Intel Xeon Phi

A guide to Intel Xeon Phi usage

Intel Xeon Phi can be programmed in several modes. The default mode on
Anselm is offload mode, but all modes described in this document are supported.

Intel Utilities for Xeon Phi

To get access to a compute node with Intel Xeon Phi accelerator, use the PBS
interactive session

$ gsub -I -q gmic -A NONE-0-0
To set up the environment module “Intel” has to be loaded
$ module load intel/13.5.192

Information about the hardware can be obtained by running the micinfo pro-
gram on the host.

$ /usr/bin/micinfo

The output of the “micinfo” utility executed on one of the Anselm node is as
follows. (note: to get PCle related details the command has to be run with root
privileges)

MicInfo Utility Log
Created Mon Jul 22 00:23:50 2013

System Info

HOST 0S : Linux

0S Version :2.6.32-279.5.2.016.Bull.33.x86_64
Driver Version : 6720-15

MPSS Version : 2.1.6720-15

Host Physical Memory : 98843 MB

Device No: 0, Device Name: micO

Version
Flash Version :2.1.03.0386
SMC Firmware Version :1.15.4830
SMC Boot Loader Version : 1.8.4326
u0S Version 1 2.6.38.8-g2593b11
Device Serial Number : ADKC30102482
Board

Cores

Thermal

GDDR

Offload Mode

Vendor ID
Device ID

Subsystem ID

Coprocessor
PCIe Width
PCIe Speed

Stepping ID

PCIe Max payload size
PCIe Max read req size

Coprocessor
Coprocessor
Coprocessor
Coprocessor
Coprocessor
Coprocessor

Model
Model Ext
Type
Family
Family Ext
Stepping

Board SKU
ECC Mode
SMC HW Revision

Total No of Active Cores :

Voltage
Frequency

Fan Speed Control
Fan RPM
Fan PWM
Die Temp

GDDR
GDDR
GDDR
GDDR
GDDR
GDDR
GDDR
GDDR

Vendor
Version
Density
Size
Technology
Speed
Frequency
Voltage

: 0x8086

: 0x2250

: 0x2500

. 3

: x16

: 5 GT/s

: 256 bytes

: 512 bytes

: 0x01

: 0x00

: 0x00

: 0x0b

: 0x00

: Bl

: B1PRQ-5110P/5120D
: Enabled

: Product 225W Passive CS

60
1032000 uV
1052631 kHz

: N/A
: N/A
: N/A
: 49 C

: Elpida

¢ Ox1

: 2048 Mb

: 7936 MB

: GDDR5

: 5.000000 GT/s
: 2500000 kHz

1501000 uV

To compile a code for Intel Xeon Phi a MPSS stack has to be installed on
the machine where compilation is executed. Currently the MPSS stack is only
installed on compute nodes equipped with accelerators.

$ gsub -I -q gmic -A NONE-0-0
$ module load intel/13.5.192

For debugging purposes it is also recommended to set environment variable
“OFFLOAD_REPORT"”. Value can be set from 0 to 3, where higher number
means more debugging information.

export OFFLOAD_REPORT=3

A very basic example of code that employs offload programming technique is
shown in the next listing. Please note that this code is sequential and utilizes
only single core of the accelerator.

$ vim source-offload.cpp
#include <iostream>

int main(int argc, char* argv[])
{
const int niter 100000;

double result = 0;

#pragma offload target(mic)
for (int i = 0; i < niter; ++i) {
const double t = (i + 0.5) / niter;
result += 4.0 / (t * t + 1.0);

}
result /= niter;
std::cout << "Pi ~ " << result << 'n';

}

To compile a code using Intel compiler run

$ icc source-offload.cpp -o bin-offload

To execute the code, run the following command on the host

./bin-offload

Parallelization in Offload Mode Using OpenMP

One way of paralelization a code for Xeon Phi is using OpenMP directives. The
following example shows code for parallel vector addition.

