Job submission and execution

Job Submission

When allocating computational resources for the job, please specify

1. suitable queue for your job (default is qprod)

2. number of computational nodes required

3. number of cores per node required

4. maximum wall time allocated to your calculation, note that jobs
exceeding maximum wall time will be killed

5. Project ID

6. Jobscript or interactive switch

Use the **qsub** command to submit your job to a queue for allocation of
the computational resources.

Submit the job using the gsub command:
$ qsub -A Project ID -q queue -1 select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms] jobscript

The qsub submits the job into the queue, in another words the qsub
command creates a request to the PBS Job manager for allocation of
specified resources. The resources will be allocated when available,
subject to above described policies and constraints. **After the
resources are allocated the jobscript or interactive shell is executed
on first of the allocated nodes.**

PBS statement nodes (qsub -1 nodes=nodespec) is not supported on Salomon
cluster.**

Job Submission Examples
$ qsub -A OPEN-0-0 -q gprod -1 select=64:ncpus=24,walltime=03:00:00 ./myjob

In this example, we allocate 64 nodes, 24 cores per node, for 3 hours.
We allocate these resources via the gprod queue, consumed resources will
be accounted to the Project identified by Project ID OPEN-0-0. Jobscript
myjob will be executed on the first node in the allocation.

A
$ qsub -g gexp -1 select=4:ncpus=24 -1

In this example, we allocate 4 nodes, 24 cores per node, for 1 hour. We
allocate these resources via the gexp queue. The resources will be
available interactively

A
$ gsub -A OPEN-0-0 -q qlong -1 select=10:ncpus=24 ./myjob

In this example, we allocate 10 nodes, 24 cores per node, forA 72 hours.
We allocate these resources via the gqlong queue. Jobscript myjob will be
executed on the first node in the allocation.

$ gqsub -A OPEN-0-0 -q gqfree -1 select=10:ncpus=24 ./myjob

In this example, we allocate 10A nodes, 24 cores per node, for 12 hours.
We allocate these resources via the gfree queue. It is not required that
the project OPEN-0-0 has any available resources left. Consumed

resources are still accounted for. Jobscript myjob will be executed on
the first node in the allocation.

Intel Xeon Phi co-processors

To allocate a node with Xeon Phi co-processor, user needs to specify
that in select statement. Currently only allocation of whole nodes with
both Phi cards as the smallest chunk is supported. Standard PBSPro
approach through attributes "accelerator", "naccelerators" and
"accelerator model" is used. The "accelerator model" can be omitted,
since on Salomon only one type of accelerator type/model is available.

The absence of specialized queue for accessing the nodes with cards
means, that the Phi cards can be utilized in any queue, including gexp
for testing/experiments, qlong for longer jobs, gfree after the project
resources have been spent, etc. The Phi cards are thus also available to
PRACE users. There's no need to ask for permission to utilize the Phi
cards in project proposals.

$ qsub -A OPEN-0-0 -I -q qprod -1
select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator model=phi7120 ./myjob

In this example, we allocate 1 node, with 24 cores, with 2 Xeon Phi
7120p cards, running batch job ./myjob. The default time for qprod is
used, e. g. 24 hours.

$ qsub -A OPEN-0-0 -I -q glong -1 select=4:ncpus=24:accelerator=True:naccelerators=2 -1
walltime=56:00:00 -I

In this example, we allocate 4 nodes, with 24 cores per node (totalling
96 cores), with 2 Xeon Phi 7120p cards per node (totalling 8 Phi cards),
running interactive job for 56 hours. The accelerator model name was
omitted.

UV2000 SMP

14 NUMA nodes available on UV2000
Per NUMA node allocation.
Jobs are isolated by cpusets.

The UV2000 (node uvl) offers 3328GB of RAM and 112 cores, distributed in
14 NUMA nodes. A NUMA node packs 8 cores and approx. 236GB RAM. In the
PBSA the UV2000 provides 14 chunks, a chunk per NUMA node (seeA
[Resource allocation

policy](resources-allocation-policy.html)). The jobs on

UV2000 are isolated from each other by cpusets, so that a job by one
user may not utilize CPU or memory allocated to a job by other user.
Always, full chunks are allocated, a job may only use resources ofA the
NUMA nodes allocated to itself.

A $ gsub -A OPEN-0-0 -q gfat -1 select=14 ./myjob

In this example, we allocate all 14 NUMA nodes (corresponds to 14
chunks), 112 cores of the SGI UV2000 nodeA for 72 hours. Jobscript myjob
will be executed on the node uvl.

