS pathname list. To use a path list object:
 pbs.job.Shell_Path_List = pbs.path_list(....)
 Instantiation of these objects requires a formatted input string.

 pbs.place(“[arrangement]:[sharing]:[group]”)
 arrangement can be “pack”, “scatter”, “free”, “vscatter”
 sharing can be “shared”, “excl”, “exclhost”
 group can be of the form “group=<resource>”
 [arrangement], [sharing], and [group] can be given in any order or combination.
 Creates a place object representing the job’s place specifica-
 tion. Instantiation of these objects requires a formatted input string. Example:
 pl = pbs.place(“pack:excl”)
 s = repr(pl) (or s = `pl`)
 letter = pl[0] (assigns ‘p’ to letter)
 s = s + “:group=host” (append to string) br pl = pbs.place(s)
 (update original pl)

 pbs.range(“<start>-<stop>:<step>”)
 Creates a PBS object representing a range of values. Example:
 pbs.range(“1-30:3”)
 Instantiation of these objects requires a formatted input string.

 pbs.route_destinations(“<queue_spec>[,<queue_spec>,...]”)
 where <queue_spec> is queue_name[@server_host[:port]]
 Creates an object that represents a route_destinations routing
 queue attribute. Instantiation of these objects requires a formatted input string.

 pbs.select(“[N:]res=val[:res=val][+[N:]res=val[:res=val]...]”)
 Creates a select object representing the job’s select specifica-
 tion. Instantiation of these objects requires a formatted input string. Example:
 sel = pbs.select(“2:ncpus=1:mem=5gb+3:ncpus=2:mem=5gb”)
 s = repr(sel) (or s = `sel`)
 letter = s[3] (assigns ‘c’ to letter)
 s = s + “+5:scratch=10gb” (append to string)
 sel = pbs.select(s) (reset the value of sel)

 pbs.size(<integer>)
 Creates a PBS size object using the given integer value, storing the value as the
 number of bytes. Size objects can be specified using either an integer or a string.
 See the “pbs.size(<integer><suffix>)” creation method.
118 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 pbs.size(“<integer><suffix>”)
 Creates a PBS size object out of the given string specification.
 See the PBS Professional Reference Guide for suffix information.
 The size of a word is the word size on the execution host. Size
 objects can be specified using either an integer or a string.
 To operate on pbs.size instances, use the “+” and “-” operators.
 To compare pbs.size instances, use the “==”, “!=”, “>”, “<“,
 “>=”, and “<=” operators. Example: the sizes are normalized to
 the smaller of the 2 suffixes. In this case, “10gb” becomes
 “10240mb” and is added to “10mb”:
 sz = pbs.size(“10gb”)
 sz = sz + 10mb
 10250mb
 Example: the following returns True because sz is greater than 100 bytes:
 if sz > 100:
 gt100 = True

 pbs.staging_list(“<filespec>[,<filespec>,...]”)
 where <filespec> is <execution_path>@<storage_host>:<storage_path>
 Creates an object representing a job file staging parameters list. To use a staging
 list object:
 pbs.job.stagein = pbs.staging_list(....)
 Instantiation of these objects requires a formatted input string.

 pbs.state_count(“Transit:<U>Queued:<V>Held:<W>Running:<X>Exiting:<Y>Begun:<Z>)
 Instantiates an object representing a state_count attribute.
 Instantiation of these objects requires a formatted input string.

 pbs.user_list(“<user>[@<host>][,<user>@<host>...]”)
 Creates an object representing a PBS user list. To use a user list object:
 pbs.job.User_List = pbs.user_list(....)
 Instantiation of these objects requires a formatted input string.

9.3.1.4 Other pbs Module Global Methods

 pbs.args(“<args>”)
 where <args> are space-separated arguments to a command such as
 qsub or qdel. Creates an object representing the arguments to the command. Example:
 pbs.args(“-Wsuppress_email=N -r y”)
 Instantiation of these objects requires a formatted input string.
PBS Professional 12 Programmer’s Guide 119

Chapter 9 Hooks
 pbs.get_local_nodename()
 This returns a Python str whose value is the name of the local
 natural vnode. If you want to refer to the vnode object repre-
 senting the current host, you can pass this vnode name as the
 key to pbs.event().vnode_list[]. For example:
 Vn = pbs.event().vnode_list[pbs.get_local_nodename()]

 pbs.logjobmsg(job_ID,message)
 where job_ID must be an existing or previously existing job ID
 and where message is an arbitrary string. This puts a custom
 string in the PBS Server log. The tracejob command can be used
 to print out the job-related messages logged by a hook script.
 Messages are logged at log event class pbs.LOG_DEBUG.

 pbs.logmsg(log_event_class,message)
 where message is an arbitrary string, and where log_event_class
 can be one of the message log event class constants:
 pbs.LOG_WARNING

 pbs.LOG_ERROR

 pbs.LOG_DEBUG

 This puts a custom string in the daemon log.

 pbs.software(“<software_info_string>”)
 Creates an object representing a site-dependent software
 resource. Instantiation of these objects requires a formatted input string.

 pbs.version(“<pbs_version_string>”)
 Creates an object representing the PBS version string. Instan-
 tiation of these objects requires a formatted input string.

9.3.1.5 Attributes and Resources

 Hooks can read server, queue, or reservation resources. Hooks can read
 vnode or job attributes and resources. Hooks can modify:
 The resources requested by a job
 The resources used by a job
 The attributes of a job
 The resource arguments to pbs_rsub
 Vnode attributes and resources

 Custom and built-in PBS resources are represented in Python dictionar-
120 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 ies, where the resource names are the dictionary keys. Built-in
 resources are listed in the PBS Professional Reference Guide. You reference a resource
 through a vnode, the Server, the event that triggered the hook, or the current job, for example:
 pbs.server().resources_available[“< resource name>”]
 pbs.event().job.Resource_List[“< resource name>”]
 pbs.event().vnode_list[<vnode
 name>].resources_available[“<resource name >”]

 The resource name must be in quotes. Example: Get the number of CPUs:
 ncpus = Resource_List[“ncpus”]

 An instance R of a job resource can be set as follows:
 R[“<resource name>”] = <resource value>

 For example:
 pbs.event().job().Resource_List[“mem”] = 8gb

9.3.1.6 Exceptions

 pbs.BadAttributeValueError
 Raised when setting the attribute value of a pbs.* object to an invalid value.

 pbs.BadAttributeValueTypeError
 Raised when setting the attribute value of a pbs.* object to an invalid value type.

 pbs.BadResourceValueError
 Raised when setting the resource value of a pbs.* object to an invalid value.

 pbs.BadResourceValueTypeError
 Raised when setting the resource value of a pbs.* object to an invalid value type.

 pbs.EventIncompatibleError
 Raised when referencing a non-existent attribute in pbs.event().

 pbs.UnsetAttributeNameError
 Raised when referencing a non-existent name of an attribute.

 pbs.UnsetResourceNameError
 Raised when referencing a non-existent name of a resource.

 SystemExit
PBS Professional 12 Programmer’s Guide 121

Chapter 9 Hooks
 Raised when accepting or rejecting an action.

 If a hook encounters an unhandled exception, PBS rejects the corresponding action, and
 an error message is printed to stderr. A message is printed to the daemon log.

9.3.1.7 See Also

The PBS Professional Administrator’s Guide, pbs_hook_attributes(7B), pbs_resources(7B),
qmgr(1B)

9.3.2 The pbs_manager() API

The pbs_manager() API is described in "pbs_manager” on page 42. The elements related to
hooks are repeated here:

The pbs_manager() API contains an obj_name called “hook” defined as MGR_OBJ_HOOK.

To run, hooks require root privilege on UNIX, and local Administrators privilege on Win-
dows. Hooks run only on the server host.

The pbs_manager() API contains the following hook commands, which operate only on hook
objects:

MGR_CMD_IMPORT
This command is used for loading the hook script contents into a hook.

 MGR_CMD_EXPORT
This command is used for dumping to a file the contents of a hook script.