$ vim ./vect-add
#include <stdio.h>

typedef int T;

#define SIZE 1000

#pragma offload_attribute(push, target(mic))
T in1[SIZE];

T in2[SIZE];

T res[SIZE];

#pragma offload_attribute (pop)

// MIC function to add two vectors
__attribute__((target(mic))) add_mic(T *a, T *b, T *c, int size) {
int i = 0;
#pragma omp parallel for
for (i = 0; i < size; i++)
c[i] alil + b[il;

}

// CPU function to add two vectors
void add_cpu (T *a, T *b, T *c, int size) {
int 1i;
for (i = 0; i < size; i++)
clil = alil + blil;

}

// CPU function to generate a vector of random numbers
void random T (T *a, int size) {
int i;
for (i = 0; i < size; i++)
ali] rand() % 10000; // random number between 0 and 9999

3

// CPU function to compare two vectors
int compare(T *a, T *b, T size){
int pass = 0;
int i;
for (i = 0; i < size; i++){
if (afi]l !'= blil) {
printf ("Value mismatch at location %d, values %d and %dn",i, al[il, b[il);
pass = 1;
}
}
if (pass == 0) printf ("Test passedn"); else printf ("Test Failedn");
return pass;

}

int main()

int i;
random_T(inl, SIZE);
random_T(in2, SIZE);

#pragma offload target(mic) in(inl,in2) inout(res)

{

// Parallel loop from main function
#pragma omp parallel for
for (i=0; i<SIZE; i++)

res[i] = in1[i] + in2[i];

// or parallel loop is called inside the function
add_mic(inl, in2, res, SIZE);

}

//Check the results with CPU implementation
T res_cpu[SIZE];

add_cpu(inl, in2, res_cpu, SIZE);
compare(res, res_cpu, SIZE);

3

During the compilation Intel compiler shows which loops have been vectorized
in both host and accelerator. This can be enabled with compiler option “-vec-
report2”. To compile and execute the code run

$ icc vect-add.c -openmp_report2 -vec-report2 -o vect-add

$./vect-add
Some interesting compiler flags useful not only for code debugging are:

Debugging openmp_ report[0[1|2] - controls the compiler based vectorization
diagnostic level vec-report[0|1|2] - controls the OpenMP parallelizer diagnostic
level

Performance ooptimization xhost - FOR HOST ONLY - to generate AVX
(Advanced Vector Extensions) instructions.

Automatic Offload using Intel MKL Library

Intel MKL includes an Automatic Offload (AO) feature that enables computa-
tionally intensive MKL functions called in user code to benefit from attached
Intel Xeon Phi coprocessors automatically and transparently.

Behavioral of automatic offload mode is controlled by functions called within
the program or by environmental variables. Complete list of controls is listed
here.

The Automatic Offload may be enabled by either an MKL function call within
the code:

mkl mic_enable();
or by setting environment variable
$ export MKL_MIC_ENABLE=1

To get more information about automatic offload please refer to “Using Intel®
MKL Automatic Offload on Intel ® Xeon Phi™ Coprocessors” white paper or
Intel MKL documentation.

Automatic offload example

At first get an interactive PBS session on a node with MIC accelerator and load
“intel” module that automatically loads “mkl” module as well.

$ gsub -I -q gmic -A OPEN-0-0 -1 select=1:ncpus=16
$ module load intel

Following example show how to automatically offload an SGEMM (single preci-
sion - g dir="auto”>eneral matrix multiply) function to MIC coprocessor. The
code can be copied to a file and compiled without any necessary modification.

$ vim sgemm-ao-short.c

#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <stdint.h>

#include "mkl.h"

int main(int argc, char *xargv)

{
float *A, *B, *C; /% Matrices */

MKL_INT N = 2560; /* Matrix dimensions */

MKL_INT LD = N; /* Leading dimension */

int matrix_bytes; /* Matrix size in bytes */

int matrix_elements; /* Matrix size in elements */

float alpha = 1.0, beta = 1.0; /* Scaling factors */
char transa = 'N', transb = 'N'; /* Transposition options */

http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/mkl_userguide_lnx/GUID-3DC4FC7D-A1E4-423D-9C0C-06AB265FFA86.htm
http://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf
http://software.intel.com/sites/default/files/11MIC42_How_to_Use_MKL_Automatic_Offload_0.pdf
https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation

int i, j; /* Counters */

matrix_elements = N * N;
matrix_bytes = sizeof (float) * matrix_elements;

/* Allocate the matrices */
A =malloc(matrix_bytes); B = malloc(matrix_bytes); C = malloc(matrix_bytes);

