
Job	submission	and	execution	
============================

		

Job	Submission

When	allocating	computational	resources	for	the	job,	please	specify

1.		suitable	queue	for	your	job	(default	is	qprod)
2.		number	of	computational	nodes	required
3.		number	of	cores	per	node	required
4.		maximum	wall	time	allocated	to	your	calculation,	note	that	jobs
				exceeding	maximum	wall	time	will	be	killed
5.		Project	ID
6.		Jobscript	or	interactive	switch

Use	the	**qsub**	command	to	submit	your	job	to	a	queue	for	allocation	of
the	computational	resources.

Submit	the	job	using	the	qsub	command:

```
$	qsub	-A	Project_ID	-q	queue	-l	select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms]	jobscript
```

The	qsub	submits	the	job	into	the	queue,	in	another	words	the	qsub
command	creates	a	request	to	the	PBS	Job	manager	for	allocation	of
specified	resources.	The	resources	will	be	allocated	when	available,
subject	to	above	described	policies	and	constraints.	**After	the
resources	are	allocated	the	jobscript	or	interactive	shell	is	executed
on	first	of	the	allocated	nodes.**

###	Job	Submission	Examples

```
$	qsub	-A	OPEN-0-0	-q	qprod	-l	select=64:ncpus=16,walltime=03:00:00	./myjob
```

In	this	example,	we	allocate	64	nodes,	16	cores	per	node,	for	3	hours.
We	allocate	these	resources	via	the	qprod	queue,	consumed	resources	will
be	accounted	to	the	Project	identified	by	Project	ID	OPEN-0-0.	Jobscript
myjob	will	be	executed	on	the	first	node	in	the	allocation.

Â	

```
$	qsub	-q	qexp	-l	select=4:ncpus=16	-I
```

In	this	example,	we	allocate	4	nodes,	16	cores	per	node,	for	1	hour.	We
allocate	these	resources	via	the	qexp	queue.	The	resources	will	be
available	interactively

Â	

```
$	qsub	-A	OPEN-0-0	-q	qnvidia	-l	select=10:ncpus=16	./myjob
```

In	this	example,	we	allocate	10	nvidia	accelerated	nodes,	16	cores	per
node,	forÂ		24	hours.	We	allocate	these	resources	via	the	qnvidia	queue.
Jobscript	myjob	will	be	executed	on	the	first	node	in	the	allocation.

Â	


```
$	qsub	-A	OPEN-0-0	-q	qfree	-l	select=10:ncpus=16	./myjob
```

In	this	example,	we	allocate	10Â		nodes,	16	cores	per	node,	for	12	hours.
We	allocate	these	resources	via	the	qfree	queue.	It	is	not	required	that
the	project	OPEN-0-0	has	any	available	resources	left.	Consumed
resources	are	still	accounted	for.	Jobscript	myjob	will	be	executed	on
the	first	node	in	the	allocation.

Â	

All	qsub	options	may	be	[saved	directly	into	the
jobscript](job-submission-and-execution.html#PBSsaved).	In
such	a	case,	no	options	to	qsub	are	needed.

```
$	qsub	./myjob
```

Â	

By	default,	the	PBS	batch	system	sends	an	e-mail	only	when	the	job	is
aborted.	Disabling	mail	events	completely	can	be	done	like	this:

```
$	qsub	-m	n
```

Advanced	job	placement

###	Placement	by	name

Specific	nodes	may	be	allocated	via	the	PBS

```
qsub	-A	OPEN-0-0	-q	qprod	-l	select=1:ncpus=16:host=cn171+1:ncpus=16:host=cn172	-I
```

In	this	example,	we	allocate	nodes	cn171	and	cn172,	all	16	cores	per
node,	for	24	hours.Â		Consumed	resources	will	be	accounted	to	the	Project
identified	by	Project	ID	OPEN-0-0.	The	resources	will	be	available
interactively.

