
Environment and Modules

Environment Customization

After logging in, you may want to configure the environment. Write your pre-
ferred path definitions, aliases, functions and module loads in the .bashrc file

./bashrc

Source global definitions
if [-f /etc/bashrc]; then

. /etc/bashrc
fi

User specific aliases and functions
alias qs='qstat -a'
module load intel/2015b

Display informations to standard output - only in interactive ssh session
if [-n "$SSH_TTY"]
then
module list # Display loaded modules

fi

Do not run commands outputing to standard output (echo, module list, etc) in
.bashrc for non-interactive SSH sessions. It breaks fundamental functionality
(scp, PBS) of your account! Take care for SSH session interactivity for such
commands as id=“result_box” class=“hps alt-edited”>stated in the previous
example.

Application Modules

In order to configure your shell for running particular application on Salomon
we use Module package interface.

Application modules on Salomon cluster are built using EasyBuild. The modules
are divided into the following structure:

base: Default module class
bio: Bioinformatics, biology and biomedical
cae: Computer Aided Engineering (incl. CFD)
chem: Chemistry, Computational Chemistry and Quantum Chemistry
compiler: Compilers
data: Data management & processing tools
debugger: Debuggers
devel: Development tools

1

http://hpcugent.github.io/easybuild/

geo: Earth Sciences
ide: Integrated Development Environments (e.g. editors)
lang: Languages and programming aids
lib: General purpose libraries
math: High-level mathematical software
mpi: MPI stacks
numlib: Numerical Libraries
perf: Performance tools
phys: Physics and physical systems simulations
system: System utilities (e.g. highly depending on system OS and hardware)
toolchain: EasyBuild toolchains
tools: General purpose tools
vis: Visualization, plotting, documentation and typesetting

The modules set up the application paths, library paths and environment vari-
ables for running particular application.

The modules may be loaded, unloaded and switched, according to momentary
needs.

To check available modules use

$ module avail

To load a module, for example the OpenMPI module use

$ module load OpenMPI

loading the OpenMPI module will set up paths and environment variables of
your active shell such that you are ready to run the OpenMPI software

To check loaded modules use

$ module list

To unload a module, for example the OpenMPI module use

$ module unload OpenMPI

Learn more on modules by reading the module man page

$ man module

EasyBuild Toolchains

As we wrote earlier, we are using EasyBuild for automatised software installation
and module creation.

EasyBuild employs so-called compiler toolchains or, simply toolchains for
short, which are a major concept in handling the build and installation processes.

2

A typical toolchain consists of one or more compilers, usually put together with
some libraries for specific functionality, e.g., for using an MPI stack for dis-
tributed computing, or which provide optimized routines for commonly used
math operations, e.g., the well-known BLAS/LAPACK APIs for linear algebra
routines.

For each software package being built, the toolchain to be used must be specified
in some way.

The EasyBuild framework prepares the build environment for the different
toolchain components, by loading their respective modules and defining
environment variables to specify compiler commands (e.g., via $F90), compiler
and linker options (e.g., via $CFLAGS and $LDFLAGS), the list of library names
to supply to the linker (via $LIBS), etc. This enables making easyblocks
largely toolchain-agnostic since they can simply rely on these environment
variables; that is, unless they need to be aware of, for example, the particular
compiler being used to determine the build configuration options.

Recent releases of EasyBuild include out-of-the-box toolchain support for:

• various compilers, including GCC, Intel, Clang, CUDA
• common MPI libraries, such as Intel MPI, MPICH, MVAPICH2, Open-

MPI
• various numerical libraries, including ATLAS, Intel MKL, OpenBLAS,

ScalaPACK, FFTW

On Salomon, we have currently following toolchains installed:

Toolchain Module(s)
GCC GCC
ictce icc, ifort, imkl, impi
intel GCC, icc, ifort, imkl, impi
gompi GCC, OpenMPI
goolf BLACS, FFTW, GCC, OpenBLAS, OpenMPI, ScaLAPACK
iompi OpenMPI, icc, ifort
iccifort icc, ifort

3

	Environment and Modules
	Environment Customization
	Application Modules
	EasyBuild Toolchains