$ qsub -A OPEN-0-0 -q gqfat -1 select=1:mem=2000GB ./myjob

In this example, we allocate 2000GB of memory on the UV2000 for 72
hours. By requesting 2000GB of memory, 10 chunks are allocated.
Jobscript myjob will be executed on the node uvl.

Useful tricks

All qgsub options may be [saved directly into the

jobscript](job-submission-and-execution.html#PBSsaved). In
such a case, no options to qsub are needed.

$ gqsub ./myjob

A
By default, the PBS batch system sends an e-mail only when the job is
aborted. Disabling mail events completely can be done like this:

$ qsub -m n

Advanced job placement

Placement by name
Specific nodes may be allocated via the PBS

gsub -A OPEN-0-0 -q gprod -1 select=1l:ncpus=24:host=r24u35n680+1:ncpus=24:host=r24u36n681
-1

Or using short names
gsub -A OPEN-0-0 -q gprod -1 select=1l:ncpus=24:host=cns680+1:ncpus=24:host=cns681 -I

In this example, we allocate nodes r24u35n680 and r24u36n681, all 24
cores per node, for 24 hours.A Consumed resources will be accounted to
the Project identified by Project ID OPEN-0-0. The resources will be
available interactively.

Placement by Hypercube dimension
Nodes may be selected via the PBS resource attributeA ehc [1-7]d .

Hypercube dimension

1D ehc 1d
2D ehc_2d
3D ehc 3d
4D ehc 4d
5D ehc 5d
6D ehc 6d

p~1

$ qsub -A OPEN-0-0 -q gprod -1 select=4:ncpus=24 -1 place=group=ehc 1d -I

In this example, we allocate 4 nodes, 24 cores, selecting only the nodes
with [hypercube
dimension](../network-1/7d-enhanced-hypercube.html) 1.

Placement by IB switch

Groups of computational nodes are connected to chassis integrated
Infiniband switches. These switches form the leaf switch layer of the
[InfinibandA network](../network-1.html) . Nodes sharing

the leaf switch can communicate most efficiently. Sharing the same
switch prevents hops in the network and provides for unbiased, most
efficient network communication.

There are at most 9 nodes sharing the same Infiniband switch.

Infiniband switch list:

$ gmgr -c "print node @a" | grep switch

set node r4ilnll resources available.switch = r4ils0Oswl
set node r2iOn0@ resources available.switch = r2i0s0swl
set node r2i0nl resources available.switch = r2i0s0swl

List of all nodes per Infiniband switch:

$ gmgr -c "print node @a" | grep r36sw3

set node r36u31n964 resources available.switch = r36sw3
set node r36u32n965 resources available.switch = r36sw3
set node r36u33n966 resources available.switch = r36sw3
set node r36u34n967 resources available.switch = r36sw3
set node r36u35n968 resources available.switch = r36sw3
set node r36u36n969 resources available.switch = r36sw3
set node r37u32n970 resources available.switch = r36sw3
set node r37u33n971 resources available.switch = r36sw3

= r36sw3

set node r37u34n972 resources available.switch
Nodes sharing the same switch may be selected via the PBS resource
attribute switch.

We recommend allocating compute nodes of a single switch when best

possible computational network performance is required to run the job
efficiently:

$ gqsub -A OPEN-0-0 -q gprod -1 select=9:ncpus=24:switch=r4ilsOswl ./myjob

In this example, we request all the 9 nodes sharing the r4ilsOswl switch
for 24 hours.

$ gqsub -A OPEN-0-0 -q gprod -1 select=9:ncpus=24 -1 place=group=switch ./myjob

AN

In this example, we request 9 nodes placed on the same switch using node
grouping placement for 24 hours.

HTML commented section #1 (turbo boost is to be implemented)

Job Management

Check status of your jobs using the **qgstat** and **check-pbs-jobs**
commands

$ gstat -a

$ gstat -a -u username
$ gstat -an -u username
$ gstat -f 12345.isrv5

ANIN

Example:
$ gstat -a
srvll:

Reg'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
16287.1isrv5 userl glong jobl 6183 4 64 -- 144:0 R 38:25
16468.1isrv5 userl glong job2 8060 4 64 -- 144:0 R 17:44
16547 .1isrv5 user2 gprod job3x 13516 2 32 -- 48:00 R 00:58

In this example userl and user2 are running jobs named jobl, job2 and
job3x. The jobs jobl and job2 are using 4 nodes, 16 cores per node each.
The jobl already runs for 38 hours and 25 minutes, job2 for 17 hours 44
minutes. The jobl already consumed 64*38.41 = 2458.6 core hours. The
job3x already consumed 0.96*32 = 30.93 core hours. These consumed core
hours will be accounted on the respective project accounts, regardless
of whether the allocated cores were actually used for computations.