The parameters to MGR_CMD_IMPORT and MGR_CMD_EXPORT are specified via the
attrib parameter of pbs_manager(). The attrib parameter is a “struct attropl” defined in
pbs_ifl.h as:

struct attropl {

char *name;

char *resource;

char *value;

enum batch_op op;

struct attropl *next;

};

The attrib list is terminated by the first entry where next is null.
122 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
For MGR_CMD_IMPORT, specify attropl 'name' as “content-type”, “content-encoding”,
and “input-file” along with the corresponding 'value' and an 'op' of SET.

For MGR_CMD_EXPORT, specify the attropl 'name' as “content-type”, “content-encod-
ing”, and “output-file” along with the corresponding 'value', and an 'op' of SET.
PBS Professional 12 Programmer’s Guide 123

Chapter 9 Hooks
9.3.2.1 Examples of Using pbs_manager()

Example 9-1: The following:

qmgr -c 'import hook hook1 application/x-python base64 hello.py.b64'

is programmatically equivalent to:

static struct attropl imp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-python”,

SET,

(struct attropl *)&imp_attribs[1]

},

{ “content-encoding”,

(char *)0,

“base64”,

SET,

(struct attropl *)&imp_attribs[2]},

{ “input-file”,

(char *)0,

“hello.py.b64”,

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_IMPORT, MGR_OBJ_HOOK, “hook1”, &imp_attribs[0],
NULL);
124 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
Example 9-2: The following:

qmgr -c 'export hook hook1 application/x-python default hello.py'

is programmatically equivalent to:

static struct attropl exp_attribs[] = {

{ “content-type”,

(char *)0,

“application/x-python”,

SET,

(struct attropl *)&exp_attribs[1]},

{ “content-encoding”,

(char *)0,

“default”,

SET,

(struct attropl *)&exp_attribs[2]},

{ “output-file”,

(char *)0,

“hello.py”,

SET,

(struct attropl *)0

}

};

pbs_manager(con, MGR_CMD_EXPORT, MGR_OBJ_HOOK, “hook1”, &exp_attribs[0],
NULL);

9.3.3 The pbs_stathook() API

The PBS API called “pbs_stathook()” is used to get attributes and values for site hooks.

The prototype for pbs_stathook() is as follows:

struct batch_status *pbs_stathook(int connect, char *hook_name, struct
attrl *attrib, char *extend)

The call to pbs_stathook() causes a PBS_BATCH_StatusHook request to be sent to the server.
In reply, the PBS server returns a batch reply status of object type MGR_OBJECT_HOOK
listing the attributes and values that were requested relating to a particular hook or all hooks
of type HOOK_SITE.
PBS Professional 12 Programmer’s Guide 125

Chapter 9 Hooks
9.3.3.1 Example of Using pbs_stathook()

To list all site hooks using qmgr:

qmgr -c "list hook"

To list all site hooks using the pbs_stathook() API:

pbs_stathook()

The result is the same. For example, if there are two site hooks, c3 and c36:

Hook c3

 type = site

 enabled = true

 event = queuejob, modifyjob

 user = pbsadmin

 alarm = 30

 order = 1

Hook c36

 type = site

 enabled = true

 event = resvsub

 user = pbsadmin

 alarm = 30

 order = 1

9.3.3.2 Description of pbs_stathook() API

pbs_stathook(3B)

SYNOPSIS

 #include <pbs_error.h>
 #include <pbs_ifl.h>

 struct batch_status *pbs_stathook(int connect, char *id,
 struct attrl *attrib, char *extend)

 void pbs_statfree(struct batch_status *psj)

DESCRIPTION
 Issue a batch request to obtain the status of a specified site hook or
126 PBS Professional 12 Programmer’s Guide

Hooks Chapter 9
 a set of site hooks at the current server.

 A Status Hook batch request is generated and sent to the server over
 the connection specified by connect which is the return value of pbs_connect().

 This API can be executed only by root on the local server host.

 The parameter, id, may be either a hook name or the null string. If id
 specifies a name, the attribute-value list for that hook is returned.
 If id is a null string or a null pointer, the status of a all hooks at
 the current server is returned.

 The parameter, attrib, is a pointer to an attrl structure which is
 defined in pbs_ifl.h as:
 struct attrl {
 struct attrl *next;
 char *name;
 char *resource;
 char *value;
 };

 The attrib list is terminated by the first entry where next is a null pointer.

 If an attrib list is given, then only the attributes in the list are
 returned by the server. Otherwise, all the attributes of a hook are returned.

 The resource member is only used if the name member is ATTR_l,
 otherwise it should be a pointer to a null string.

 The value member should always be a pointer to a null string.

 The parameter, extend, is reserved for implementation defined extensions.

 The return value is a pointer to a list of batch_status structures or
 the null pointer if no site hooks can be queried for status. The
 batch_status structure is defined in pbs_ifl.h as
 struct batch_status {
 struct batch_status *next;
 char *name;
 struct attrl *attribs;
 char *text;
 }
PBS Professional 12 Programmer’s Guide 127

Chapter 9 Hooks
 It is up the user to free the structure when no longer needed, by calling pbs_statfree().

SEE ALSO
 pbs_hook_attributes(7B), pbs_connect(3B)

DIAGNOSTICS
 When the batch request generated by the pbs_stathook() function has
 been completed successfully and the status of each site hook has been
 returned by the batch server, the routine will return a pointer to the
 list of batch_status structures. If no site hooks were available to
 query or an error occurred, a null pointer is returned. The global
 integer pbs_errno should be examined to determine the cause.
128 PBS Professional 12 Programmer’s Guide

Chapter 10
HPC Basic Profile
This chapter describes using PBS for HPC Basic Profile jobs. For more information on HPC
Basic Profile, see Chapter 7, "Metascheduling Using HPC Basic Profile", on page 573 in the
PBS Professional Administrator’s Guide.

10.1 Introduction

PBS Professional can schedule and manage jobs on one or more HPC Basic Profile Servers
using the Grid Forum OGSA HPC Basic Profile web services standard.

For definitions, see section 7.1, "Definitions", on page 573 of the PBS Professional Adminis-
trator’s Guide.

10.2 How PBS Works With HPC Basic Profile

10.2.1 Information Available From HPCBP Nodes

The only information available about the HPCBP nodes is that which is supplied by the HPC
Basic Profile Server to the HPCBP MOM.

10.2.2 Translating Jobs for HPCBP

10.2.2.1 Translating Job Attributes for HPCBP Jobs

The HPCBP MOM converts the job’s attributes to equivalent JSDL elements, and passes the
resulting JSDL document to the HPC Basic Profile Server.
PBS Professional 12 Programmer’s Guide 129

Chapter 10 HPC Basic Profile
If the select statement includes HPCBP hostnames, those names are passed using the <Candi-

dateHosts> JSDL element.

The aggregate number of CPUs is passed using the <TotalCPUCount> JSDL element.

See the following table for a mapping of job attributes to JSDL elements:

Table 10-1: How PBS Job Attributes Are Translated Into JSDL

PBS Attribute/Directive JSDL element

-l select = arch = <value> <OperatingSystemVersion> or <Operat-

ingSystemName>

-l cput = <time> <TotalCPUTime>

-l file = <size> <IndividualDiskSpace>

-l select = N:host = <value> Or -l select
= N:vnode=<value>

<HostName>

-l select = N:mem = <size> <TotalPhysicalMemory>

-l select = N :ncpus = <value>
:N:mpiprocs = <value>

<TotalCPUCount>

-l pcput = <time> <IndividualCPUTime>

-l pmem = <size> <IndividualPhysicalMemory>

-l pvmem = <size> <IndividualVirtualMemory>

-l vmem = <size> <TotalVirtualMemory>

-N Job_Name <JobName>

-w stagein = <directive> <DataStaging> + <Source>

-w stageout = <directive> <DataStaging> + <Target>

-o <hostname> : filepath <DataStaging> + <Target>

-e <hostname> : filepath <DataStaging> + <Target>

-j [o][e] <DataStaging> + <Target>

-k [o][e] ----
130 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
10.2.2.2 Translating arch Values for HPCBP Jobs

The following table lists arch values and their OperatingSystemName and OperatingSys-

temVersion JSDL equivalents:

Variable_List <Environment>

-l ompthreads <Environment>

Table 10-2: Architectures Used in HPCBP Jobs

arch
OperatingSystem

Name
OperatingSystemVersion

aix4 AIX ----

hpux10 HPUX ----

hpux11 HPUX ----

irix6 IRIX ----

linux LINUX ----

solaris7 Solaris ----

Digitalunix Tru64_UNIX ----

windows_2003_server other Windows_2003_server

windows_2008_server other Windows_2008_server

other other ----

macos MACOS ----

attunix ATTUNIX ----

dgux DGUX ----

decnt DECNT ----

Table 10-1: How PBS Job Attributes Are Translated Into JSDL

PBS Attribute/Directive JSDL element
PBS Professional 12 Programmer’s Guide 131

Chapter 10 HPC Basic Profile
OpenMVS OpenMVS ----

MVS MVS ----

OS400 OS400 ----

OS_2 OS_2 ----

JavaVM JavaVM ----

WINNT WINNT ----

WINCE WINCE ----

NCR3000 NCR3000 ----

NetWare NetWare ----

OSF OSF ----

DC_OS DC_OS ----

Reliant_UNIX Reliant_UNIX ----

SCO_UnixWare SCO_UnixWare ----

SCO_OpenServer SCO_OpenServer ----

Sequent Sequent ----

SunOS SunOS ----

U6000 U6000 ----

ASERIES ASERIES ----

TandemNSK TandemNSK ----

TandemNT TandemNT ----

BS2000 BS2000 ----

Lynx Lynx ----

Table 10-2: Architectures Used in HPCBP Jobs

arch
OperatingSystem

Name
OperatingSystemVersion
132 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
XENIX XENIX ----

VM VM ----

Interactive_UNIX Interactive_UNIX ----

BSDUNIX BSDUNIX ----

FreeBSD FreeBSD ----

NetBSD NetBSD ----

GNU_Hurd GNU_Hurd ----

OS9 OS9 ----

MACH_Kernel MACH_Kernel ----

Inferno Inferno ----

QNX QNX ----

EPOC EPOC ----

IxWorks IxWorks ----

VxWorks VxWorks ----

MiNT MiNT ----

BeOS BeOS ----

HP_MPE HP_MPE ----

NextStep NextStep ----

PalmPilot PalmPilot ----

Rhapsody Rhapsody ----

Windows_2000 Windows_2000 ----

Dedicated Dedicated ----

Table 10-2: Architectures Used in HPCBP Jobs

arch
OperatingSystem

Name
OperatingSystemVersion
PBS Professional 12 Programmer’s Guide 133

Chapter 10 HPC Basic Profile
10.3 Examples

Example 10-1: PBS job request:

qsub -N job1 -- /bin/executable -a -b -cd

OS_390 OS_390 ----

VSE VSE ----

TPF TPF ----

Windows_R_Me Windows_R_Me ----

Caldera_Open_UNIX Caldera_Open_UNI

X

OpenBSD OpenBSD ----

Not_Applicable Not_Applicable ----

Windows_XP Windows_XP ----

z_OS z_OS ----

<any other string> other <any other string>

Table 10-2: Architectures Used in HPCBP Jobs

arch
OperatingSystem

Name
OperatingSystemVersion
134 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
JSDL document:

<?xml version="1.0" encoding="utf-8"?>

<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-hpcpa"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job1</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>

</jsdl:JobIdentification>

<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBS-

 toHPCBP">

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>-a</jsdl-hpcpa:Argument>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argument>

<jsdl-hpcpa:Argument>-cd</jsdl-hpcpa:Argument>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Example 10-2: PBS job request:

qsub -N job2 -l select=2:ncpus=2:mpiprocs=2 -- /bin/executable a b c

JSDL document:

<?xml version="1.0" encoding="utf-8"?>

<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"
xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-hpcpa"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job2</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>
PBS Professional 12 Programmer’s Guide 135

Chapter 10 HPC Basic Profile
</jsdl:JobIdentification>

<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBS-

 toHPCBP" >

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>a</jsdl-hpcpa:Argument>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argument>

<jsdl-hpcpa:Argument>c</jsdl-hpcpa:Argument>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:TotalCPUCount>

<jsdl:UpperBoundedRange>4</jsdl:Upper-

 BoundedRange>

<jsdl:LowerBoundedRange>4</jsdl:Lower-

 BoundedRange>

</jsdl:TotalCPUCount>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Example 10-3: PBS job request:

qsub -N job3 -l select= 4 :ncpus=4 :arch=windows_2008_server
:host=winhost0+2:ncpus=2: host=winhost1 -- /bin/executable a b

JSDL document:

<?xml version="1.0" encoding="utf-8"?>

<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/
jsdl" xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-
hpcpa" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job3</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>

</jsdl:JobIdentification>
136 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBSto-

 HPCBP" >

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>a</jsdl-hpcpa:Argument>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argument>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:CandidateHosts>

<jsdl:HostName>winhost0</jsdl:HostName>

<jsdl:HostName>winhost1</jsdl:HostName>

</jsdl:CandidateHosts>

<jsdl:OperatingSystem>

<jsdl:OperatingSystemType>

<jsdl:OperatingSystemName>oth-

 er</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>

<jsdl:OperatingSystemVersion>Windows_2008_-

 Server</jsdl:OperatingSystemVersion>

</jsdl:OperatingSystem>

<jsdl:TotalCPUCount>

<jsdl:UpperBoundedRange>20</jsdl:Upper-

 BoundedRange>

<jsdl:LowerBoundedRange>20</jsdl:Lower-

 BoundedRange>

</jsdl:TotalCPUCount>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Example 10-4: PBS job request:

qsub -N job4 -l select=4:ncpus=2:mpiprocs=2 -- /bin/executable a b

JSDL document:

<?xml version="1.0" encoding="utf-8"?>
PBS Professional 12 Programmer’s Guide 137

Chapter 10 HPC Basic Profile
<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/
jsdl" xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-
hpcpa" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job4</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>

</jsdl:JobIdentification>

<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBSto-

 HPCBP" >

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>a</jsdl-hpcpa:Argu-

 ment>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argu-

 ment>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:TotalCPUCount>

<jsdl:UpperBoundedRange>8</jsdl:UpperBound-

 edRange>

<jsdl:LowerBoundedRange>8</jsdl:LowerBound-

 edRange>

</jsdl:TotalCPUCount>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Example 10-5: Job that specifies all the PBS job attributes:

qsub -N job5 -l select=4:ncpus=2:mpiprocs=2:arch=windows_2008_server:
host=winhost0:ompthreads=2 -l cput=00:01:20 -l file=2kb -l
pcput=00:00:10 -l pmem=30kb -l pvmem=30kb -l vmem=240kb -- /bin/execut-
able a b

JSDL document:
138 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
<?xml version="1.0" encoding="utf-8"?>

<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/
jsdl" xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-
hpcpa" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job5</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>

</jsdl:JobIdentification>

<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBSto-

 HPCBP" >

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>a</jsdl-hpcpa:Argu-

 ment>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argu-

 ment>

<jsdl-hpcpa:Environment name=”OMP_NUM_-

 THREADS”> 2</jsdl-hpcpa:Environment>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:CandidateHosts>