###	Placement	by	CPU	type

Nodes	equipped	with	Intel	Xeon	E5-2665	CPU	have	base	clock	frequency
2.4GHz,	nodes	equipped	with	Intel	Xeon	E5-2470	CPU	have	base	frequency
2.3	GHz	(see	section	Compute	Nodes	for	details).Â		Nodes	may	be	selected
via	the	PBS	resource	attribute	
cpu_freq	.

		CPU	Type													base	freq.			Nodes																								cpu_freq	attribute
		--------------------	------------	----------------------------	---------------------
		Intel	Xeon	E5-2665			2.4GHz							cn[1-180],	cn[208-209]			24
		Intel	Xeon	E5-2470			2.3GHz							cn[181-207]																23

Â	

```
$	qsub	-A	OPEN-0-0	-q	qprod	-l	select=4:ncpus=16:cpu_freq=24	-I
```

In	this	example,	we	allocate	4	nodes,	16	cores,	selecting	only	the	nodes
with	Intel	Xeon	E5-2665	CPU.

###	Placement	by	IB	switch

Groups	of	computational	nodes	are	connected	to	chassis	integrated
Infiniband	switches.	These	switches	form	the	leaf	switch	layer	of	the
[InfinibandÂ		network](../network.html)	
fat	tree	topology.	Nodes	sharing	the	leaf
switch	can	communicate	most	efficiently.	Sharing	the	same	switch
prevents	hops	in	the	network	and	provides	for	unbiased,	most	efficient
network	communication.

Nodes	sharing	the	same	switch	may	be	selected	via	the	PBS	resource
attribute	ibswitch.	Values	of	this	attribute	are	iswXX,	where	XX	is	the
switch	number.	The	node-switch	mapping	can	be	seen	at	[Hardware
Overview](../hardware-overview.html)	section.

We	recommend	allocating	compute	nodes	of	a	single	switch	when	best
possible	computational	network	performance	is	required	to	run	the	job
efficiently:

				qsub	-A	OPEN-0-0	-q	qprod	-l	select=18:ncpus=16:ibswitch=isw11	./myjob

In	this	example,	we	request	all	the	18	nodes	sharing	the	isw11	switch
for	24	hours.	Full	chassis	will	be	allocated.

Advanced	job	handling

###	Selecting	Turbo	Boost	off

Intel	Turbo	Boost	Technology	is	on	by	default.	We	strongly	recommend
keeping	the	default.Â	

If	necessary	(such	as	in	case	of	benchmarking)	you	can	disable	the	Turbo
for	all	nodes	of	the	job	by	using	the	PBS	resource	attribute
cpu_turbo_boost

				$	qsub	-A	OPEN-0-0	-q	qprod	-l	select=4:ncpus=16	-l	cpu_turbo_boost=0	-I

More	about	the	Intel	Turbo	Boost	in	the	TurboBoost	section

###	Advanced	examples

In	the	following	example,	we	select	an	allocation	for	benchmarking	a
very	special	and	demanding	MPI	program.	We	request	Turbo	off,	2	full
chassis	of	compute	nodes	(nodes	sharing	the	same	IB	switches)	for	30
minutes:

				$	qsub	-A	OPEN-0-0	-q	qprod	
				-l	
select=18:ncpus=16:ibswitch=isw10:mpiprocs=1:ompthreads=16+18:ncpus=16:ibswitch=isw20:mpi
procs=16:ompthreads=1	
				-l	cpu_turbo_boost=0,walltime=00:30:00	
				-N	Benchmark	./mybenchmark

The	MPI	processes	will	be	distributed	differently	on	the	nodes	connected
to	the	two	switches.	On	the	isw10	nodes,	we	will	run	1	MPI	process	per
node	16	threads	per	process,	on	isw20Â		nodes	we	will	run	16	plain	MPI
processes.

Although	this	example	is	somewhat	artificial,	it	demonstrates	the
flexibility	of	the	qsub	command	options.