Check status of your jobs using check-pbs-jobs command. Check presence
of user's PBS jobs' processes on execution hosts. Display load,
processes. Display job standard and error output. Continuously display
(tail -f) job standard or error output.

$ check-pbs-jobs --check-all

$ check-pbs-jobs --print-load --print-processes

$ check-pbs-jobs --print-job-out --print-job-err

$ check-pbs-jobs --jobid JOBID --check-all --print-all
$ check-pbs-jobs --jobid JOBID --tailf-job-out
Examples:

$ check-pbs-jobs --check-all

JOB 35141.dm2, session id 71995, user user2, nodes r3i6n2,r3i6n3
Check session id: OK

Check processes

r3ien2: OK

r3ien3: No process

In this example we see that job 35141.dm2 currently runs no process on
allocated node r3i6n2, which may indicate an execution error.

$ check-pbs-jobs --print-load --print-processes

JOB 35141.dm2, session id 71995, user user2, nodes r3i6n2,r3i6n3
Print load

r3i6n2: LOAD: 16.01, 16.01, 16.00

r3i6en3: LOAD: 0.01, 0.00, 0.01
Print processes
%CPU CMD
r3ien2: 0.0 -bash
r3ien2: 0.0 /bin/bash /var/spool/PBS/mom priv/jobs/35141.dm2.SC
r3ien2: 99.7 run-task

In this example we see that job 35141.dm2 currently runs process
run-task on node r3i6n2, using one thread only, while node r3i6n3 is
empty, which may indicate an execution error.

$ check-pbs-jobs --jobid 35141.dm2 --print-job-out
JOB 35141.dm2, session id 71995, user user2, nodes r3i6n2,r3i6n3
Print job standard output:

Job start
Started atA A A : Fri Aug 30 02:47:53 CEST 2013
Script nameA A : script
Run loop 1
Run loop 2

Run loop 3
In this example, we see actual output (some iteration loops) of the job
35141.dm2

Manage your queued or running jobs, using the **ghold**, **qrls**,
gdel, ** **qsig** or **qgalter** commands

You may release your allocation at any time, using qdel command

$ qdel 12345.isrv5

AN

You may kill a running job by force, using qsig command
%\gsig -5 9 12345.1isrv5

Learn more by reading the pbs man page

$\man pbs professional

Job Execution

Jobscript
Prepare the jobscript to run batch jobs in the PBS queue system

The Jobscript is a user made script, controlling sequence of commands
for executing the calculation. It is often written in bash, other
scripts may be used as well. The jobscript is supplied to PBS **qsub**
command as an argument and executed by the PBS Professional workload
manager.

The jobscript or interactive shell is executed on first of the allocated
nodes.

$ qsub -g gexp -1 select=4:ncpus=24 -N NameO® ./myjob
$ gstat -n -u username

Regq'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

15209.1isrv5 username gexp NameO 5530 4 96 -- 01:00 R 00:00
r21u01ln577/0*24+r21u02n578/0*24+r21u03n579/0*24+r21u04n580/0*24

A In this example, the nodesA r21u@ln577, r21u02n578, r21u®3n579,
r21u04n580 were allocated for 1 hour via the gexp queue. The jobscript
myjob will be executed on the node r21u@1n577, while the

nodesA r21u02n578, r21u03n579, r21u64n580 are available for use as well.

The jobscript or interactive shell is by default executed in home
directory

$ gqsub -q gexp -1 select=4:ncpus=24 -I
gsub: waiting for job 15210.isrv5 to start
gsub: job 15210.isrv5 ready

$ pwd
/home/username

In this example, 4 nodes were allocated interactively for 1 hour via the
gexp queue. The interactive shell is executed in the home directory.

A1l nodes within the allocation may be accessed via ssh.A Unallocated
nodes are not accessible to user.

The allocated nodes are accessible via ssh from login nodes. The nodes
may access each other via ssh as well.