<jsdl:HostName>winhost0</jsdl:HostName>

</jsdl:CandidateHosts>

<jsdl:OperatingSystem>

<jsdl:OperatingSystemType>

<jsdl:OperatingSystemName>oth-

 er</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>

<jsdl:OperatingSystemVersion>Windows_2008_-

 Server</jsdl:OperatingSystemVersion>

</jsdl:OperatingSystem>

<jsdl:TotalCPUCount>
PBS Professional 12 Programmer’s Guide 139

Chapter 10 HPC Basic Profile
<jsdl:UpperBoundedRange>8</jsdl:UpperBound-

 edRange>

<jsdl:LowerBoundedRange>8</jsdl:LowerBound-

 edRange>

</jsdl:TotalCPUCount>

<jsdl:TotalCPUTime>

<jsdl:UpperBoundedRange>80.0</jsdl:Upper-

 BoundedRange>

</jsdl:TotalCPUTime>

<jsdl:IndividualDiskSpace>

<jsdl:UpperBoundedRange>2048.0</jsdl:Upper-

 BoundedRange>

</jsdl:IndividualDiskspace>

<jsdl:IndividualCPUTime>

<jsdl:UpperBoundedRange>10.0</jsdl:Upper-

 BoundedRange>

</jsdl:IndividualCPUTime>

<jsdl:IndividualPhysicalMemory>

<jsdl:UpperBoundedRange>30720.0</jsdl:Up-

 perBoundedRange>

</jsdl:IndividualPhysicalMemory>

<jsdl:IndividualVirtualMemory>

<jsdl:UpperBoundedRange>30720.0</jsdl:Up-

 perBoundedRange>

</jsdl:IndividualVirtualMemory>

<jsdl:TotalVirtualMemory>

<jsdl:UpperBoundedRange>245760.0</jsdl:Up-

 perBoundedRange>

</jsdl:TotalVirtualMemory>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

Example 10-6: File staging example:

qsub -N job6 -Wstagein=test.in:server@/home/test/test.in -Wstage-
out=test.out:server@/home/test/test.out -- /bin/executable a b
140 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
JSDL document: If the hpcbp_stage_protocol attribute is set to ftp:34 and the user with user-
name User1 has submitted the job, the HPCBP MOM generates the following JSDL docu-
ment:

<?xml version="1.0" encoding="utf-8"?>

<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/
jsdl" xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-
hpcpa" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<jsdl:JobDescription>

<jsdl:JobIdentification>

<jsdl:JobName>job6</jsdl:JobName>

<jsdl:JobProject> PBS-TO-HPCBP v1</jsdl:Job-

 Project>

</jsdl:JobIdentification>

<jsdl:Application>

<jsdl-hpcpa:HPCProfileApplication name="PBSto-

 HPCBP" >

<jsdl-hpcpa:Executable>/bin/execu-

 table</jsdl-hpcpa:Executable>

<jsdl-hpcpa:Argument>a</jsdl-hpcpa:Argu-

 ment>

<jsdl-hpcpa:Argument>b</jsdl-hpcpa:Argu-

 ment>

</jsdl-hpcpa:HPCProfileApplication>

</jsdl:Application>

<jsdl:DataStaging>

<jsdl:FileName>test.in</jsdl:FileName>

<jsdl:CreationFlag>overwrite</jsdl:Creation-

 Flag>

<jsdl:Source>

<jsdl:URI>ftp://ser-

 ver:34/home/test/test.in</jsdl:URI>

</jsdl:Source>

<jsdl:Credential>

<jsdl:UsernameToken>

<jsdl:Username>User1</jsdl:Username>

<jsdl:password>User1</jsdl:password>
PBS Professional 12 Programmer’s Guide 141

Chapter 10 HPC Basic Profile
</jsdl:UsernameToken>

<jsdl:Credential>

</jsdl:DataStaging>

<jsdl:DataStaging>

<jsdl:FileName>test.out</jsdl:FileName>

<jsdl:CreationFlag>overwrite</jsdl:Creation-

 Flag>

<jsdl:Target>

<jsdl:URI>ftp://ser-

 ver:34/home/test/test.out</jsdl:URI>

</jsdl:Target>

<jsdl:Credential>

<jsdl:UsernameToken>

<jsdl:Username>User1</jsdl:Username>

<jsdl:password>User1</jsdl:password>

</jsdl:UsernameToken>

<jsdl:Credential>

</jsdl:DataStaging>

</jsdl:JobDescription>

</jsdl:JobDefinition>

10.4 Caveats

10.4.1 Unsupported Commands

For a list of unsupported PBS commands, see section 7.8.2, "Unsupported Commands", on
page 588 of the PBS Professional Administrator’s Guide.

10.5 See Also

10.5.1 PBS Professional Manual Pages

See the following man pages:

• qsub(1B)

• pbs_mom(1B)
142 PBS Professional 12 Programmer’s Guide

HPC Basic Profile Chapter 10
10.5.2 References

1. OGSA High Performance Computing Profile Working Group (OGSA-HPCP-WG) of
the Open Grid Forum
https://forge.gridforum.org/sf/projects/ogsa-hpcp-wg

The HPC Basic Profile specification is GFD.114:

http://www.ogf.org/documents/GFD.114.pdf.

2. OGSA High Performance Computing Profile Working Group (OGSA-HPCP-WG) of
the Open Grid Forum

https://forge.gridforum.org/sf/projects/ogsa-hpcp-wg

The HPC File Staging Profile Version 1.0:

http://forge.ogf.org/sf/go/doc15024?nav=1

3. OGSA Job Submission Description Language Working Group (JSDL - WG) of the
Open Grid Forum

http://www.ogf.org/gf/group_info/view.php?group=jsdl-wg

The JSDL HPC Profile Application Extension, Version 1.0 is GFD 111:

http://www.ogf.org/documents/GFD.111.pdf

4. OGSA Usage Record Working Group (UR-WG) of the Open Grid Forum

 The Usage Record - Format Recommendation is GFD.98

http://www.ogf.org/documents/GFD.98.pdf

5. Network Working Group, Uniform Resource Identifier (URI) : Generic Syntax

http://www.rfc-editor.org/rfc/rfc3986.txt
PBS Professional 12 Programmer’s Guide 143

Chapter 10 HPC Basic Profile
144 PBS Professional 12 Programmer’s Guide

Appendix A: License
Agreement
CAUTION!

PRIOR TO INSTALLATION OR USE OF THE SOFTWARE YOU MUST CONSENT TO
THE FOLLOWING SOFTWARE LICENSE TERMS AND CONDITIONS BY CLICKING
THE “I ACCEPT” BUTTON BELOW. YOUR ACCEPTANCE CREATES A BINDING
LEGAL AGREEMENT BETWEEN YOU AND ALTAIR. IF YOU DO NOT HAVE THE
AUTHORITY TO BIND YOUR ORGANIZATION TO THESE TERMS AND CONDI-
TIONS, YOU MUST CLICK “I DO NOT ACCEPT” AND THEN HAVE AN AUTHO-
RIZED PARTY IN THE ORGANIZATION THAT YOU REPRESENT ACCEPT THESE
TERMS.

IF YOU, OR THE ORGANIZATION THAT YOU REPRESENT, HAS A MASTER SOFT-
WARE LICENSE AGREEMENT (“MASTER SLA”) ON FILE AT THE CORPORATE
HEADQUARTERS OF ALTAIR ENGINEERING, INC. (“ALTAIR”), THE MASTER SLA
TAKES PRECEDENCE OVER THESE TERMS AND SHALL GOVERN YOUR USE OF
THE SOFTWARE.

MODIFICATION(S) OF THESE SOFTWARE LICENSE TERMS IS EXPRESSLY PRO-
HIBITED. ANY ATTEMTED MODIFICATION(S) WILL BE NONBINDING AND OF NO
FORCE OR EFFECT UNLESS EXPRESSLY AGREED TO IN WRITING BY AN AUTHO-
RIZED CORPORATE OFFICER OF ALTAIR. ANY DISPUTE RELATING TO THE
VALIDITY OF AN ALLEGED MODIFICATION SHALL BE DETERMINED IN
ALTAIR’S SOLE DISCRETION.
PBS Professional 12 Programmer’s Guide 145

Altair Engineering, Inc. - Software License Agreement

THIS SOFTWARE LICENSE AGREEMENT, including any Additional Terms (together with
the “Agreement”), shall be effective as of the date of YOUR acceptance of these software
license terms and conditions (the “Effective Date”) and is between ALTAIR ENGINEERING,
INC., 1820 E. Big Beaver Road, Troy, MI 48083-2031, USA, a Michigan corporation
(“Altair”), and YOU, or the organization on whose behalf you have authority to accept these
terms (the “Licensee”). Altair and Licensee, intending to be legally bound, hereby agree as
follows:

1. DEFINITIONS. In addition to terms defined elsewhere in this Agreement, the follow-
ing terms shall have the meanings defined below for purposes of this Agreement:

Additional Terms. Additional Terms are those terms and conditions which are determined by
an Altair Subsidiary to meet local market conditions.

Documentation. Documentation provided by Altair or its resellers on any media for use with
the Products.

