Přejít na obsah | Přejít na navigaci

Osobní nástroje

GSL

The GNU Scientific Library. Provides a wide range of mathematical routines.

Introduction

The GNU Scientific Library (GSL) provides a wide range of mathematical routines such as random number generators, special functions and least-squares fitting. There are over 1000 functions in total. The routines have been written from scratch in C, and present a modern Applications Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages.

The library covers a wide range of topics in numerical computing. Routines are available for the following areas:

Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Combinations
Sorting BLAS Support
Linear Algebra CBLAS Library
Fast Fourier Transforms Eigensystems
Random Numbers Quadrature
Random Distributions Quasi-Random Sequences
Histograms Statistics
Monte Carlo Integration N-Tuples
Differential Equations Simulated Annealing
Numerical Differentiation Interpolation
Series Acceleration Chebyshev Approximations
Root-Finding Discrete Hankel Transforms
Least-Squares Fitting Minimization
IEEE Floating-Point Physical Constants
Basis Splines Wavelets

Modules

The GSL 1.16 is available on Anselm, compiled for GNU and Intel compiler. These variants are available via modules:

ModuleCompiler
gsl/1.16-gcc gcc 4.8.6
gsl/1.16-icc(default) icc
 $ module load gsl

The module sets up environment variables, required for linking and running GSL enabled applications. This particular command loads the default module, which is gsl/1.16-icc

Linking

Load an appropriate gsl module. Link using -lgsl switch to link your code against GSL. The GSL depends on cblas API to BLAS library, which must be supplied for linking. The BLAS may be provided, for example from the MKL library, as well as from the BLAS GSL library (-lgslcblas). Using the MKL is recommended.

Compiling and linking with Intel compilers

$ module load intel
$ module load gsl
$ icc myprog.c -o myprog.x -Wl,-rpath=$LIBRARY_PATH -mkl -lgsl

Compiling and linking with GNU compilers

$ module load gcc
$ module load mkl
$ module load gsl/1.16-gcc
$ gcc myprog.c -o myprog.x -Wl,-rpath=$LIBRARY_PATH -lmkl_intel_lp64 -lmkl_gnu_thread -lmkl_core -lgomp -lgsl

Example

Following is an example of discrete wavelet transform implemented by GSL:

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_wavelet.h>

int
main (int argc, char **argv)
{
  int i, n = 256, nc = 20;
  double *data = malloc (n * sizeof (double));
  double *abscoeff = malloc (n * sizeof (double));
  size_t *p = malloc (n * sizeof (size_t));

  gsl_wavelet *w;
  gsl_wavelet_workspace *work;

  w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4);
  work = gsl_wavelet_workspace_alloc (n);

  for (i=0; i<n; i++)
  data[i] = sin (3.141592654*(double)i/256.0);

  gsl_wavelet_transform_forward (w, data, 1, n, work);

  for (i = 0; i < n; i++)
    {
      abscoeff[i] = fabs (data[i]);
    }
 
  gsl_sort_index (p, abscoeff, 1, n);
 
  for (i = 0; (i + nc) < n; i++)
    data[p[i]] = 0;
 
  gsl_wavelet_transform_inverse (w, data, 1, n, work);
 
  for (i = 0; i < n; i++)
    {
      printf ("%g\n", data[i]);
    }
 
  gsl_wavelet_free (w);
  gsl_wavelet_workspace_free (work);

  free (data);
  free (abscoeff);
  free (p);
  return 0;
}

Load modules and compile:

$ module load intel gsl
icc dwt.c -o dwt.x -Wl,-rpath=$LIBRARY_PATH -mkl -lgsl

In this example, we compile the dwt.c code using the Intel compiler and link it to the MKL and GSL library, note the -mkl and -lgsl options. The library search path is compiled in, so that no modules are necessary to run the code.