Virtualization

Running virtual machines on compute nodes

Introduction

There are situations when Anselm’s environment is not suitable for user needs.

o Application requires different operating system (e.g Windows), application
is not available for Linux

o Application requires different versions of base system libraries and tools

 Application requires specific setup (installation, configuration) of complex
software stack

« Application requires privileged access to operating system

e .. and combinations of above cases

We offer solution for these cases - virtualization. Anselm’s environment gives
the possibility to run virtual machines on compute nodes. Users can create their
own images of operating system with specific software stack and run instances
of these images as virtual machines on compute nodes. Run of virtual machines
is provided by standard mechanism of Resource Allocation and Job Execution.

Solution is based on QEMU-KVM software stack and provides hardware-assisted
x86 virtualization.

Limitations

Anselm’s infrastructure was not designed for virtualization. Anselm’s environ-
ment is not intended primary for virtualization, compute nodes, storages and
all infrastructure of Anselm is intended and optimized for running HPC jobs,
this implies suboptimal configuration of virtualization and limitations.

Anselm’s virtualization does not provide performance and all features of native
environment. There is significant performance hit (degradation) in I/O perfor-
mance (storage, network). Anselm’s virtualization is not suitable for I/O (disk,
network) intensive workloads.

Virtualization has also some drawbacks, it is not so easy to setup efficient solu-
tion.

Solution described in chapter HOWTO is suitable for single node tasks, does
not introduce virtual machine clustering.

Please consider virtualization as last resort solution for your needs.

Please consult use of virtualization with IT4Innovation’s support.

../../resource-allocation-and-job-execution/introduction.html
virtualization.html#howto

For running Windows application (when source code and Linux native appli-
cation are not available) consider use of Wine, Windows compatibility layer.
Many Windows applications can be run using Wine with less effort and better
performance than when using virtualization.

Licensing

IT4Innovations does not provide any licenses for operating systems and software
of virtual machines. Users are (> in accordance with Acceptable use policy
document) fully responsible for licensing all software running in virtual machines
on Anselm. Be aware of complex conditions of licensing software in virtual
environments.

Users are responsible for licensing OS e.g. MS Windows and all software running
in their virtual machines.

HOWTO
Virtual Machine Job Workflow

We propose this job workflow:
Workflow](virtualization-job-workflow “Virtualization Job Workflow”)

Our recommended solution is that job script creates distinct shared job directory,
which makes a central point for data exchange between Anselm’s environment,
compute node (host) (e.g HOME, SCRATCH, local scratch and other local or
cluster filesystems) and virtual machine (guest). Job script links or copies input
data and instructions what to do (run script) for virtual machine to job directory
and virtual machine process input data according instructions in job directory
and store output back to job directory. We recommend, that virtual machine
is running in so called snapshot mode, image is immutable - image does not
change, so one image can be used for many concurrent jobs.

Procedure

Prepare image of your virtual machine

Optimize image of your virtual machine for Anselm’s virtualization
Modify your image for running jobs

Create job script for executing virtual machine

Run jobs

U o=

http://www.it4i.cz/acceptable-use-policy.pdf
http://www.it4i.cz/acceptable-use-policy.pdf
virtualization.html#snapshot-mode

Prepare image of your virtual machine

You can either use your existing image or create new image from scratch.
QEMU currently supports these image types or formats:

e raw

e cloop

e COW

e (COW

e qcow2

e vmdk - VMware 3 & 4, or 6 image format, for exchanging images with
that product

e vdi- VirtualBox 1.1 compatible image format, for exchanging images with
VirtualBox.

You can convert your existing image using qemu-img convert command. Sup-
ported formats of this command are: blkdebug blkverify bochs cloop cow dmg
file ftp ftps host_cdrom host_ device host_ floppy http https nbd parallels qcow
qcow?2 qged raw sheepdog tftp vdi vhdx vimmdk vpc vvfat.

We recommend using advanced QEMU native image format qcow?2.

