
MPI

Setting up MPI Environment

The Salomon cluster provides several implementations of the MPI library:

MPI Library Thread support —— |—|—|— Intel MPI 4.1 Full thread
support up to MPI_THREAD_MULTIPLE
Intel MPI 5.0 Full thread support up to MPI_THREAD_MULTIPLE
OpenMPI 1.8.6 Full thread support up to MPI_THREAD_MULTIPLE,
MPI-3.0 support
SGI MPT 2.12

MPI libraries are activated via the environment modules.

Look up section modulefiles/mpi in module avail

$ module avail
------------------------------ /apps/modules/mpi -------------------------------
impi/4.1.1.036-iccifort-2013.5.192
impi/4.1.1.036-iccifort-2013.5.192-GCC-4.8.3
impi/5.0.3.048-iccifort-2015.3.187
impi/5.0.3.048-iccifort-2015.3.187-GNU-5.1.0-2.25
MPT/2.12
OpenMPI/1.8.6-GNU-5.1.0-2.25

There are default compilers associated with any particular MPI implementation.
The defaults may be changed, the MPI libraries may be used in conjunction with
any compiler. The defaults are selected via the modules in following way

Module MPI Compiler suite —————— |—|—|————–
———————— impi-5.0.3.048-iccifort- Intel MPI 5.0.3 2015.3.187
OpenMP-1.8.6-GNU-5.1.0-2 OpenMPI 1.8.6 .25

Examples:

$ module load gompi/2015b

In this example, we activate the latest OpenMPI with latest GNU compilers
(OpenMPI 1.8.6 and GCC 5.1). Please see more information about toolchains
in section Environment and Modules .

To use OpenMPI with the intel compiler suite, use

$ module load iompi/2015.03

In this example, the openmpi 1.8.6 using intel compilers is activated. It’s used

1

../../environment-and-modules.html

“iompi” toolchain.

Compiling MPI Programs

After setting up your MPI environment, compile your program using one of the
mpi wrappers

$ mpicc -v
$ mpif77 -v
$ mpif90 -v

When using Intel MPI, use the following MPI wrappers:

$ mpicc
$ mpiifort

Wrappers mpif90, mpif77 that are provided by Intel MPI are designed for gcc
and gfortran. You might be able to compile MPI code by them even with
Intel compilers, but you might run into problems (for example, native MIC
compilation with -mmic does not work with mpif90).

Example program:

// helloworld_mpi.c
#include <stdio.h>

#include<mpi.h>

int main(int argc, char **argv) {

int len;
int rank, size;
char node[MPI_MAX_PROCESSOR_NAME];

// Initiate MPI
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

// Get hostame and print
MPI_Get_processor_name(node,&len);
printf("Hello world! from rank %d of %d on host %sn",rank,size,node);

// Finalize and exit
MPI_Finalize();

return 0;
}

2

Compile the above example with

$ mpicc helloworld_mpi.c -o helloworld_mpi.x

Running MPI Programs

The MPI program executable must be compatible with the loaded MPI module.
Always compile and execute using the very same MPI module.

It is strongly discouraged to mix mpi implementations. Linking an application
with one MPI implementation and running mpirun/mpiexec form other imple-
mentation may result in unexpected errors.

The MPI program executable must be available within the same path on all
nodes. This is automatically fulfilled on the /home and /scratch filesystem.
You need to preload the executable, if running on the local scratch /lscratch
filesystem.

Ways to run MPI programs

Optimal way to run an MPI program depends on its memory requirements,
memory access pattern and communication pattern.

Consider these ways to run an MPI program: 1. One MPI process per node, 24
threads per process 2. Two MPI processes per node, 12 threads per process 3.
24 MPI processes per node, 1 thread per process.

One MPI** process per node, using 24 threads, is most useful for memory
demanding applications, that make good use of processor cache memory and are
not memory bound. This is also a preferred way for communication intensive
applications as one process per node enjoys full bandwidth access to the network
interface.

Two MPI** processes per node, using 12 threads each, bound to processor socket
is most useful for memory bandwidth bound applications such as BLAS1 or FFT,
with scalable memory demand. However, note that the two processes will share
access to the network interface. The 12 threads and socket binding should ensure
maximum memory access bandwidth and minimize communication, migration
and numa effect overheads.

Important! Bind every OpenMP thread to a core!

In the previous two cases with one or two MPI processes per node, the oper-
ating system might still migrate OpenMP threads between cores. You want
to avoid this by setting the KMP_AFFINITY or GOMP_CPU_AFFINITY
environment variables.

24 MPI processes per node, using 1 thread each bound to processor core is
most suitable for highly scalable applications with low communication demand.

3

Running OpenMPI

The OpenMPI 1.8.6 is based on OpenMPI. Read more on how to run Open-
MPI based MPI.

The Intel MPI may run on theIntel Xeon Phi accelerators as well. Read more
on how to run Intel MPI on accelerators.

4

http://www.open-mpi.org/
Running_OpenMPI.html
Running_OpenMPI.html
../intel-xeon-phi.html
../intel-xeon-phi.html

	MPI
	Setting up MPI Environment
	Compiling MPI Programs
	Running MPI Programs
	Ways to run MPI programs
	Running OpenMPI