/* Initialize the matrices */

for (i = 0; i < matrix_elements; i++) {
A[i] = 1.0; B[i] = 2.0; C[i] = 0.0;

}

printf ("Computing SGEMM on the hostn");
sgemm (&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);

printf ("Enabling Automatic Offloadn");
/* Alternatively, set environment variable MKL_MIC_ENABLE=1 */

mkl mic_enable();

int ndevices = mkl_mic_get_device_count(); /* Number of MIC devices */
printf ("Automatic Offload enabled: %d MIC devices presentn", ndevices);

printf ("Computing SGEMM with automatic workdivisionn");
sgemm (&transa, &transb, &N, &N, &N, &alpha, A, &N, B, &N, &beta, C, &N);

/* Free the matrix memory */
free(A); free(B); free(C);

printf ("Donen") ;

return 0;

Please note: This example is simplified version of an example from MKL. The ex-
panded version can be found here: $MKL_EXAMPLES /mic_ ao/blasc/source/sgemm.c**

To compile a code using Intel compiler use:

$ icc -mkl sgemm-ao-short.c -o sgemm

For debugging purposes enable the offload report to see more information about
automatic offloading.

$ export OFFLOAD_REPORT=2

The output of a code should look similar to following listing, where lines starting
with [MKL] are generated by offload reporting:

Computing SGEMM on the host

Enabling Automatic Offload

Automatic Offload enabled: 1 MIC devices present
Computing SGEMM with automatic workdivision

[MKL] [MIC --] [AO Function] SGEMM

[MKL] [MIC --] [AO SGEMM Workdivision] 0.00 1.00

[MKL] [MIC 00] [AO SGEMM CPU Time] 0.463351 seconds
[MKL] [MIC 00] [AO SGEMM MIC Time] 0.179608 seconds
[MKL] [MIC 00] [AO SGEMM CPU->MIC Data] 52428800 bytes
[MKL] [MIC 00] [AO SGEMM MIC->CPU Data] 26214400 bytes
Done

Native Mode

In the native mode a program is executed directly on Intel Xeon Phi without
involvement of the host machine. Similarly to offload mode, the code is compiled
on the host computer with Intel compilers.

To compile a code user has to be connected to a compute with MIC and load
Intel compilers module. To get an interactive session on a compute node with
an Intel Xeon Phi and load the module use following commands:

$ gsub -I -q gmic -A NONE-0-0

$ module load intel/13.5.192

Please note that particular version of the Intel module is specified. This infor-
mation is used later to specify the correct library paths.

To produce a binary compatible with Intel Xeon Phi architecture user has to
specify “-mmic” compiler flag. Two compilation examples are shown below. The
first example shows how to compile OpenMP parallel code “vect-add.c” for host
only:

$ icc -xhost -no-offload -fopenmp vect-add.c -o vect-add-host

To run this code on host, use:

$./vect-add-host

The second example shows how to compile the same code for Intel Xeon Phi:

$ icc -mmic -fopenmp vect-add.c -o vect-add-mic

Execution of the Program in Native Mode on Intel Xeon Phi

The user access to the Intel Xeon Phi is through the SSH. Since user home
directories are mounted using NF'S on the accelerator, users do not have to copy
binary files or libraries between the host and accelerator.

To connect to the accelerator run:

$ ssh micO

If the code is sequential, it can be executed directly:
micO $ ~/path_to_binary/vect-add-seq-mic

If the code is parallelized using OpenMP a set of additional libraries is re-
quired for execution. To locate these libraries new path has to be added to
the LD LIBRARY_ PATH environment variable prior to the execution:

micO $ export LD_LIBRARY_PATH=/apps/intel/composer_xe_2013.5.192/compiler/lib/mic:$LD_LIBRAR!

Please note that the path exported in the previous example contains path to a
specific compiler (here the version is 5.192). This version number has to match
with the version number of the Intel compiler module that was used to compile
the code on the host computer.

For your information the list of libraries and their location required for execution
of an OpenMP parallel code on Intel Xeon Phi is:

/apps/intel/composer_xe 2013.5.192/compiler/lib/mic
libiompb.so libimf.so libsvml.so libirng.so libintlc.so0.5
Finally, to run the compiled code use:

$ ~/path_to_binary/vect-add-mic

OpenCL

OpenCL (Open Computing Language) is an open standard for general-purpose
parallel programming for diverse mix of multi-core CPUs, GPU coprocessors,
and other parallel processors. OpenCL provides a flexible execution model and
uniform programming environment for software developers to write portable
code for systems running on both the CPU and graphics processors or accelera-
tors like the Intel® Xeon Phi.