Job	Management

Check	status	of	your	jobs	using	the	**qstat**	and	**check-pbs-jobs**
commands

```



$	qstat	-a
$	qstat	-a	-u	username
$	qstat	-an	-u	username
$	qstat	-f	12345.srv11
```

Example:

```
$	qstat	-a

srv11:
																																																												Req'd		Req'd			Elap
Job	ID										Username	Queue				Jobname				SessID	NDS	TSK	Memory	Time		S	Time
---------------	--------	--------	----------	------	---	---	------	-----	-	-----
16287.srv11					user1				qlong				job1									6183			4		64				--		144:0	R	38:25
16468.srv11					user1				qlong				job2									8060			4		64				--		144:0	R	17:44
16547.srv11					user2				qprod				job3x							13516			2		32				--		48:00	R	00:58
```

In	this	example	user1	and	user2	are	running	jobs	named	job1,	job2	and
job3x.	The	jobs	job1	and	job2	are	using	4	nodes,	16	cores	per	node	each.
The	job1	already	runs	for	38	hours	and	25	minutes,	job2	for	17	hours	44
minutes.	The	job1	already	consumed	64*38.41	=	2458.6	core	hours.	The
job3x	already	consumed	0.96*32	=	30.93	core	hours.	These	consumed	core
hours	will	be	accounted	on	the	respective	project	accounts,	regardless
of	whether	the	allocated	cores	were	actually	used	for	computations.

Check	status	of	your	jobs	using	check-pbs-jobs	command.	Check	presence
of	user's	PBS	jobs'	processes	on	execution	hosts.	Display	load,
processes.	Display	job	standard	and	error	output.	Continuously	display
(tail	-f)	job	standard	or	error	output.

```
$	check-pbs-jobs	--check-all
$	check-pbs-jobs	--print-load	--print-processes
$	check-pbs-jobs	--print-job-out	--print-job-err

$	check-pbs-jobs	--jobid	JOBID	--check-all	--print-all

$	check-pbs-jobs	--jobid	JOBID	--tailf-job-out
```

Examples:

```
$	check-pbs-jobs	--check-all
JOB	35141.dm2,	session_id	71995,	user	user2,	nodes	cn164,cn165
Check	session	id:	OK
Check	processes
cn164:	OK
cn165:	No	process
```

In	this	example	we	see	that	job	35141.dm2	currently	runs	no	process	on
allocated	node	cn165,	which	may	indicate	an	execution	error.

```
$	check-pbs-jobs	--print-load	--print-processes
JOB	35141.dm2,	session_id	71995,	user	user2,	nodes	cn164,cn165
Print	load
cn164:	LOAD:	16.01,	16.01,	16.00
cn165:	LOAD:		0.01,		0.00,		0.01
Print	processes
							%CPU	CMD
cn164:		0.0	-bash
cn164:		0.0	/bin/bash	/var/spool/PBS/mom_priv/jobs/35141.dm2.SC
cn164:	99.7	run-task



...
```

In	this	example	we	see	that	job	35141.dm2	currently	runs	process
run-task	on	node	cn164,	using	one	thread	only,	while	node	cn165	is
empty,	which	may	indicate	an	execution	error.

```
$	check-pbs-jobs	--jobid	35141.dm2	--print-job-out
JOB	35141.dm2,	session_id	71995,	user	user2,	nodes	cn164,cn165
Print	job	standard	output:
========================	Job	start		==========================
Started	atÂ	Â	Â		:	Fri	Aug	30	02:47:53	CEST	2013
Script	nameÂ	Â		:	script
Run	loop	1
Run	loop	2
Run	loop	3
```

In	this	example,	we	see	actual	output	(some	iteration	loops)	of	the	job
35141.dm2

Manage	your	queued	or	running	jobs,	using	the	**qhold**,	**qrls**,
qdel,**	**qsig**	or	**qalter**	commands

You	may	release	your	allocation	at	any	time,	using	qdel	command

```
$	qdel	12345.srv11
```

You	may	kill	a	running	job	by	force,	using	qsig	command

```
$	qsig	-s	9	12345.srv11
```

Learn	more	by	reading	the	pbs	man	page

```
$	man	pbs_professional
```

Job	Execution

###	Jobscript

Prepare	the	jobscript	to	run	batch	jobs	in	the	PBS	queue	system

The	Jobscript	is	a	user	made	script,	controlling	sequence	of	commands
for	executing	the	calculation.	It	is	often	written	in	bash,	other
scripts	may	be	used	as	well.	The	jobscript	is	supplied	to	PBS	**qsub**
command	as	an	argument	and	executed	by	the	PBS	Professional	workload
manager.