More about QEMU Images

Optimize image of your virtual machine

Use virtio devices (for disk/drive and network adapter) and install virtio drivers
(paravirtualized drivers) into virtual machine. There is significant performance
gain when using virtio drivers. For more information see Virtio Linux and Virtio
Windows.

Disable all
unnecessary services and tasks. Restrict all unnecessary operating system oper-
ations.

Remove all
unnecessary software and files.

Remove all paging space, swap files, partitions, etc.

Shrink your image. (It is recommended to zero all free space and reconvert
image using gemu-img.)

Modify your image for running jobs

Your image should run some kind of operating system startup script. Startup
script should run application and when application exits run shutdown or quit
virtual machine.

http://en.wikibooks.org/wiki/QEMU/Images
http://www.linux-kvm.org/page/Virtio
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

We recommend, that startup script

maps Job Directory from host (from compute node) runs script (we call it “run
script”) from Job Directory and waits for application’s exit - for management
purposes if run script does not exist wait for some time period (few minutes)

shutdowns/quits OS For Windows operating systems we suggest using Local
Group Policy Startup script, for Linux operating systems rc.local, runlevel init

script or similar service.
Example startup script for Windows virtual machine:

Qecho off

set LOG=c:startup.log

set MAPDRIVE=z:

set SCRIPT=YMAPDRIVEY,run.bat
set TIMEOUT=300

echo %DATEY, %TIME), Running startup script>},L0G%

rem Mount share

echo %DATEY, ,TIME/, Mounting shared drive>%L0G%
net use z: 10.0.2.4gemu >%L0OGY% 2>&1

dir z: >}L0G) 2>&1

echo. >%L0OG%

if exist %MAPDRIVEY, (

echo %DATEY, %TIME), The drive "}MAPDRIVEY" exists>%L0GY%

if exist %SCRIPTY (

echo YDATE}, TIMEY, The script file "¥%SCRIPT%"exists>%L0G%
echo %DATEY %TIMEY, Running script %SCRIPTY%>%L0OGY%

set TIMEQOUT=0
call %SCRIPTY
) else (

echo Y.DATEY, %TIME), The script file "/ SCRIPTY"does not exist>%L0G%

) else (

echo %DATEY, %TIME), The drive "}MAPDRIVEY" does not exist>%L0GY%

)
echo. >Y%L0OGY%

timeout /T %TIMEQUTY

echo Y%DATEY, %TIMEY% Shut down>%L0G%
shutdown /s /t O

Example startup script maps shared job script as drive z: and looks for run
script called run.bat. If run script is found it is run else wait for 5 minutes, then
shutdown virtual machine.

Create job script for executing virtual machine

Create job script according recommended
Virtual Machine Job Workflow.
Example job for Windows virtual machine:

#/bin/sh
JOB_DIR=/scratch/$USER/win/${PBS_JOBID}

#Virtual machine settings
VM_IMAGE=~/work/img/win.img
VM_MEMORY=49152

VM_SMP=16

Prepare job dir

mkdir -p ${JOB_DIR} && cd ${JOB_DIR} || exit 1
1n -s ~/work/win .

1n -s /scratch/$USER/data .

1n -s ~/work/win/script/run/run-appl.bat run.bat

Run virtual machine
export TMPDIR=/lscratch/${PBS_JOBID}
module add gemu
gemu-system-x86_64
—enable-kvm
—-cpu host
-smp ${VM_SMP}
-m ${VM_MEMORY}
-vga std
-localtime
-usb -usbdevice tablet
-device virtio-net-pci,netdev=netO
-netdev user,id=net0,smb=${JOB_DIR},hostfwd=tcp::3389-:3389
-drive file=${VM_IMAGE},media=disk,if=virtio
—-snapshot
-nographic

Job script links application data (win), input data (data) and run script
(run.bat) into job directory and runs virtual machine.

virtualization.html#virtual-machine-job-workflow

Example run script (run.bat) for Windows virtual machine:

z:
cd winappl
call application.bat z:data z:output

Run script runs application from shared job directory (mapped as drive z:),
process input data (z:data) from job directory and store output to job directory
(z:output).