On Anselm OpenCL is installed only on compute nodes with MIC accelerator,
therefore OpenCL code can be compiled only on these nodes.

module load opencl-sdk opencl-rt

Always load “opencl-sdk” (providing devel files like headers) and “opencl-rt”
(providing dynamic library libOpenCL.so) modules to compile and link OpenCL
code. Load “opencl-rt” for running your compiled code.

There are two basic examples of OpenCL code in the following directory:
/apps/intel/opencl-examples/

First example “CapsBasic” detects OpenCL compatible hardware, here CPU
and MIC, and prints basic information about the capabilities of it.

/apps/intel/opencl-examples/CapsBasic/capsbasic

To compile and run the example copy it to your home directory, get a PBS
interactive session on of the nodes with MIC and run make for compilation.
Make files are very basic and shows how the OpenCL code can be compiled on
Anselm.

$ cp /apps/intel/opencl-examples/CapsBasic/* .
$ gqsub -I -q gmic -A NONE-0-0
$ make

The compilation command for this example is:
$ g++ capsbasic.cpp -10penCL -o capsbasic -I/apps/intel/opencl/include/
After executing the complied binary file, following output should be displayed.

./capsbasic

Number of available platforms: 1

Platform names:

[0] Intel(R) OpenCL [Selected]

Number of devices available for each type:
CL_DEVICE_TYPE_CPU: 1
CL_DEVICE_TYPE_GPU: O
CL_DEVICE_TYPE_ACCELERATOR: 1

** Detailed information for each device *x**
CL_DEVICE_TYPE_CPU[O0]

CL_DEVICE_NAME: Intel(R) Xeon(R) CPU E5-2470 O @ 2.30GHz
CL_DEVICE_AVAILABLE: 1

CL_DEVICE_TYPE_ACCELERATOR[O]
CL_DEVICE_NAME: Intel(R) Many Integrated Core Acceleration Card
CL_DEVICE_AVAILABLE: 1

10

More information about this example can be found on Intel website: http://
software.intel.com/en-us/vcsource/samples/caps-basic/

The second example that can be found in “/apps/intel/opencl-examples” >di-
rectory is General Matrix Multiply. You can follow the the same procedure to
download the example to your directory and compile it.

$ cp -r /apps/intel/opencl-examples/* .
$ gsub -I -q gmic -A NONE-0-0

$ cd GEMM

$ make

The compilation command for this example is:
$ g++ cmdoptions.cpp gemm.cpp ../common/basic.cpp ../common/cmdparser.cpp ../common/oclobject

To see the performance of Intel Xeon Phi performing the DGEMM run the
example as follows:

./gemm -d 1
Platforms (1):

[0] Intel(R) OpenCL [Selected]
Devices (2):

[0] Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz

[1] Intel(R) Many Integrated Core Acceleration Card [Selected]
Build program options: "-DT=float -DTILE_SIZE_M=1 -DTILE_GROUP_M=16 -DTILE_SIZE_N=128 -DTILE_G
Running gemm_nn kernel with matrix size: 3968x3968
Memory row stride to ensure necessary alignment: 15872 bytes
Size of memory region for one matrix: 62980096 bytes
Using alpha = 0.57599 and beta = 0.872412

Host time: 0.292953 sec.
Host perf: 426.635 GFLOPS
Host time: 0.293334 sec.
Host perf: 426.081 GFLOPS

Please note: GNU compiler is used to compile the OpenCL codes for Intel MIC.
You do not need to load Intel compiler module.