Calculations on allocated nodes may be executed remotely via the MPI,
ssh, pdsh or clush. You may find out which nodes belong to the
allocation by reading the $PBS NODEFILE file

gsub -q gexp -1 select=2:ncpus=24 -1
gsub: waiting for job 15210.isrv5 to start
gsub: job 15210.isrv5 ready

$ pwd
/home/username

$ sort -u $PBS NODEFILE

r2i5n6.ib0.smc.salomon.it4i.cz
r4i6nl3.ib0.smc.salomon.it4i.cz
r4i7n0.ib0.smc.salomon.itd4i.cz
r4i7n2.ib0.smc.salomon.it4i.cz

$ pdsh -w r2i5n6,r4i6nl3,r4i7n[0,2] hostname
r4i6nl3: r4i6nl3

r2i5n6: r2i5n6

r4i7n2: r4i7n2

r4i7n0@: r4i7n0

In this example, the hostname program is executed via pdsh from the
interactive shell. The execution runs on all four allocated nodes. The
same result would be achieved if the pdsh is called from any of the
allocated nodes or from the login nodes.

Example Jobscript for MPI Calculation

Production jobs must use the /scratch directory for I/0

The recommended way to run production jobs is to change to /scratch
directory early in the jobscript, copy all inputs to /scratch, execute
the calculations and copy outputs to home directory.

#!/bin/bash

change to scratch directory, exit on failure
SCRDIR=/scratch/work/user/$USER/myjob

mkdir -p $SCRDIR

cd $SCRDIR || exit

copy input file to scratch
cp $PBS 0 WORKDIR/input .
cp $PBS O WORKDIR/mympiprog.x .

load the mpi module
module load OpenMPI

execute the calculation
mpiexec -pernode ./mympiprog.x

copy output file to home
cp output $PBS 0O WORKDIR/.

#exit
exit

In this example, some directory on the /home holds the input file input
and executable mympiprog.x . We create a directory myjob on the /scratch
filesystem, copy input and executable files from the /home directory
where the qsub was invoked ($PBS 0 WORKDIR) to /scratch, execute the

MPI programm mympiprog.x and copy the output file back to the /home
directory. The mympiprog.x is executed as one process per node, on all
allocated nodes.

Consider preloading inputs and executables onto [shared
scratch](../storage.html) before the calculation starts.

In some cases, it may be impractical to copy the inputs to scratch and
outputs to home. This is especially true when very large input and
output files are expected, or when the files should be reused by a
subsequent calculation. In such a case, it is users responsibility to
preload the input files on shared /scratch before the job submission and
retrieve the outputs manually, after all calculations are finished.

Store the qsub options within the jobscript.
Use **mpiprocs** and **ompthreads** qsub options to control the MPI job
execution.

Example jobscript for an MPI job with preloaded inputs and executables,
options for gsub are stored within the script :

#!/bin/bash

#PBS -q gprod

#PBS -N MYJOB

#PBS -1 select=100:ncpus=24:mpiprocs=1:ompthreads=24
#PBS -A OPEN-0-0

change to scratch directory, exit on failure
SCRDIR=/scratch/work/user/$USER/myjob
cd $SCRDIR || exit

load the mpi module

module load OpenMPI

execute the calculation
mpiexec ./mympiprog.X

#exit
exit

In this example, input and executable files are assumed preloaded
manually in /scratch/$USER/myjob directory. Note the **mpiprocs** and
ompthreads** qsub options, controlling behavior of the MPI execution.
The mympiprog.x is executed as one process per node, on all 100
allocated nodes. If mympiprog.x implements OpenMP threads, it will run
24 threads per node.

HTML commented section #2 (examples need to be reworked)
Example Jobscript for Single Node Calculation

Local scratch directory is often useful for single node jobs. Local
scratch will be deleted immediately after the job ends.

Be very careful, use of RAM disk filesystem is at the expense of
operational memory.

Example jobscript for single node calculation, using [local
scratch](../storage.html) on the node:

#!/bin/bash

change to local scratch directory
cd /lscratch/$PBS JOBID || exit

copy input file to scratch
cp $PBS 0 WORKDIR/input .
cp $PBS 0 WORKDIR/myprog.x .

execute the calculation
./myprog.x

copy output file to home
cp output $PBS O WORKDIR/.

#exit
exit

In this example, some directory on the home holds the input file input
and executable myprog.x . We copy input and executable files from the
home directory where the qsub was invoked ($PBS 0 WORKDIR) to local

scratch /lscratch/$PBS JOBID, execute the myprog.x and copy the output

file back to the /home directory. The myprog.x runs on one node only and

may use threads.

HTML commented section #3 (Capacity computing need to be reworked)