Execute. To load Software into a computer's RAM or other primary memory for execution by
the computer.

Global Zone: Software is licensed based on three Global Zones: the Americas, Europe and
Asia-Pacific. When Licensee has Licensed Workstations located in multiple Global Zones,
which are connected to a single License (Network) Server, a premium is applied to the stan-
dard Software License pricing for a single Global Zone.

ISV/Independent Software Vendor. A software company providing its products, (“ISV Soft-
ware”) to Altair's Licensees through the Altair License Management System using Altair
License Units.

License Log File. A computer file providing usage information on the Software as gathered
by the Software.

License Management System. The license management system (LMS) that accompanies the
Software and limits its use in accordance with this Agreement, and which includes a License
Log File.

License (Network) Server. A network file server that Licensee owns or leases located on
Licensee's premises and identified by machine serial number and/or HostID on the Order
Form.

License Units. A parameter used by the LMS to determine usage of the Software permitted
under this Agreement at any one time.

Licensed Workstations. Single-user computers located in the same Global Zone(s) that Lic-
ensee owns or leases that are connected to the License (Network) Server via local area net-
work or Licensee's private wide-area network.
146 PBS Professional 12 Programmer’s Guide

Maintenance Release. Any release of the Products made generally available by Altair to its
Licensees with annual leases, or those with perpetual licenses who have an active mainte-
nance agreement in effect, that corrects programming errors or makes other minor changes to
the Software. The fees for maintenance and support services are included in the annual
license fee but perpetual licenses require a separate fee.

Order Form. Altair's standard form in either hard copy or electronic format that contains the
specific parameters (such as identifying Licensee's contracting office, License Fees, Software,
Support, and License (Network) Servers) of the transaction governed by this Agreement.

Products. Products include Altair Software, ISV Software, and/or Suppliers' software; and
Documentation related to all of the forgoing.

Proprietary Rights Notices. Patent, copyright, trademark or other proprietary rights notices
applied to the Products, packaging or media.

Software. The Altair software identified in the Order Form and any Updates or Maintenance
Releases.

Subsidiary. Subsidiary means any partnership, joint venture, corporation or other form of
enterprise in which a party possesses, directly or indirectly, an ownership interest of fifty per-
cent (50%) or greater, or managerial or operational control.

Suppliers. Any person, corporation or other legal entity which may provide software or doc-
uments which are included in the Software.

Support. The maintenance and support services provided by Altair pursuant to this Agree-
ment.

Templates. Human readable ASCII files containing machine-interpretable commands for use
with the Software.

Term. The term of licenses granted under this Agreement. Annual licenses shall have a 12-
month term of use unless stated otherwise on the Order Form. Perpetual licenses shall have a
term of twenty-five years. Maintenance agreements for perpetual licenses have a 12-month
term.

Update. A new version of the Products made generally available by Altair to its Licensees
that includes additional features or functionalities but is substantially the same computer code
as the existing Products.

2. LICENSE GRANT. Subject to the terms and conditions set forth in this Agreement,
Altair hereby grants Licensee, and Licensee hereby accepts, a limited, non-exclusive, non-
transferable license to: a) install the Products on the License (Network) Server(s) identified on
the Order Form for use only at the sites identified on the Order Form; b) execute the Products
on Licensed Workstations in accordance with the LMS for use solely by Licensee's employ-
ees, or its onsite Contractors who have agreed to be bound by the terms of this Agreement, for
Licensee's internal business use on Licensed Workstations within the Global Zone(s) as iden-
PBS Professional 12 Programmer’s Guide 147

tified on the Order Form and for the term identified on the Order Form; c) make backup cop-
ies of the Products, provided that Altair's and its Suppliers' and ISV's Proprietary Rights
Notices are reproduced on each such backup copy; d) freely modify and use Templates, and
create interfaces to Licensee's proprietary software for internal use only using APIs provided
that such modifications shall not be subject to Altair's warranties, indemnities, support or
other Altair obligations under this Agreement; and e) copy and distribute Documentation
inside Licensee's organization exclusively for use by Licensee's employees and its onsite Con-
tractors who have agreed to be bound by the terms of this Agreement. A copy of the License
Log File shall be made available to Altair automatically on no less than a monthly basis. In the
event that Licensee uses a third party vendor for information technology (IT) support, the IT
company shall be permitted to access the Software only upon its agreement to abide by the
terms of this Agreement. Licensee shall indemnify, defend and hold harmless Altair for the
actions of its IT vendor(s).

3. RESTRICTIONS ON USE. Notwithstanding the foregoing license grant, Licensee
shall not do (or allow others to do) any of the following: a) install, use, copy, modify, merge,
or transfer copies of the Products, except as expressly authorized in this Agreement; b) use
any back-up copies of the Products for any purpose other than to replace the original copy
provided by Altair in the event it is destroyed or damaged; c) disassemble, decompile or
“unlock”, reverse translate, reverse engineer, or in any manner decode the Software or ISV
Software for any reason; d) sublicense, sell, lend, assign, rent, distribute, publicly display or
publicly perform the Products or Licensee's rights under this Agreement; e) allow use outside
the Global Zone(s) or User Sites identified on the Order Form; f) allow third parties to access
or use the Products such as through a service bureau, wide area network, Internet location or
time-sharing arrangement except as expressly provided in Section 2(b); g) remove any Propri-
etary Rights Notices from the Products; h) disable or circumvent the LMS provided with the
Products; or (i) link any software developed, tested or supported by Licensee or third parties
to the Products (except for Licensee's own proprietary software solely for Licensee's internal
use).

4. OWNERSHIP AND CONFIDENTIALITY. Licensee acknowledges that all applica-
ble rights in patents, copyrights, trademarks, service marks, and trade secrets embodied in the
Products are owned by Altair and/or its Suppliers or ISVs. Licensee further acknowledges
that the Products, and all copies thereof, are and shall remain the sole and exclusive property
of Altair and/or its Suppliers and ISVs. This Agreement is a license and not a sale of the Prod-
ucts. Altair retains all rights in the Products not expressly granted to Licensee herein. Licensee
acknowledges that the Products are confidential and constitute valuable assets and trade
secrets of Altair and/or its Suppliers and ISVs. Licensee agrees to take the same precautions
necessary to protect and maintain the confidentiality of the Products as it does to protect its
own information of a confidential nature but in any event, no less than a reasonable degree of
care, and shall not disclose or make them available to any person or entity except as expressly
provided in this Agreement. Licensee shall promptly notify Altair in the event any unautho-
rized person obtains access to the Products. If Licensee is required by any governmental
148 PBS Professional 12 Programmer’s Guide

authority or court of law to disclose Altair's or its ISV's or its Suppliers' confidential informa-
tion, then Licensee shall immediately notify Altair before making such disclosure so that
Altair may seek a protective order or other appropriate relief. Licensee's obligations set forth
in Section 3 and Section 4 of this Agreement shall survive termination of this Agreement for
any reason. Altair's Suppliers and ISVs, as third party beneficiaries, shall be entitled to
enforce the terms of this Agreement directly against Licensee as necessary to protect Sup-
plier's intellectual property or other rights.

Altair and its resellers providing support and training to licensed end users of the Products
shall keep confidential all Licensee information provided to Altair in order that Altair may
provide Support and training to Licensee. Licensee information shall be used only for the
purpose of assisting Licensee in its use of the licensed Products. Altair agrees to take the
same precautions necessary to protect and maintain the confidentiality of the Licensee infor-
mation as it does to protect its own information of a confidential nature but in any event, no
less than a reasonable degree of care, and shall not disclose or make them available to any
person or entity except as expressly provided in this Agreement.