Run jobs

Run jobs as usual, see Resource Allocation and Job Execution. Use only full
node allocation for virtualization jobs.

Running Virtual Machines

Virtualization is enabled only on compute nodes, virtualization does not work
on login nodes.

Load QEMU environment module:

$ module add gemu

Get help

$ man gemu

Run virtual machine (simple)

$ gemu-system-x86_64 -hda linux.img -enable-kvm -cpu host -smp 16 -m 32768 -vga std -vnc :0

$ gemu-system-x86_64 -hda win.img -enable-kvm -cpu host -smp 16 -m 32768 -vga std -localtime -u

You can access virtual machine by VNC viewer (option -vnc) connecting to IP
address of compute node. For VNC you must use VPN network.

Install virtual machine from iso file

$ gemu-system-x86_64 -hda linux.img -enable-kvm -cpu host -smp 16 -m 32768 -vga std -cdrom linux

$ gemu-system-x86_64 -hda win.img -enable-kvm -cpu host -smp 16 -m 32768 -vga std -localtime -

Run virtual machine using optimized devices, user network backend with sharing
and port forwarding, in snapshot mode

$ gemu-system-x86_64 -drive file=linux.img,media=disk,if=virtio -enable-kvm -cpu host -smp 16 -

$ gemu-system-x86_64 -drive file=win.img,media=disk,if=virtio —enable-kvm —cpu host -smp 16 -m

../../resource-allocation-and-job-execution/introduction.html
../../accessing-the-cluster/vpn-access.html

Thanks to port forwarding you can access virtual machine via SSH (Linux) or
RDP (Windows) connecting to IP address of compute node (and port 2222 for
SSH). You must use VPN network.

Keep in mind, that if you use virtio devices, you must have virtio drivers installed
on your virtual machine.

Networking and data sharing

For networking virtual machine we suggest to use (default) user network backend
(sometimes called slirp). This network backend NATs virtual machines and
provides useful services for virtual machines as DHCP, DNS, SMB sharing, port
forwarding.

In default configuration IP network 10.0.2.0/24 is used, host has TP address
10.0.2.2, DNS server 10.0.2.3, SMB server 10.0.2.4 and virtual machines ob-
tain address from range 10.0.2.15-10.0.2.31. Virtual machines have access to
Anselm’s network via NAT on compute node (host).

Simple network setup
$ qemu-system-x86_64 ... -net nic -net user
(It is default when no -net options are given.)

Simple network setup with sharing and port forwarding (obsolete but simpler
syntax, lower performance)

$ gemu-system-x86_64 ... -net nic -net user,smb=/scratch/$USER/tmp,hostfwd=tcp: :3389-:3389
Optimized network setup with sharing and port forwarding

$ gemu-system-x86_64 ... -device virtio-net-pci,netdev=netO -netdev user,id=net0,smb=/scratch,

Advanced networking

Internet access**

Sometime your virtual machine needs access to internet (install software, up-
dates, software activation, etc). We suggest solution using Virtual Distributed
Ethernet (VDE) enabled QEMU with SLIRP running on login node tunnelled
to compute node. Be aware, this setup has very low performance, the worst
performance of all described solutions.

Load VDE enabled QEMU environment module (unload standard QEMU mod-
ule first if necessary).

$ module add gemu/2.1.2-vde2

Create virtual network switch.

../../accessing-the-cluster/vpn-access.html

$ vde_switch -sock /tmp/swO -mgmt /tmp/sw0.mgmt -daemon

Run SLIRP daemon over SSH tunnel on login node and connect it to virtual
network switch.

$ dpipe vde_plug /tmp/swO = ssh loginl $VDE2_DIR/bin/slirpvde -s - --dhcp &

Run gemu using vde network backend, connect to created virtual switch.