MPI

Environment setup and compilation

Again an MPI code for Intel Xeon Phi has to be compiled on a compute node
with accelerator and MPSS software stack installed. To get to a compute node
with accelerator use:

$ gsub -I -q gmic -A NONE-0-0

11

http://software.intel.com/en-us/vcsource/samples/caps-basic/
http://software.intel.com/en-us/vcsource/samples/caps-basic/

The only supported implementation of MPI standard for Intel Xeon Phi is Intel
MPI. To setup a fully functional development environment a combination of
Intel compiler and Intel MPI has to be used. On a host load following modules
before compilation:

$ module load intel/13.5.192 impi/4.1.1.036

To compile an MPI code for host use:

$ mpiicc -xhost -o mpi-test mpi-test.c

To compile the same code for Intel Xeon Phi architecture use:
$ mpiicc -mmic -o mpi-test-mic mpi-test.c

An example of basic MPI version of “hello-world” example in C language, that
can be executed on both host and Xeon Phi is (can be directly copy and pasted
to a .c file)

#include <stdio.h>

#include <mpi.h>

int main (argc, argv)
int argc;
char *argv[];

int rank, size;

int len;
char node[MPI_MAX_PROCESSOR_NAME] ;

MPI_Init (&argc, &argv); /* starts MPI */
MPI_Comm_rank (MPI_COMM_WORLD, &rank) ; /* get current process id */
MPI_Comm_size (MPI_COMM_WORLD, &size); /* get number of processes */

MPI_Get_processor_name(node,&len);

printf("Hello world from process J%d of %d on host %s n", rank, size, node);
MPI_Finalize();
return O;

MPI programming models

Intel MPI for the Xeon Phi coprocessors offers different MPI programming mod-
els:

Host-only model** - all MPI ranks reside on the host. The coprocessors can be
used by using offload pragmas. (Using MPI calls inside offloaded code is not

12

supported.)**

1**

Coprocessor-only model** - all MPI ranks reside only on the coprocessors.

Symmetric model** - the MPI ranks reside on both the host and the coprocessor.
Most general MPI case.

Host-only model

In this case all environment variables are set by modules, so to execute the
compiled MPI program on a single node, use:

$ mpirun -np 4 ./mpi-test

The output should be similar to:

Hello world from process 1 of 4 on host cn207
Hello world from process 3 of 4 on host cn207

Hello world from process 2 of 4 on host cn207
Hello world from process O of 4 on host cn207

Coprocessor-only model

There are two ways how to execute an MPI code on a single coprocessor: 1.)
lunch the program using “mpirun” from the coprocessor; or 2.) lunch the task
using “mpiexec.hydra” from a host.

Execution on coprocessor**

Similarly to execution of OpenMP programs in native mode, since the envi-
ronmental module are not supported on MIC, user has to setup paths to Intel
MPI libraries and binaries manually. One time setup can be done by creating
a “.profile” file in user’s home directory. This file sets up the environment on
the MIC automatically once user access to the accelerator through the SSH.

$ vim ~/.profile

PS1='[u@h W]$
export PATH=/usr/bin:/usr/sbin:/bin:/sbin

#0penMP
export LD_LIBRARY_PATH=/apps/intel/composer_xe_2013.5.192/compiler/lib/mic:$LD_LIBRARY_PATH

#Intel MPI
export LD_LIBRARY_PATH=/apps/intel/impi/4.1.1.036/mic/1lib/:$LD_LIBRARY_PATH
export PATH=/apps/intel/impi/4.1.1.036/mic/bin/:$PATH

Please note: - this file sets up both environmental variable for both MPI and
OpenMP libraries. - this file sets up the paths to a particular version of Intel

13

MPI library and particular version of an Intel compiler. These versions have to
match with loaded modules.

To access a MIC accelerator located on a node that user is currently connected
to, use:

$ ssh micO

or in case you need specify a MIC accelerator on a particular node, use:
$ ssh cn207-micO

To run the MPI code in parallel on multiple core of the accelerator, use:
$ mpirun -np 4 ./mpi-test-mic

The output should be similar to:

on host c¢cn207-micO
on host cn207-micO
on host cn207-micO
on host cn207-micO

Hello world from process 1 of
Hello world from process 2 of
Hello world from process 3 of
Hello world from process 0O of

NN NENNENN

Execution on host

If the MPI program is launched from host instead of the coprocessor, the envi-
ronmental variables are not set using the “profile” file. Therefore user has to
specify library paths from the command line when calling “mpiexec”.

