
Job submission and execution

Job Submission

When allocating computational resources for the job, please specify

1. suitable queue for your job (default is qprod)
2. number of computational nodes required
3. number of cores per node required
4. maximum wall time allocated to your calculation, note that jobs exceeding

maximum wall time will be killed
5. Project ID
6. Jobscript or interactive switch

Use the qsub command to submit your job to a queue for allocation of the
computational resources.

Submit the job using the qsub command:

$ qsub -A Project_ID -q queue -l select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms]
jobscript

The qsub submits the job into the queue, in another words the qsub command
creates a request to the PBS Job manager for allocation of specified resources.
The resources will be allocated when available, subject to above described poli-
cies and constraints. After the resources are allocated the jobscript or
interactive shell is executed on first of the allocated nodes.

PBS statement nodes (qsub -l nodes=nodespec) is not supported on Salomon
cluster.**

Job Submission Examples

$ qsub -A OPEN-0-0 -q qprod -l select=64:ncpus=24,walltime=03:00:00
./myjob

In this example, we allocate 64 nodes, 24 cores per node, for 3 hours. We allocate
these resources via the qprod queue, consumed resources will be accounted to the
Project identified by Project ID OPEN-0-0. Jobscript myjob will be executed
on the first node in the allocation.

$ qsub -q qexp -l select=4:ncpus=24 -I

In this example, we allocate 4 nodes, 24 cores per node, for 1 hour. We allocate
these resources via the qexp queue. The resources will be available interactively

1

$ qsub -A OPEN-0-0 -q qlong -l select=10:ncpus=24 ./myjob

In this example, we allocate 10 nodes, 24 cores per node, for 72 hours. We
allocate these resources via the qlong queue. Jobscript myjob will be executed
on the first node in the allocation.

$ qsub -A OPEN-0-0 -q qfree -l select=10:ncpus=24 ./myjob

In this example, we allocate 10 nodes, 24 cores per node, for 12 hours. We
allocate these resources via the qfree queue. It is not required that the project
OPEN-0-0 has any available resources left. Consumed resources are still ac-
counted for. Jobscript myjob will be executed on the first node in the allocation.

Intel Xeon Phi co-processors

To allocate a node with Xeon Phi co-processor, user needs to specify that in
select statement. Currently only allocation of whole nodes with both Phi cards
as the smallest chunk is supported. Standard PBSPro approach through at-
tributes “accelerator”, “naccelerators” and “accelerator_model” is used. The
“accelerator_model” can be omitted, since on Salomon only one type of acceler-
ator type/model is available.

The absence of specialized queue for accessing the nodes with cards means,
that the Phi cards can be utilized in any queue, including qexp for test-
ing/experiments, qlong for longer jobs, qfree after the project resources have
been spent, etc. The Phi cards are thus also available to PRACE users. There’s
no need to ask for permission to utilize the Phi cards in project proposals.

$ qsub -A OPEN-0-0 -I -q qprod -l select=1:ncpus=24:accelerator=True:naccelerators=2:accelerator_model=phi7120
./myjob

In this example, we allocate 1 node, with 24 cores, with 2 Xeon Phi 7120p cards,
running batch job ./myjob. The default time for qprod is used, e. g. 24 hours.

$ qsub -A OPEN-0-0 -I -q qlong -l select=4:ncpus=24:accelerator=True:naccelerators=2
-l walltime=56:00:00 -I

In this example, we allocate 4 nodes, with 24 cores per node (totalling 96 cores),
with 2 Xeon Phi 7120p cards per node (totalling 8 Phi cards), running interactive
job for 56 hours. The accelerator model name was omitted.

UV2000 SMP

14 NUMA nodes available on UV2000 Per NUMA node allocation. Jobs are
isolated by cpusets.

2

The UV2000 (node uv1) offers 3328GB of RAM and 112 cores, distributed in 14
NUMA nodes. A NUMA node packs 8 cores and approx. 236GB RAM. In the
PBS the UV2000 provides 14 chunks, a chunk per NUMA node (see Resource
allocation policy). The jobs on UV2000 are isolated from each other by cpusets,
so that a job by one user may not utilize CPU or memory allocated to a job
by other user. Always, full chunks are allocated, a job may only use resources
of the NUMA nodes allocated to itself.

$ qsub -A OPEN-0-0 -q qfat -l select=14 ./myjob

In this example, we allocate all 14 NUMA nodes (corresponds to 14 chunks), 112
cores of the SGI UV2000 node for 72 hours. Jobscript myjob will be executed
on the node uv1.

$ qsub -A OPEN-0-0 -q qfat -l select=1:mem=2000GB ./myjob

In this example, we allocate 2000GB of memory on the UV2000 for 72 hours.
By requesting 2000GB of memory, 10 chunks are allocated. Jobscript myjob
will be executed on the node uv1.