Basic setup (obsolete syntax)

$ gemu-system-x86_64 ... -net nic -net vde,sock=/tmp/sw0

Setup using virtio device (obsolete syntax)

$ gemu-system-x86_64 ... —net nic,model=virtio -net vde,sock=/tmp/sw0

Optimized setup

$ gemu-system-x86_64 ... —-device virtio-net-pci,netdev=net0 -netdev vde,id=net0,sock=/tmp/sw0
TAP interconnect**

Both user and vde network backend have low performance. For fast interconnect
(10Gbps and more) of compute node (host) and virtual machine (guest) we
suggest using Linux kernel TAP device.

Cluster Anselm provides TAP device tap0 for your job. TAP interconnect does
not provide any services (like NAT, DHCP, DNS, SMB, etc.) just raw network-
ing, so you should provide your services if you need them.

Run gemu with TAP network backend:

$ gemu-system-x86_64 ... -device virtio-net-pci,netdev=netl
-netdev tap,id=netl,ifname=tap0,script=no,downscript=no

Interface tap0 has IP address 192.168.1.1 and network mask 255.255.255.0 (/24).
In virtual machine use IP address from range 192.168.1.2-192.168.1.254. For
your convenience some ports on tap0 interface are redirected to higher numbered
ports, so you as non-privileged user can provide services on these ports.

Redirected ports:

e DNS udp/53->udp/3053, tcp/53->tcp3053
« DHCP udp/67->udp3067
e SMB tcp/139->tcp3139, tcp/445->tcp3445).

You can configure IP address of virtual machine statically or dynamically. For
dynamic addressing provide your DHCP server on port 3067 of tap0O interface,
you can also provide your DNS server on port 3053 of tap0 interface for example:

$ dnsmasq --interface tapO --bind-interfaces -p 3053 --dhcp-alternate-port=3067,68 --dhcp-rang

You can also provide your SMB services (on ports 3139, 3445) to obtain high
performance data sharing.

Example smb.conf (not optimized)

[globall
socket address=192.168.1.1
smb ports = 3445 3139

private dir=/tmp/qemu-smb

pid directory=/tmp/qemu-smb
lock directory=/tmp/gemu-smb
state directory=/tmp/gqemu-smb
ncalrpc dir=/tmp/gemu-smb/ncalrpc
log file=/tmp/qemu-smb/log.smbd
smb passwd file=/tmp/gemu-smb/smbpasswd
security = user

map to guest = Bad User

unix extensions = no

load printers = no

printing = bsd

printcap name = /dev/null
disable spoolss = yes

log level =1

guest account = USER

[qemul

path=/scratch/USER/tmp

read only=no

guest ok=yes

writable=yes

follow symlinks=yes

wide links=yes

force user=USER

(Replace USER with your login name.)
Run SMB services

smbd -s /tmp/qemu-smb/smb.conf

Virtual machine can of course have more than one network interface controller,
virtual machine can use more than one network backend. So, you can combine
for example use network backend and TAP interconnect.

Snapshot mode

In snapshot mode image is not written, changes are written to temporary file
(and discarded after virtual machine exits). It is strongly recommended

mode for running your jobs. Set TMPDIR environment variable to local
scratch directory for placement temporary files.

$ export TMPDIR=/lscratch/${PBS_JOBID}
$ gemu-system-x86_64 ... -snapshot

Windows guests

For Windows guests we recommend these options, life will be easier:

$ gemu-system-x86_64 ... -localtime -usb -usbdevice tablet

10

	Virtualization
	Introduction
	Limitations
	Licensing
	 HOWTO
	Virtual Machine Job Workflow
	Procedure
	Prepare image of your virtual machine
	Optimize image of your virtual machine
	Modify your image for running jobs
	Create job script for executing virtual machine
	Run jobs
	Running Virtual Machines
	Networking and data sharing
	Advanced networking
	Snapshot mode
	Windows guests