5. MAINTENANCE AND SUPPORT. Maintenance. Altair will provide Licensee, at no
additional charge for annual licenses and for a maintenance fee for paid-up licenses, with
Maintenance Releases and Updates of the Products that are generally released by Altair dur-
ing the term of the licenses granted under this Agreement, except that this shall not apply to
any Term or Renewal Term for which full payment has not been received. Altair does not
promise that there will be a certain number of Updates (or any Updates) during a particular
year. If there is any question or dispute as to whether a particular release is a Maintenance
Release, an Update or a new product, the categorization of the release as determined by Altair
shall be final. Licensee agrees to install Maintenance Releases and Updates promptly after
receipt from Altair. Maintenance Releases and Updates are subject to this Agreement. Altair
shall only be obligated to provide support and maintenance for the most current release of the
Software and the most recent prior release. Support. Altair will provide support via tele-
phone and email to Licensee at the fees, if any, as listed on the Order Form. If Support has not
been procured for any period of time for paid-up licenses, a reinstatement fee shall apply.
Support consists of responses to questions from Licensee's personnel related to the use of the
then-current and most recent prior release version of the Software. Licensee agrees to provide
Altair with sufficient information to resolve technical issues as may be reasonably requested
by Altair. Licensee agrees to the best of its abilities to read, comprehend and follow operating
instructions and procedures as specified in, but not limited to, Altair's Documentation and
other correspondence related to the Software, and to follow procedures and recommendations
provided by Altair in an effort to correct problems. Licensee also agrees to notify Altair of a
programming error, malfunction and other problems in accordance with Altair's then current
problem reporting procedure. If Altair believes that a problem reported by Licensee may not
be due to an error in the Software, Altair will so notify Licensee. Questions must be directed
to Altair's specially designated telephone support numbers and email addresses. Support will
also be available via email at Internet addresses designated by Altair. Support is available
PBS Professional 12 Programmer’s Guide 149

Monday through Friday (excluding holidays) from 8:00 a.m. to 5:00 p.m local time in the
Global Zone where licensed, unless stated otherwise on the Order Form. Exclusions. Altair
shall have no obligation to maintain or support (a) altered, damaged or Licensee-modified
Software, or any portion of the Software incorporated with or into other software not provided
by Altair; (b) any version of the Software other than the current version of the Software or the
immediately prior release of the Software; (c) problems caused by Licensee's negligence,
abuse or misapplication of Software other than as specified in the Documentation, or other
causes beyond the reasonable control of Altair; or (d) Software installed on any hardware,
operating system version or network environment that is not supported by Altair. Support
also excludes configuration of hardware, non- Altair Software, and networking services; con-
sulting services; general solution provider related services; and general computer system
maintenance.

6. WARRANTY AND DISCLAIMER. Altair warrants for a period of ninety (90) days
after Licensee initially receives the Software that the Software will perform under normal use
substantially as described in then current Documentation. Supplier software included in the
Software and ISV Software provided to Licensee shall be warranted as stated by the Supplier
or the ISV. Copies of the Suppliers' and ISV's terms and conditions of warranty are available
on the Altair Support website. Support services shall be provided in a workmanlike and pro-
fessional manner, in accordance with the prevailing standard of care for consulting support
engineers at the time and place the services are performed.

ALTAIR DOES NOT REPRESENT OR WARRANT THAT THE PRODUCTS WILL
MEET LICENSEE'S REQUIREMENTS OR THAT THEIR OPERATION WILL BE
UNINTERRUPTED OR ERROR-FREE, OR THAT IT WILL BE COMPATIBLE
WITH ANY PARTICULAR HARDWARE OR SOFTWARE. ALTAIR EXCLUDES
AND DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES NOT STATED
HEREIN, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. THE
ENTIRE RISK FOR THE PERFORMANCE, NON-PERFORMANCE OR RESULTS
OBTAINED FROM USE OF THE PRODUCTS RESTS WITH LICENSEE AND NOT
ALTAIR. ALTAIR MAKES NO WARRANTIES WITH RESPECT TO THE ACCU-
RACY, COMPLETENESS, FUNCTIONALITY, SAFETY, PERFORMANCE, OR ANY
OTHER ASPECT OF ANY DESIGN, PROTOTYPE OR FINAL PRODUCT DEVEL-
OPED BY LICENSEE USING THE PRODUCTS.

7. INDEMNITY. Altair will defend and indemnify, at its expense, any claim made against
Licensee based on an allegation that the Software infringes a patent or copyright (“Claim”);
provided, however, that this indemnification does not include claims which are based on Sup-
plier software or ISV software, and that Licensee has not materially breached the terms of this
Agreement, Licensee notifies Altair in writing within ten (10) days after Licensee first learns
of the Claim; and Licensee cooperates fully in the defense of the claim. Altair shall have sole
control over such defense; provided, however, that it may not enter into any settlement bind-
150 PBS Professional 12 Programmer’s Guide

ing upon Licensee without Licensee's consent, which shall not be unreasonably withheld. If a
Claim is made, Altair may modify the Software to avoid the alleged infringement, provided
however, that such modifications do not materially diminish the Software's functionality. If
such modifications are not commercially reasonable or technically possible, Altair may termi-
nate this Agreement and refund to Licensee the prorated license fee that Licensee paid for the
then current Term. Perpetual licenses shall be pro-rated over a 36-month term. Altair shall
have no obligation under this Section 7, however, if the alleged infringement arises from
Altair's compliance with specifications or instructions prescribed by Licensee, modification
of the Software by Licensee, use of the Software in combination with other software not pro-
vided by Altair and which use is not specifically described in the Documentation, and if Lic-
ensee is not using the most current version of the Software, if such alleged infringement
would not have occurred except for such exclusions listed here. This section 7 states Altair's
entire liability to Licensee in the event a Claim is made. No indemnification is made for Sup-
plier and/or ISV Software.

8. LIMITATION OF REMEDIES AND LIABILITY. Licensee's exclusive remedy
(and Altair's sole liability) for Software that does not meet the warranty set forth in Section 6
shall be, at Altair's option, either (i) to correct the nonconforming Software within a reason-
able time so that it conforms to the warranty; or (ii) to terminate this Agreement and refund to
Licensee the license fees that Licensee has paid for the then current Term for the nonconform-
ing Software; provided, however that Licensee notifies Altair of the problem in writing within
the applicable Warranty Period when the problem first occurs. Any corrected Software shall
be warranted in accordance with Section 6 for ninety (90) days after delivery to Licensee.
The warranties hereunder are void if the Software has been improperly installed, misused, or
if Licensee has violated the terms of this Agreement.

 Altair's entire liability for all claims arising under or related in any way to this Agreement
(regardless of legal theory), shall be limited to direct damages, and shall not exceed, in the
aggregate for all claims, the license and maintenance fees paid under this Agreement by Lic-
ensee in the 12 months prior to the claim on a prorated basis, except for claims under Section
7. ALTAIR AND ITS SUPPLIERS AND ISVS SHALL NOT BE LIABLE TO LICENSEE
OR ANYONE ELSE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING HEREUNDER (INCLUDING LOSS OF PROFITS OR DATA,
DEFECTS IN DESIGN OR PRODUCTS CREATED USING THE SOFTWARE, OR ANY
INJURY OR DAMAGE RESULTING FROM SUCH DEFECTS, SUFFERED BY LIC-
ENSEE OR ANY THIRD PARTY) EVEN IF ALTAIR OR ITS SUPPLIERS OR ITS ISVS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Licensee
acknowledges that it is solely responsible for the adequacy and accuracy of the input of data,
including the output generated from such data, and agrees to defend, indemnify, and hold
harmless Altair and its Suppliers and ISVs from any and all claims, including reasonable
attorney's fees, resulting from, or in connection with Licensee's use of the Software. No
PBS Professional 12 Programmer’s Guide 151

action, regardless of form, arising out of the transactions under this Agreement may be
brought by either party against the other more than two (2) years after the cause of action has
accrued, except for actions related to unpaid fees.

9. UNITED STATES GOVERNMENT RESTRICTED RIGHTS. This section applies to
all acquisitions of the Products by or for the United States government. By accepting delivery
of the Products except as provided below, the government or the party procuring the Products
under government funding, hereby agrees that the Products qualify as “commercial” computer
software as that term is used in the acquisition regulations applicable to this procurement and
that the government's use and disclosure of the Products is controlled by the terms and condi-
tions of this Agreement to the maximum extent possible. This Agreement supersedes any
contrary terms or conditions in any statement of work, contract, or other document that are not
required by statute or regulation. If any provision of this Agreement is unacceptable to the
government, Vendor may be contacted at Altair Engineering, Inc., 1820 E. Big Beaver Road,
Troy, MI 48083-2031; telephone (248) 614-2400. If any provision of this Agreement violates
applicable federal law or does not meet the government's actual, minimum needs, the govern-
ment agrees to return the Products for a full refund.