First step is to tell mpiexec that the MPI should be executed on a local acceler-
ator by setting up the environmental variable “I_MPI_MIC”

$ export I_MPI_MIC=1

Now the MPI program can be executed as:

$ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1lib/ -host micO -n 4 ~/mp:
or using mpirun

$ mpirun -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1lib/ -host micO -n 4 ~/mpi-test-I

Please note: - the full path to the binary has to specified (here: “>~/mpi-
test-mic”) - the LD LIBRARY_ PATH has to match with Intel MPI module
used to compile the MPI code

The output should be again similar to:

Hello world from process 1 of 4 on host cn207-micO
Hello world from process 2 of 4 on host cn207-micO
Hello world from process 3 of 4 on host cn207-micO
Hello world from process O of 4 on host cn207-micO

Please note that the “mpiexec.hydra” requires a file “>pmi__proxy” from Intel
MPI library to be copied to the MIC filesystem. If the file is missing please

14

contact the system administrators. A simple test to see if the file is present is
to execute:

$ ssh micO 1ls /bin/pmi_proxy
/bin/pmi_proxy

Execution on host - MPI processes distributed over multiple acceler-
ators on multiple nodes

To get access to multiple nodes with MIC accelerator, user has to use PBS to
allocate the resources. To start interactive session, that allocates 2 compute
nodes = 2 MIC accelerators run gsub command with following parameters:

$ gsub -I -q gmic -A NONE-0-0 -1 select=2:ncpus=16

$ module load intel/13.5.192 impi/4.1.1.036

This command connects user through ssh to one of the nodes immediately. To
see the other nodes that have been allocated use:

$ cat $PBS_NODEFILE
For example:

cn204.bullx
cn205.bullx

This output means that the PBS allocated nodes ¢cn204 and ¢n205, which means
that user has direct access to “cn204-mic0” and “cn-205-mic0” accelerators.

Please note: At this point user can connect to any of the allocated nodes or any
of the allocated MIC accelerators using ssh: - to connect to the second node :
** § ssh ¢n205 - to connect to the accelerator on the first node from the
first node: $ ssh ¢n204-micO** or $ ssh micO - to connect to the accelerator
on the second node from the first node: $ ssh ¢cn205-mic0

At this point we expect that correct modules are loaded and binary is compiled.
For parallel execution the mpiexec.hydra is used. Again the first step is to tell
mpiexec that the MPI can be executed on MIC accelerators by setting up the
environmental variable “I MPI MIC”

$ export I_MPI_MIC=1
The launch the MPI program use:

$ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1ib/
-genv I_MPI_FABRICS_LIST tcp
-genv I_MPI_FABRICS shm:tcp
-genv I_MPI_TCP_NETMASK=10.1.0.0/16
-host ¢cn204-micO -n 4 ~/mpi-test-mic
: —~host cn205-micO -n 6 ~/mpi-test-mic

or using mpirun:

15

$ mpirun -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1ib/
-genv I_MPI_FABRICS_LIST tcp
-genv I_MPI_FABRICS shm:tcp
-genv I_MPI_TCP_NETMASK=10.1.0.0/16
-host cn204-micO -n 4 ~/mpi-test-mic
: —~host cn205-micO -n 6 ~/mpi-test-mic

In this case four MPI processes are executed on accelerator cn204-mic and six
processes are executed on accelerator ¢n205-mic0. The sample output (sorted
after execution) is:

of 10 on host cn204-micO
of 10 on host cn204-micO
of 10 on host cn204-micO

Hello world from process 0
Hello world from process 1
Hello world from process 2
Hello world from process 3 of 10 on host cn204-micO
Hello world from process 4 of 10 on host cn205-micO
Hello world from process 5 of 10 on host cn205-micO
Hello world from process 6 of 10 on host cn205-micO
Hello world from process 7 of 10 on host cn205-micO
Hello world from process 8 of 10 on host cn205-micO
Hello world from process 9 of 10 on host cn205-micO

The same way MPI program can be executed on multiple hosts:

$ mpiexec.hydra -genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1ib/
-genv I_MPI_FABRICS_LIST tcp
-genv I_MPI_FABRICS shm:tcp
-genv I_MPI_TCP_NETMASK=10.1.0.0/16
-host cn204 -n 4 ~/mpi-test
: -~host cn205 -n 6 ~/mpi-test

Symmetric model

In a symmetric mode MPI programs are executed on both host computer(s)
and MIC accelerator(s). Since MIC has a different architecture and requires
different binary file produced by the Intel compiler two different files has to be
compiled before MPI program is executed.