Useful tricks

All qsub options may be saved directly into the jobscript. In such a case, no
options to qsub are needed.

$ qsub ./myjob

By default, the PBS batch system sends an e-mail only when the job is aborted.
Disabling mail events completely can be done like this:

$ qsub -m n

Advanced job placement

Placement by name

Specific nodes may be allocated via the PBS

qsub -A OPEN-0-0 -q qprod -l select=1:ncpus=24:host=r24u35n680+1:ncpus=24:host=r24u36n681
-I

Or using short names

qsub -A OPEN-0-0 -q qprod -l select=1:ncpus=24:host=cns680+1:ncpus=24:host=cns681
-I

3

resources-allocation-policy.html
resources-allocation-policy.html
job-submission-and-execution.html#PBSsaved

In this example, we allocate nodes r24u35n680 and r24u36n681, all 24 cores
per node, for 24 hours. Consumed resources will be accounted to the Project
identified by Project ID OPEN-0-0. The resources will be available interactively.

Placement by |Hypercube|dimension|

Nodes may be selected via the PBS resource attribute ehc_[1-7]d .

|Hypercube|dimension|

————— |—|—|——————————— |1D|ehc_1d| |2D|ehc_2d|
|3D|ehc_3d| |4D|ehc_4d| |5D|ehc_5d| |6D|ehc_6d| |7D|ehc_7d|

$ qsub -A OPEN-0-0 -q qprod -l select=4:ncpus=24 -l place=group=ehc_1d
-I

In this example, we allocate 4 nodes, 24 cores, selecting only the nodes with
hypercube dimension 1.

Placement by IB switch

Groups of computational nodes are connected to chassis integrated Infiniband
switches. These switches form the leaf switch layer of the Infiniband network
. Nodes sharing the leaf switch can communicate most efficiently. Sharing
the same switch prevents hops in the network and provides for unbiased, most
efficient network communication.

There are at most 9 nodes sharing the same Infiniband switch.

Infiniband switch list:

$ qmgr -c "print node @a" | grep switch set node r4i1n11
resources_available.switch = r4i1s0sw1 set node r2i0n0 resources_available.switch
= r2i0s0sw1 set node r2i0n1 resources_available.switch = r2i0s0sw1
...

List of all nodes per Infiniband switch:

$ qmgr -c "print node @a" | grep r36sw3 set node r36u31n964
resources_available.switch = r36sw3 set node r36u32n965 resources_available.switch
= r36sw3 set node r36u33n966 resources_available.switch =
r36sw3 set node r36u34n967 resources_available.switch = r36sw3
set node r36u35n968 resources_available.switch = r36sw3 set
node r36u36n969 resources_available.switch = r36sw3 set node
r37u32n970 resources_available.switch = r36sw3 set node r37u33n971
resources_available.switch = r36sw3 set node r37u34n972 resources_available.switch
= r36sw3

4

../network-1/7d-enhanced-hypercube.html
../network-1.html

Nodes sharing the same switch may be selected via the PBS resource attribute
switch.

We recommend allocating compute nodes of a single switch when best possible
computational network performance is required to run the job efficiently:

$ qsub -A OPEN-0-0 -q qprod -l select=9:ncpus=24:switch=r4i1s0sw1
./myjob

In this example, we request all the 9 nodes sharing the r4i1s0sw1 switch for 24
hours.

$ qsub -A OPEN-0-0 -q qprod -l select=9:ncpus=24 -l place=group=switch
./myjob

In this example, we request 9 nodes placed on the same switch using node
grouping placement for 24 hours.

HTML commented section #1 (turbo boost is to be implemented)

Job Management

Check status of your jobs using the qstat and check-pbs-jobs commands

$ qstat -a $ qstat -a -u username $ qstat -an -u username $ qstat
-f 12345.isrv5

Example:

‘ $ qstat -a

srv11: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS TSK
Memory Time S Time ————— ——– – |—|—| —— — — —— —– - —–
16287.isrv5 user1 qlong job1 6183 4 64 – 144:0 R 38:25 16468.isrv5 user1 qlong
job2 8060 4 64 – 144:0 R 17:44 16547.isrv5 user2 qprod job3x 13516 2 32 – 48:00
R 00:58 ‘

In this example user1 and user2 are running jobs named job1, job2 and job3x.
The jobs job1 and job2 are using 4 nodes, 16 cores per node each. The job1
already runs for 38 hours and 25 minutes, job2 for 17 hours 44 minutes. The job1
already consumed 6438.41 = 2458.6 core hours. The job3x already consumed
0.9632 = 30.93 core hours. These consumed core hours will be accounted on
the respective project accounts, regardless of whether the allocated cores were
actually used for computations.