 For procurements governed by DFARS Part 227.72 (OCT 1998), the Software, except as
described below, is provided with only those rights specified in this Agreement in accordance
with the Rights in Commercial Computer Software or Commercial Computer Software Docu-
mentation policy at DFARS 227.7202-3(a) (OCT 1998). For procurements other than for the
Department of Defense, use, reproduction, or disclosure of the Software is subject to the
restrictions set forth in this Agreement and in the Commercial Computer Software - Restricted
Rights FAR clause 52.227-19 (June 1987) and any restrictions in successor regulations
thereto.

Portions of Altair's PBS Professional Software and Documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision(c)(1)(ii) of the rights in the Technical Data and Com-
puter Software clause in DFARS 252.227-7013, or in subdivision (c)(1) and (2) of the Com-
mercial Computer Software-Restricted Rights clause at 48 CFR52.227-19, as applicable.

10. CHOICE OF LAW AND VENUE. This Agreement shall be governed by and construed
under the laws of the state of Michigan, without regard to that state's conflict of laws princi-
ples except if the state of Michigan adopts the Uniform Computer Information Transactions
Act drafted by the National Conference of Commissioners of Uniform State Laws as revised
or amended as of June 30, 2002 (“UCITA”) which is specifically excluded. This Agreement
shall not be governed by the United Nations Convention on Contracts for the International
Sale of Goods, the application of which is expressly excluded. Each Party waives its right to
a jury trial in the event of any dispute arising under or relating to this Agreement. Each party
agrees that money damages may not be an adequate remedy for breach of the provisions of
152 PBS Professional 12 Programmer’s Guide

this Agreement, and in the event of such breach, the aggrieved party shall be entitled to seek
specific performance and/or injunctive relief (without posting a bond or other security) in
order to enforce or prevent any violation of this Agreement.

11. [RESERVED]

12. Notice. All notices given by one party to the other under the Agreement or these Addi-
tional Terms shall be sent by certified mail, return receipt requested, or by overnight courier,
to the respective addresses set forth in this Agreement or to such other address either party has
specified in writing to the other. All notices shall be deemed given upon actual receipt.

Written notice shall be made to:

Altair: Licensee Name & Address:

Altair Engineering, Inc._________________________________

1820 E. Big Beaver Rd_________________________________

Troy, MI 48083_________________________________

Attn: Tom M. PerringAttn: _______________________

13. TERM. For annual licenses, or Support provided for perpetual licenses, renewal shall
be automatic for each successive year (“Renewal Term”), upon mutual written execution of a
new Order Form. All charges and fees for each Renewal Term shall be set forth in the Order
Form executed for each Renewal Term. All Software licenses procured by Licensee may be
made coterminous at the written request of Licensee and the consent of Altair.

14. TERMINATION. Either party may terminate this Agreement upon thirty (30) days
prior written notice upon the occurrence of a default or material breach by the other party of
its obligations under this Agreement (except for a breach by Altair of the warranty set forth in
Section 8 for which a remedy is provided under Section 10; or a breach by Licensee of Sec-
tion 5 or Section 6 for which no cure period is provided and Altair may terminate this Agree-
ment immediately) if such default or breach continues for more than thirty (30) days after
receipt of such notice. Upon termination of this Agreement, Licensee must cease using the
Software and, at Altair's option, return all copies to Altair, or certify it has destroyed all such
copies of the Software and Documentation.

15. GENERAL PROVISIONS. Export Controls. Licensee acknowledges that the Prod-
ucts may be subject to the export control laws and regulations of the United States and other
countries, and any amendments thereof. Licensee agrees that Licensee will not directly or
indirectly export the Products into any country or use the Products in any manner except in
compliance with all applicable U.S. and other countries export laws and regulations. Notice.
All notices given by one party to the other under this Agreement shall be sent by certified
mail, return receipt requested, or by overnight courier, to the respective addresses set forth in
this Agreement or to such other address either party has specified in writing to the other. All
PBS Professional 12 Programmer’s Guide 153

notices shall be deemed given upon actual receipt. Assignment. Neither party shall assign
this Agreement without the prior written consent of other party, which shall not be unreason-
ably withheld. All terms and conditions of this Agreement shall be binding upon and inure to
the benefit of the parties hereto and their respective successors and permitted assigns. Waiver.
The failure of a party to enforce at any time any of the provisions of this Agreement shall not
be construed to be a waiver of the right of the party thereafter to enforce any such provisions.
Severability. If any provision of this Agreement is found void and unenforceable, such provi-
sion shall be interpreted so as to best accomplish the intent of the parties within the limits of
applicable law, and all remaining provisions shall continue to be valid and enforceable. Head-
ings. The section headings contained in this Agreement are for convenience only and shall
not be of any effect in constructing the meanings of the Sections. Modification. No change
or modification of this Agreement will be valid unless it is in writing and is signed by a duly
authorized representative of each party. Conflict. In the event of any conflict between the
terms of this Agreement and any terms and conditions on a Licensee Purchase Order or com-
parable document, the terms of this Agreement shall prevail. Moreover, each party agrees any
additional terms on any Purchase Order or comparable document other than the transaction
items of (a) item(s) ordered; (b) pricing; (c) quantity; (d) delivery instructions and (e) invoic-
ing directions, are not binding on the parties. In the event of a conflict between the terms of
this Agreement, and the Additional Terms, the Agreement shall take precedence. Entire
Agreement. This Agreement, the Additional Terms, and the Order Form(s) attached hereto
constitute the entire understanding between the parties related to the subject matter hereto,
and supersedes all proposals or prior agreements, whether written or oral, and all other com-
munications between the parties with respect to such subject matter. This Agreement may be
executed in one or more counterparts, all of which together shall constitute one and the same
instrument. Execution. Copies of this Agreement executed via original signatures, facsimile
or email shall be deemed binding on the parties.
154 PBS Professional 12 Programmer’s Guide

Index
A
activereq 94
addreq 94
allreq 94

B
batch 11

C
client commands 5
closerm 94
commands 5
configrm 94
Cray

SV1 vii
T3e vii

credential 29

D
downrm 94

E
Executor 5

F
flushreq 94

fullresp 94

G
getreq 94

J
Job

Executor (MOM) 5
Scheduler 5
Server 4

M
manager 5

commands 5
MOM 5, 5
monitoring 3

N
NASA vii
NQS 3

O
openrm 94
operator

commands 5
PBS Professional 12 Programmer’s Guide 155

Index
P
pbs_alterjob 31
pbs_asyrunjob 52
PBS_BATCH_AsyrunJob 12
PBS_BATCH_AuthenUser 11
PBS_BATCH_Commit 11
PBS_BATCH_Connect 11
PBS_BATCH_CopyFiles 11
PBS_BATCH_CopyFiles_Cred 11
PBS_BATCH_DeleteJob 11
PBS_BATCH_DeleteResv 12
PBS_BATCH_DelFiles 11
PBS_BATCH_DelFiles_Cred 11
PBS_BATCH_Disconnect 11
PBS_BATCH_FailOver 11
PBS_BATCH_GSS_Context 11
PBS_BATCH_HoldJob 11
PBS_BATCH_JobCred 11
PBS_BATCH_JobObit 11
PBS_BATCH_jobscript 11
PBS_BATCH_LocateJob 11
PBS_BATCH_Manager 11
PBS_BATCH_MessJob 11
PBS_BATCH_ModifyJob 11
PBS_BATCH_MoveJob 11
PBS_BATCH_MvJobFile 11
PBS_BATCH_OrderJob 11
PBS_BATCH_QueueJob 11
PBS_BATCH_RdytoCommit 11
PBS_BATCH_RegistDep 11
PBS_BATCH_ReleaseJob 11
PBS_BATCH_ReleaseResc 11
PBS_BATCH_Rerun 11
PBS_BATCH_Rescq 11
PBS_BATCH_ReserveResc 11
PBS_BATCH_RunJob 11
PBS_BATCH_SelectJobs 11
PBS_BATCH_SelStat 11
PBS_BATCH_Shutdown 11
PBS_BATCH_SignalJob 11
PBS_BATCH_StageIn 11
PBS_BATCH_StatusJob 11