The	jobscript	or	interactive	shell	is	executed	on	first	of	the	allocated
nodes.

```
$	qsub	-q	qexp	-l	select=4:ncpus=16	-N	Name0	./myjob
$	qstat	-n	-u	username

srv11:
																																																												Req'd		Req'd			Elap
Job	ID										Username	Queue				Jobname				SessID	NDS	TSK	Memory	Time		S	Time
---------------	--------	--------	----------	------	---	---	------	-----	-	-----
15209.srv11					username	qexp					Name0								5530			4		64				--		01:00	R	00:00



			cn17/0*16+cn108/0*16+cn109/0*16+cn110/0*16
```

Â	In	this	example,	the	nodes	cn17,	cn108,	cn109	and	cn110	were	allocated
for	1	hour	via	the	qexp	queue.	The	jobscript	myjob	will	be	executed	on
the	node	cn17,	while	the	nodes	cn108,	cn109	and	cn110	are	available	for
use	as	well.

The	jobscript	or	interactive	shell	is	by	default	executed	in	home
directory

```
$	qsub	-q	qexp	-l	select=4:ncpus=16	-I
qsub:	waiting	for	job	15210.srv11	to	start
qsub:	job	15210.srv11	ready

$	pwd
/home/username
```

In	this	example,	4	nodes	were	allocated	interactively	for	1	hour	via	the
qexp	queue.	The	interactive	shell	is	executed	in	the	home	directory.

All	nodes	within	the	allocation	may	be	accessed	via	ssh.Â		Unallocated
nodes	are	not	accessible	to	user.

The	allocated	nodes	are	accessible	via	ssh	from	login	nodes.	The	nodes
may	access	each	other	via	ssh	as	well.

Calculations	on	allocated	nodes	may	be	executed	remotely	via	the	MPI,
ssh,	pdsh	or	clush.	You	may	find	out	which	nodes	belong	to	the
allocation	by	reading	the	$PBS_NODEFILE	file

```
qsub	-q	qexp	-l	select=4:ncpus=16	-I
qsub:	waiting	for	job	15210.srv11	to	start
qsub:	job	15210.srv11	ready

$	pwd
/home/username

$	sort	-u	$PBS_NODEFILE
cn17.bullx
cn108.bullx
cn109.bullx
cn110.bullx
	
$	pdsh	-w	cn17,cn[108-110]	hostname
cn17:	cn17
cn108:	cn108
cn109:	cn109
cn110:	cn110
```

In	this	example,	the	hostname	program	is	executed	via	pdsh	from	the
interactive	shell.	The	execution	runs	on	all	four	allocated	nodes.	The
same	result	would	be	achieved	if	the	pdsh	is	called	from	any	of	the
allocated	nodes	or	from	the	login	nodes.

###	Example	Jobscript	for	MPI	Calculation

Production	jobs	must	use	the	/scratch	directory	for	I/O

The	recommended	way	to	run	production	jobs	is	to	change	to	/scratch
directory	early	in	the	jobscript,	copy	all	inputs	to	/scratch,	execute
the	calculations	and	copy	outputs	to	home	directory.

```



#!/bin/bash

#	change	to	scratch	directory,	exit	on	failure
SCRDIR=/scratch/$USER/myjob
mkdir	-p	$SCRDIR
cd	$SCRDIR	||	exit

#	copy	input	file	to	scratch	
cp	$PBS_O_WORKDIR/input	.
cp	$PBS_O_WORKDIR/mympiprog.x	.

#	load	the	mpi	module
module	load	openmpi

#	execute	the	calculation
mpiexec	-pernode	./mympiprog.x

#	copy	output	file	to	home
cp	output	$PBS_O_WORKDIR/.

#exit
exit
```

In	this	example,	some	directory	on	the	/home	holds	the	input	file	input
and	executable	mympiprog.x	.	We	create	a	directory	myjob	on	the	/scratch
filesystem,	copy	input	and	executable	files	from	the	/home	directory
where	the	qsub	was	invoked	($PBS_O_WORKDIR)	to	/scratch,	execute	the
MPI	programm	mympiprog.x	and	copy	the	output	file	back	to	the	/home
directory.	The	mympiprog.x	is	executed	as	one	process	per	node,	on	all
allocated	nodes.