Check status of your jobs using check-pbs-jobs command. Check presence of
user’s PBS jobs’ processes on execution hosts. Display load, processes. Display
job standard and error output. Continuously display (tail -f) job standard or
error output.

5

$ check-pbs-jobs --check-all $ check-pbs-jobs --print-load
--print-processes $ check-pbs-jobs --print-job-out --print-job-err
$ check-pbs-jobs --jobid JOBID --check-all --print-all $
check-pbs-jobs --jobid JOBID --tailf-job-out

Examples:

$ check-pbs-jobs --check-all JOB 35141.dm2, session_id 71995, user
user2, nodes r3i6n2,r3i6n3 Check session id: OK Check processes
r3i6n2: OK r3i6n3: No process

In this example we see that job 35141.dm2 currently runs no process on allocated
node r3i6n2, which may indicate an execution error.

$ check-pbs-jobs --print-load --print-processes JOB 35141.dm2,
session_id 71995, user user2, nodes r3i6n2,r3i6n3 Print load
r3i6n2: LOAD: 16.01, 16.01, 16.00 r3i6n3: LOAD: 0.01, 0.00, 0.01
Print processes %CPU CMD r3i6n2: 0.0 -bash r3i6n2: 0.0
/bin/bash /var/spool/PBS/mom_priv/jobs/35141.dm2.SC r3i6n2: 99.7
run-task ...

In this example we see that job 35141.dm2 currently runs process run-task on
node r3i6n2, using one thread only, while node r3i6n3 is empty, which may
indicate an execution error.

$ check-pbs-jobs --jobid 35141.dm2 --print-job-out JOB 35141.dm2,
session_id 71995, user user2, nodes r3i6n2,r3i6n3 Print job standard
output: ======================== Job start ==========================
Started at : Fri Aug 30 02:47:53 CEST 2013 Script name :
script Run loop 1 Run loop 2 Run loop 3

In this example, we see actual output (some iteration loops) of the job 35141.dm2

Manage your queued or running jobs, using the qhold, qrls, qdel,** qsig or
qalter commands

You may release your allocation at any time, using qdel command

$ qdel 12345.isrv5

You may kill a running job by force, using qsig command

$ qsig -s 9 12345.isrv5

Learn more by reading the pbs man page

$ man pbs_professional

6

Job Execution

Jobscript

Prepare the jobscript to run batch jobs in the PBS queue system

The Jobscript is a user made script, controlling sequence of commands for ex-
ecuting the calculation. It is often written in bash, other scripts may be used
as well. The jobscript is supplied to PBS qsub command as an argument and
executed by the PBS Professional workload manager.

The jobscript or interactive shell is executed on first of the allocated nodes.

‘ $ qsub -q qexp -l select=4:ncpus=24 -N Name0 ./myjob $ qstat -n -u username

isrv5: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS
TSK Memory Time S Time ————— ——– – |—|—| —— — — ——
—– - —– 15209.isrv5 username qexp Name0 5530 4 96 – 01:00 R 00:00
r21u01n577/024+r21u02n578/024+r21u03n579/024+r21u04n580/024 ‘

In this example, the nodes r21u01n577, r21u02n578, r21u03n579, r21u04n580
were allocated for 1 hour via the qexp queue. The jobscript myjob will be
executed on the node r21u01n577, while the nodes r21u02n578, r21u03n579,
r21u04n580 are available for use as well.

The jobscript or interactive shell is by default executed in home directory

‘ $ qsub -q qexp -l select=4:ncpus=24 -I qsub: waiting for job 15210.isrv5 to
start qsub: job 15210.isrv5 ready

$ pwd /home/username ‘

In this example, 4 nodes were allocated interactively for 1 hour via the qexp
queue. The interactive shell is executed in the home directory.

All nodes within the allocation may be accessed via ssh. Unallocated nodes are
not accessible to user.

The allocated nodes are accessible via ssh from login nodes. The nodes may
access each other via ssh as well.

Calculations on allocated nodes may be executed remotely via the MPI, ssh,
pdsh or clush. You may find out which nodes belong to the allocation by
reading the $PBS_NODEFILE file

‘ qsub -q qexp -l select=2:ncpus=24 -I qsub: waiting for job 15210.isrv5 to start
qsub: job 15210.isrv5 ready

$ pwd /home/username

$ sort -u $PBS_NODEFILE r2i5n6.ib0.smc.salomon.it4i.cz r4i6n13.ib0.smc.salomon.it4i.cz
r4i7n0.ib0.smc.salomon.it4i.cz r4i7n2.ib0.smc.salomon.it4i.cz

7

$ pdsh -w r2i5n6,r4i6n13,r4i7n[0,2] hostname r4i6n13: r4i6n13 r2i5n6: r2i5n6
r4i7n2: r4i7n2 r4i7n0: r4i7n0 ‘

In this example, the hostname program is executed via pdsh from the interactive
shell. The execution runs on all four allocated nodes. The same result would be
achieved if the pdsh is called from any of the allocated nodes or from the login
nodes.