PBS_BATCH_StatusNode 11
PBS_BATCH_StatusQue 11
PBS_BATCH_StatusResv 12
PBS_BATCH_StatusSvr 11
PBS_BATCH_SubmitResv 11
PBS_BATCH_TrackJob 12
pbs_connect 33
pbs_default 35
pbs_deljob 36
pbs_delresv 37
pbs_disconnect 38
pbs_geterrmsg 39
pbs_holdjob 40
pbs_locjob 41
pbs_manager 42
pbs_module 108
pbs_mom 5
pbs_movejob 45
pbs_msgjob 46
pbs_orderjob 47
pbs_rerunjob 48
pbs_rescrelease 49
pbs_rescreserve 49
pbs_rlsjob 51
pbs_runjob 52
pbs_sched 5
pbs_selectjob 54
pbs_selstat 56
pbs_server 4
pbs_sigjob 59
pbs_stagein 60
pbs_statfree 61
pbs_stathook(3B) 126
pbs_stathost 64
pbs_statjob 61, 62
pbs_statnode 64
pbs_statque 66
pbs_statresv 68
pbs_statsched 70
pbs_statserver 72
pbs_statvnode 64
pbs_submit 74
156 PBS Professional 12 Programmer’s Guide

Index
pbs_submit_resv 76
pbs_tclapi 98
pbs_tclsh 97
pbs_terminate 78
pbs_wish 97
POSIX 5

Q
queuing 3
Quick Start Guide ix

R
rpp_bind 80
rpp_close 80
rpp_eom 80
rpp_flush 80
rpp_getaddr 80
rpp_getc 80
rpp_io 80
rpp_open 79, 80
rpp_poll 80
rpp_putc 80
rpp_rcommit 80
rpp_read 80
rpp_shutdown 80
rpp_terminate 80
rpp_wcommit 80
rpp_write 80

S
Scheduler 5
scheduling 3
Server 4
system daemons 4

T
TCL 97
tm_atnode 86
tm_attach 86
tm_finalize 86
tm_init 86

tm_kill 86
tm_nodeinfo 86
tm_notify 86
tm_obit 86
tm_poll 86
tm_publish 86
tm_rescinfo 86
tm_spawn 86
tm_subscribe 86
tm_taskinfo 86

U
user

commands 4, 5
User Guide ix

W
workload management 3
PBS Professional 12 Programmer’s Guide 157

Index
158 PBS Professional 12 Programmer’s Guide

	Acknowledgements
	About PBS Documentation
	Introduction
	1.1 Location of API Libraries
	1.2 Location of Header Files
	1.3 Example Compilation Line
	1.4 Deprecations

	Concepts and Components
	2.1 PBS Components

	Server Functions
	3.1 General Identifiers
	3.1.1 Account String
	3.1.2 Attribute Name
	3.1.3 Destination Identifiers
	3.1.4 Default Server
	3.1.5 Host Name
	3.1.6 Job Identifiers
	3.1.7 Job Name
	3.1.8 Resource Name
	3.1.9 Server Name.
	3.1.10 User Name

	3.2 Batch Server Functions
	3.2.1 Client Service Requests
	3.2.2 Deferred Services

	3.3 Server Management
	3.3.1 Manage Request
	3.3.2 Server Status Request
	3.3.3 Start Up
	3.3.4 Shut Down

	3.4 Queue Management
	3.4.1 Queue Status Request

	3.5 Job Management
	3.5.1 Queue Job Request
	3.5.2 Job Credential Request
	3.5.3 Job Script Request
	3.5.4 Commit Request
	3.5.5 Message Job Request
	3.5.6 Locate Job Request
	3.5.7 Delete Job Request
	3.5.8 Modify Job Request
	3.5.9 Run Job
	3.5.9.1 Rerun Job Request

	3.5.10 Hold Job Request
	3.5.11 Release Job Request
	3.5.12 Move Job Request
	3.5.13 Select Jobs Request
	3.5.14 Signal Job Request
	3.5.15 Status Job Request

	3.6 Server to Server Requests
	3.6.1 Track Job Request
	3.6.2 Synchronize Job Starts
	3.6.3 Job Dependency

	3.7 Deferred Services
	3.7.1 Job Scheduling
	3.7.2 File Staging
	3.7.3 Job Initiation
	3.7.4 Job Routing
	3.7.5 Job Exit
	3.7.6 Job Aborts
	3.7.7 Timed Events
	3.7.8 Event Logging
	3.7.9 Accounting.

	3.8 Resource Management
	3.8.1 Resource Limits
	3.8.2 Resource Names

	3.9 Network Protocol
	3.9.1 General DIS Data Encoding

	Batch Interface Library (IFL)
	4.1 Interface Library Overview
	4.2 Interface Library Routines
	pbs_alterjob
	pbs_connect
	pbs_default
	pbs_deljob
	pbs_delresv
	pbs_disconnect
	pbs_geterrmsg
	pbs_holdjob
	pbs_locjob
	pbs_manager
	pbs_movejob
	pbs_msgjob
	pbs_orderjob
	pbs_rerunjob
	pbs_rescreserve, pbs_rescrelease
	pbs_rlsjob
	pbs_runjob, pbs_asyrunjob
	pbs_selectjob
	pbs_selstat
	pbs_sigjob
	pbs_stagein
	pbs_statfree
	pbs_statjob
	pbs_statnode, pbs_statvnode, pbs_stathost
	pbs_statque
	pbs_statresv
	pbs_statsched
	pbs_statserver
	pbs_submit
	pbs_submit_resv
	pbs_terminate

	RPP Library
	5.1 RPP Library Routines
	rpp_open, rpp_bind, rpp_poll, rpp_io, rpp_read, rpp_write, rpp_close, rpp_getaddr, rpp_flush, rpp_terminate, rpp_shutdown, rpp_rcommit, rpp_wcommit, rpp_eom, rpp_getc, rpp_putc

	TM Library
	6.1 TM Library Routines
	tm_init, tm_nodeinfo, tm_poll, tm_notify, tm_spawn, tm_kill, tm_obit, tm_taskinfo, tm_atnode, tm_rescinfo, tm_publish, tm_subscribe, tm_finalize, tm_attach

	RM Library
	7.1 RM Library Routines
	openrm, closerm, downrm, configrm, addreq, allreq, getreq, flushreq, activereq, fullresp

	TCL/tk Interface
	8.1 TCL/tk API Functions
	pbs_tclapi

	Hooks
	9.1 Introduction
	9.2 How Hooks Work
	9.2.1 Hook Contents and Permissions
	9.2.2 Accepting and Rejecting Actions
	9.2.3 Exceptions
	9.2.4 Unsupported Interfaces and Uses

	9.3 Interface to Hooks
	9.3.1 The pbs Module
	9.3.1.1 Description of pbs Module
	pbs_module

	9.3.1.2 pbs Module Objects
	9.3.1.3 pbs Module Global Attribute Creation Methods
	9.3.1.4 Other pbs Module Global Methods
	9.3.1.5 Attributes and Resources
	9.3.1.6 Exceptions
	9.3.1.7 See Also

	9.3.2 The pbs_manager() API
	9.3.2.1 Examples of Using pbs_manager()

	9.3.3 The pbs_stathook() API
	9.3.3.1 Example of Using pbs_stathook()
	9.3.3.2 Description of pbs_stathook() API
	pbs_stathook(3B)

	HPC Basic Profile
	10.1 Introduction
	10.2 How PBS Works With HPC Basic Profile
	10.2.1 Information Available From HPCBP Nodes
	10.2.2 Translating Jobs for HPCBP
	10.2.2.1 Translating Job Attributes for HPCBP Jobs
	10.2.2.2 Translating arch Values for HPCBP Jobs

	10.3 Examples
	10.4 Caveats
	10.4.1 Unsupported Commands

	10.5 See Also
	10.5.1 PBS Professional Manual Pages
	10.5.2 References

	Appendix A: License Agreement
	Index