In the previous section we have compiled two binary files, one for hosts “mpi-
test” and one for MIC accelerators “mpi-test-mic”. These two binaries can
be executed at once using mpiexec.hydra:

$ mpiexec.hydra

-genv I_MPI_FABRICS_LIST tcp

-genv I_MPI_FABRICS shm:tcp

-genv I_MPI_TCP_NETMASK=10.1.0.0/16

-genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1ib/
-host cn205 -n 2 ~/mpi-test

16

: —~host cn205-micO -n 2 ~/mpi-test-mic

In this example the first two parameters (line 2 and 3) sets up required environ-
ment variables for execution. The third line specifies binary that is executed on
host (here ¢n205) and the last line specifies the binary that is execute on the
accelerator (here cn205-mic0).

The output of the program is:

Hello world from process O of 4 on host cn205
Hello world from process 1 of 4 on host cn205
Hello world from process 2 of 4 on host cn205-micO
Hello world from process 3 of 4 on host cn205-micO

The execution procedure can be simplified by using the mpirun command with
the machine file a a parameter. Machine file contains list of all nodes and
accelerators that should used to execute MPI processes.

An example of a machine file that uses 2 >hosts (cn205 and cn206) and 2
accelerators (cn205-mic0O and ¢cn206-mic0) to run 2 MPI processes on each
of them:

$ cat hosts_file_mix
cn205:2

cn205-mic0:2

cn206:2

cn206-mic0:2

In addition if a naming convention is set in a way that the name of the
binary for host is “bin_name” and the name of the binary for the
accelerator is “bin__name-mic” then by setting up the environment vari-
able I_ MPI__MIC_POSTFIX to “-mic” user do not have to specify the
names of booth binaries. In this case mpirun needs just the name of the host
binary file (i.e. “mpi-test”) and uses the suffix to get a name of the binary for
accelerator (i..e. “mpi-test-mic”).

$ export I_MPI_MIC_POSTFIX=-mic

>To run the MPI code using mpirun and the machine file “hosts_file_ mix”
use:

$ mpirun

-genv I_MPI_FABRICS shm:tcp
-genv LD_LIBRARY_PATH /apps/intel/impi/4.1.1.036/mic/1lib/
-genv I_MPI_FABRICS_LIST tcp
-genv I_MPI_FABRICS shm:tcp
-genv I_MPI_TCP_NETMASK=10.1.0.0/16
-machinefile hosts_file_mix
~/mpi-test

17

A possible output of the MPI “hello-world” example executed on two hosts and
two accelerators is:

Hello world from process O of 8 on host cn204
Hello world from process 1 of 8 on host cn204
Hello world from process 2 of 8 on host cn204-micO
Hello world from process 3 of 8 on host cn204-micO
Hello world from process 4 of 8 on host cn205
Hello world from process 5 of 8 on host cn205
Hello world from process 6 of 8 on host cn205-micO
Hello world from process 7 of 8 on host cn205-micO

Please note: At this point the MPI communication between MIC accelerators
on different nodes uses 1Gb Ethernet only.

Using the PBS automatically generated node-files

PBS also generates a set of node-files that can be used instead of manually
creating a new one every time. Three node-files are genereated:

Host only node-file: - /lscratch/PBS;OBID /nodefile—cnMIConlynode—
file : & — /lscratch/{PBS_JOBID}/nodefile-mic Host and MIC node-file: -
/1scratch/${PBS_ JOBID} /nodefile-mix

Please note each host or accelerator is listed only per files. User has to specify
how many jobs should be executed per node using “-n” parameter of the mpirun
command.

Optimization

For more details about optimization techniques please read Intel document Op-
timization and Performance Tuning for Intel® Xeon Phi™ Coprocessors

18

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization
http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization

	Intel Xeon Phi
	Intel Utilities for Xeon Phi
	Offload Mode
	Parallelization in Offload Mode Using OpenMP

	Automatic Offload using Intel MKL Library
	Automatic offload example

	Native Mode
	Execution of the Program in Native Mode on Intel Xeon Phi

	OpenCL
	MPI
	Environment setup and compilation
	MPI programming models
	Host-only model
	Coprocessor-only model
	Symmetric model

	Optimization