Example Jobscript for MPI Calculation

Production jobs must use the /scratch directory for I/O

The recommended way to run production jobs is to change to /scratch directory
early in the jobscript, copy all inputs to /scratch, execute the calculations and
copy outputs to home directory.

‘ #!/bin/bash

change to scratch directory, exit on failure

SCRDIR=/scratch/work/user/$USER/myjob mkdir -p $SCRDIR cd $SCRDIR
|| exit

copy input file to scratch

cp $PBS_O_WORKDIR/input . cp $PBS_O_WORKDIR/mympiprog.x .

load the mpi module

module load OpenMPI

execute the calculation

mpiexec -pernode ./mympiprog.x

copy output file to home

cp output $PBS_O_WORKDIR/.

8

exit

exit ‘

In this example, some directory on the /home holds the input file input and
executable mympiprog.x . We create a directory myjob on the /scratch filesys-
tem, copy input and executable files from the /home directory where the qsub
was invoked ($PBS_O_WORKDIR) to /scratch, execute the MPI programm
mympiprog.x and copy the output file back to the /home directory. The
mympiprog.x is executed as one process per node, on all allocated nodes.

Consider preloading inputs and executables onto shared scratch before the cal-
culation starts.

In some cases, it may be impractical to copy the inputs to scratch and outputs to
home. This is especially true when very large input and output files are expected,
or when the files should be reused by a subsequent calculation. In such a case, it
is users responsibility to preload the input files on shared /scratch before the job
submission and retrieve the outputs manually, after all calculations are finished.

Store the qsub options within the jobscript. Use mpiprocs and ompthreads
qsub options to control the MPI job execution.

Example jobscript for an MPI job with preloaded inputs and executables, op-
tions for qsub are stored within the script :

‘ #!/bin/bash #PBS -q qprod #PBS -NMYJOB#PBS -l select=100:ncpus=24:mpiprocs=1:ompthreads=24
#PBS -A OPEN-0-0

change to scratch directory, exit on failure

SCRDIR=/scratch/work/user/$USER/myjob cd $SCRDIR || exit

load the mpi module

module load OpenMPI

execute the calculation

mpiexec ./mympiprog.x

9

../storage.html

exit

exit ‘

In this example, input and executable files are assumed preloaded manually
in /scratch/$USER/myjob directory. Note the mpiprocs and ompthreads**
qsub options, controlling behavior of the MPI execution. The mympiprog.x is
executed as one process per node, on all 100 allocated nodes. If mympiprog.x
implements OpenMP threads, it will run 24 threads per node.

HTML commented section #2 (examples need to be reworked)

Example Jobscript for Single Node Calculation

Local scratch directory is often useful for single node jobs. Local scratch will
be deleted immediately after the job ends. Be very careful, use of RAM disk
filesystem is at the expense of operational memory.

Example jobscript for single node calculation, using local scratch on the node:

‘ #!/bin/bash

change to local scratch directory

cd /lscratch/$PBS_JOBID || exit

copy input file to scratch

cp $PBS_O_WORKDIR/input . cp $PBS_O_WORKDIR/myprog.x .

execute the calculation

./myprog.x

copy output file to home

cp output $PBS_O_WORKDIR/.

10

../storage.html

exit

exit ‘

In this example, some directory on the home holds the input file input and ex-
ecutable myprog.x . We copy input and executable files from the home directory
where the qsub was invoked (PBSOW ORKDIR)tolocalscratch/lscratch/PBS_JOBID,
execute the myprog.x and copy the output file back to the /home directory.
The myprog.x runs on one node only and may use threads.

11

	Job submission and execution
	Job Submission
	Job Submission Examples
	Intel Xeon Phi co-processors
	UV2000 SMP
	Useful tricks

	Advanced job placement
	Placement by name
	Placement by |Hypercube|dimension|
	Placement by IB switch

	Job Management
	Job Execution
	Jobscript
	Example Jobscript for MPI Calculation

	change to scratch directory, exit on failure
	copy input file to scratch
	load the mpi module
	execute the calculation
	copy output file to home
	exit
	change to scratch directory, exit on failure
	load the mpi module
	execute the calculation
	exit
	Example Jobscript for Single Node Calculation

	change to local scratch directory
	copy input file to scratch
	execute the calculation
	copy output file to home
	exit

