
Aislinn

• Aislinn is a dynamic verifier for MPI programs. For a fixed input it covers
all possible runs with respect to nondeterminism introduced by MPI. It
allows to detect bugs (for sure) that occurs very rare in normal runs.

• Aislinn detects problems like invalid memory accesses, deadlocks, misuse
of MPI, and resource leaks.

• Aislinn is open-source software; you can use it without any licensing limi-
tations.

• Web page of the project: http://verif.cs.vsb.cz/aislinn/

Note

Aislinn is software developed at IT4Innovations and some parts are still con-
sidered experimental. If you have any questions or experienced any problems,
please contact the author: stanislav.bohm@vsb.cz.

Usage

Let us have the following program that contains a bug that is not manifested
in all runs:

‘ #include #include

int main(int argc, char **argv) { int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {
int *mem1 = (int*) malloc(sizeof(int) * 2);
int *mem2 = (int*) malloc(sizeof(int) * 3);
int data;
MPI_Recv(&data, 1, MPI_INT, MPI_ANY_SOURCE, 1,

MPI_COMM_WORLD, MPI_STATUS_IGNORE);
mem1[data] = 10; // <---------- Possible invalid memory write

MPI_Recv(&data, 1, MPI_INT, MPI_ANY_SOURCE, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

mem2[data] = 10;
free(mem1);
free(mem2);

}

if (rank == 1 || rank == 2) {
MPI_Send(&rank, 1, MPI_INT, 0, 1, MPI_COMM_WORLD);

}

1

http://verif.cs.vsb.cz/aislinn/
mailto:stanislav.bohm@vsb.cz

MPI_Finalize();
return 0;

} ‘

The program does the following: process 0 receives two messages from anyone
and processes 1 and 2 send a message to process 0. If a message from process
1 is received first, then the run does not expose the error. If a message from
process 2 is received first, then invalid memory write occurs at line 16.

To verify this program by Aislinn, we first load Aislinn itself:

$ module load aislinn

Now we compile the program by Aislinn implementation of MPI. There are
mpicc for C programs and mpicxx for C++ programs. Only MPI parts of the
verified application has to be recompiled; non-MPI parts may remain untouched.
Let us assume that our program is in test.cpp.

$ mpicc -g test.cpp -o test

The -g flag is not necessary, but it puts more debugging information into the
program, hence Aislinn may provide more detailed report. The command pro-
duces executable file test.

Now we run the Aislinn itself. The argument -p 3 specifies that we want to
verify our program for the case of three MPI processes

$ aislinn -p 3 ./test ==AN== INFO: Aislinn v0.3.0 ==AN== INFO: Found
error 'Invalid write' ==AN== INFO: 1 error(s) found ==AN== INFO:
Report written into 'report.html'

Aislinn found an error and produced HTML report. To view it, we can use any
browser, e.g.:

$ firefox report.html

At the beginning of the report there are some basic summaries of the verification.
In the second part (depicted in the following picture), the error is described.

2

It shows us:

• Error occurs in process 0 in test.cpp on line 16.
• Stdout and stderr streams are empty. (The program does not write any-

thing).
• The last part shows MPI calls for each process that occurs in the invalid

run. The more detailed information about each call can be obtained by
mouse cursor.

Limitations

Since the verification is a non-trivial process there are some of limitations.

• The verified process has to terminate in all runs, i.e. we cannot answer
the halting problem.

• The verification is a computationally and memory demanding process. We
put an effort to make it efficient and it is an important point for further
research. However covering all runs will be always more demanding than
techniques that examines only a single run. The good practise is to start
with small instances and when it is feasible, make them bigger. The Aislinn
is good to find bugs that are hard to find because they occur very rarely
(only in a rare scheduling). Such bugs often do not need big instances.

• Aislinn expects that your program is a “standard MPI” program, i.e. pro-
cesses communicate only through MPI, the verified program does not in-
teracts with the system in some unusual ways (e.g. opening sockets).

There are also some limitations bounded to the current version and they will be

3

removed in the future:

• All files containing MPI calls have to be recompiled by MPI implementa-
tion provided by Aislinn. The files that does not contain MPI calls, they
do not have to recompiled. Aislinn MPI implementation supports many
commonly used calls from MPI-2 and MPI-3 related to point-to-point com-
munication, collective communication, and communicator management.
Unfortunately, MPI-IO and one-side communication is not implemented
yet.

• Each MPI can use only one thread (if you use OpenMP, set
OMP_NUM_THREADS to 1).

• There are some limitations for using files, but if the program just reads
inputs and writes results, it is ok.

4

	Aislinn
	Usage
	Limitations