Consider	preloading	inputs	and	executables	onto	[shared
scratch](../storage.html)	before	the	calculation	starts.

In	some	cases,	it	may	be	impractical	to	copy	the	inputs	to	scratch	and
outputs	to	home.	This	is	especially	true	when	very	large	input	and
output	files	are	expected,	or	when	the	files	should	be	reused	by	a
subsequent	calculation.	In	such	a	case,	it	is	users	responsibility	to
preload	the	input	files	on	shared	/scratch	before	the	job	submission	and
retrieve	the	outputs	manually,	after	all	calculations	are	finished.

Store	the	qsub	options	within	the	jobscript.
Use	**mpiprocs**	and	**ompthreads**	qsub	options	to	control	the	MPI	job
execution.

Example	jobscript	for	an	MPI	job	with	preloaded	inputs	and	executables,
options	for	qsub	are	stored	within	the	script	:

```
#!/bin/bash
#PBS	-q	qprod
#PBS	-N	MYJOB
#PBS	-l	select=100:ncpus=16:mpiprocs=1:ompthreads=16
#PBS	-A	OPEN-0-0

#	change	to	scratch	directory,	exit	on	failure
SCRDIR=/scratch/$USER/myjob
cd	$SCRDIR	||	exit

#	load	the	mpi	module
module	load	openmpi

#	execute	the	calculation
mpiexec	./mympiprog.x

#exit
exit



```

In	this	example,	input	and	executable	files	are	assumed	preloaded
manually	in	/scratch/$USER/myjob	directory.	Note	the	**mpiprocs**	and
ompthreads**	qsub	options,	controlling	behavior	of	the	MPI	execution.
The	mympiprog.x	is	executed	as	one	process	per	node,	on	all	100
allocated	nodes.	If	mympiprog.x	implements	OpenMP	threads,	it	will	run
16	threads	per	node.

More	information	is	found	in	the	[Running
OpenMPI](../software/mpi-1/Running_OpenMPI.html)	and
[Running	MPICH2](../software/mpi-1/running-mpich2.html)
sections.

###	Example	Jobscript	for	Single	Node	Calculation

Local	scratch	directory	is	often	useful	for	single	node	jobs.	Local
scratch	will	be	deleted	immediately	after	the	job	ends.

Example	jobscript	for	single	node	calculation,	using	[local
scratch](../storage.html)	on	the	node:

```
#!/bin/bash

#	change	to	local	scratch	directory
cd	/lscratch/$PBS_JOBID	||	exit

#	copy	input	file	to	scratch	
cp	$PBS_O_WORKDIR/input	.
cp	$PBS_O_WORKDIR/myprog.x	.

#	execute	the	calculation
./myprog.x

#	copy	output	file	to	home
cp	output	$PBS_O_WORKDIR/.

#exit
exit
```

In	this	example,	some	directory	on	the	home	holds	the	input	file	input
and	executable	myprog.x	.	We	copy	input	and	executable	files	from	the
home	directory	where	the	qsub	was	invoked	($PBS_O_WORKDIR)	to	local
scratch	/lscratch/$PBS_JOBID,	execute	the	myprog.x	and	copy	the	output
file	back	to	the	/home	directory.	The	myprog.x	runs	on	one	node	only	and
may	use	threads.

###	Other	Jobscript	Examples

Further	jobscript	examples	may	be	found	in	the
[Software](../software.1.html)	section	and	the	[Capacity
computing](capacity-computing.html)	section.

Â	

