
Matlab 2013-2014

Introduction

This document relates to the old versions R2013 and R2014. For MATLAB
2015, please use this documentation instead.

Matlab is available in the latest stable version. There are always two variants
of the release:

• Non commercial or so called EDU variant, which can be used for common
research and educational purposes.

• Commercial or so called COM variant, which can used also for commercial
activities. The licenses for commercial variant are much more expensive,
so usually the commercial variant has only subset of features compared to
the EDU available.

To load the latest version of Matlab load the module

$ module load matlab

By default the EDU variant is marked as default. If you need other version or
variant, load the particular version. To obtain the list of available versions use

$ module avail matlab

If you need to use the Matlab GUI to prepare your Matlab programs, you can
use Matlab directly on the login nodes. But for all computations use Matlab on
the compute nodes via PBS Pro scheduler.

If you require the Matlab GUI, please follow the general informations about
running graphical applications.

Matlab GUI is quite slow using the X forwarding built in the PBS (qsub -X), so
using X11 display redirection either via SSH or directly by xauth (please see the
“GUI Applications on Compute Nodes over VNC” part here) is recommended.

To run Matlab with GUI, use

$ matlab

To run Matlab in text mode, without the Matlab Desktop GUI environment,
use

$ matlab -nodesktop -nosplash

plots, images, etc… will be still available.

1

copy_of_matlab.html
https://docs.it4i.cz/anselm-cluster-documentation/software/numerical-languages/resolveuid/11e53ad0d2fd4c5187537f4baeedff33
https://docs.it4i.cz/anselm-cluster-documentation/software/numerical-languages/resolveuid/11e53ad0d2fd4c5187537f4baeedff33

Running parallel Matlab using Distributed Computing
Toolbox / Engine

Recommended parallel mode for running parallel Matlab on Anselm is
MPIEXEC mode. In this mode user allocates resources through PBS prior
to starting Matlab. Once resources are granted the main Matlab instance
is started on the first compute node assigned to job by PBS and workers
are started on all remaining nodes. User can use both interactive and non-
interactive PBS sessions. This mode guarantees that the data processing is not
performed on login nodes, but all processing is on compute nodes.

For the performance reasons Matlab should use system MPI. On Anselm the
supported MPI implementation for Matlab is Intel MPI. To switch to system
MPI user has to override default Matlab setting by creating new configuration
file in its home directory. The path and file name has to be exactly the same as
in the following listing:

$ vim ~/matlab/mpiLibConf.m

function [lib, extras] = mpiLibConf
%MATLAB MPI Library overloading for Infiniband Networks

mpich = '/opt/intel/impi/4.1.1.036/lib64/';

disp('Using Intel MPI 4.1.1.036 over Infiniband')

lib = strcat(mpich, 'libmpich.so');
mpl = strcat(mpich, 'libmpl.so');
opa = strcat(mpich, 'libopa.so');

extras = {};

System MPI library allows Matlab to communicate through 40Gbps Infiniband
QDR interconnect instead of slower 1Gb ethernet network.

Please note: The path to MPI library in “mpiLibConf.m” has to match with
version of loaded Intel MPI module. In this example the version 4.1.1.036 of
Iintel MPI is used by Matlab and therefore module impi/4.1.1.036 has to be
loaded prior to starting Matlab.

2

Parallel Matlab interactive session

Once this file is in place, user can request resources from PBS. Following example
shows how to start interactive session with support for Matlab GUI. For more
information about GUI based applications on Anselm see this page.

$ xhost +
$ qsub -I -v DISPLAY=$(uname -n):$(echo $DISPLAY | cut -d ':' -f 2) -A NONE-0-0 -q qexp -l select=4:ncpus=16:mpiprocs=16 -l walltime=00:30:00
-l feature__matlab__MATLAB=1

This qsub command example shows how to run Matlab with 32 workers in
following configuration: 2 nodes (use all 16 cores per node) and 16 workers =
mpirocs per node (-l select=2:ncpus=16:mpiprocs=16). If user requires to run
smaller number of workers per node then the “mpiprocs” parameter has to be
changed.

The second part of the command shows how to request all necessary licenses. In
this case 1 Matlab-EDU license and 32 Distributed Computing Engines licenses.

Once the access to compute nodes is granted by PBS, user can load following
modules and start Matlab:

cn79$ module load matlab/R2013a-EDU
cn79$ module load impi/4.1.1.036
cn79$ matlab &

Parallel Matlab batch job

To run matlab in batch mode, write an matlab script, then write a bash jobscript
and execute via the qsub command. By default, matlab will execute one matlab
worker instance per allocated core.

#!/bin/bash
#PBS -A PROJECT ID
#PBS -q qprod
#PBS -l select=2:ncpus=16:mpiprocs=16:ompthreads=1

change to shared scratch directory
SCR=/scratch/$USER/$PBS_JOBID
mkdir -p $SCR ; cd $SCR || exit

copy input file to scratch
cp $PBS_O_WORKDIR/matlabcode.m .

load modules
module load matlab/R2013a-EDU
module load impi/4.1.1.036

3

https://docs.it4i.cz/anselm-cluster-documentation/software/numerical-languages/resolveuid/11e53ad0d2fd4c5187537f4baeedff33

execute the calculation
matlab -nodisplay -r matlabcode > output.out

copy output file to home
cp output.out $PBS_O_WORKDIR/.

This script may be submitted directly to the PBS workload manager via the
qsub command. The inputs and matlab script are in matlabcode.m file, outputs
in output.out file. Note the missing .m extension in the matlab -r matlabcodefile
call, the .m must not be included. Note that the shared /scratch must
be used. Further, it is important to include quit statement at the end of
the matlabcode.m script.

Submit the jobscript using qsub

$ qsub ./jobscript

Parallel Matlab program example

The last part of the configuration is done directly in the user Matlab script
before Distributed Computing Toolbox is started.

sched = findResource('scheduler', 'type', 'mpiexec');
set(sched, 'MpiexecFileName', '/apps/intel/impi/4.1.1/bin/mpirun');
set(sched, 'EnvironmentSetMethod', 'setenv');

This script creates scheduler object “sched” of type “mpiexec” that starts work-
ers using mpirun tool. To use correct version of mpirun, the second line specifies
the path to correct version of system Intel MPI library.

Please note: Every Matlab script that needs to initialize/use matlabpool has to
contain these three lines prior to calling matlabpool(sched, …) function.

The last step is to start matlabpool with “sched” object and correct number
of workers. In this case qsub asked for total number of 32 cores, therefore the
number of workers is also set to 32.

matlabpool(sched,32);

... parallel code ...

matlabpool close

The complete example showing how to use Distributed Computing Toolbox is
show here.

sched = findResource('scheduler', 'type', 'mpiexec');
set(sched, 'MpiexecFileName', '/apps/intel/impi/4.1.1/bin/mpirun')

4

set(sched, 'EnvironmentSetMethod', 'setenv')
set(sched, 'SubmitArguments', '')
sched

matlabpool(sched,32);

n=2000;

W = rand(n,n);
W = distributed(W);
x = (1:n)';
x = distributed(x);
spmd
[~, name] = system('hostname')

 T = W*x; % Calculation performed on labs, in parallel.
 % T and W are both codistributed arrays here.
end
T;
whos % T and W are both distributed arrays here.

matlabpool close
quit

You can copy and paste the example in a .m file and execute. Note that the
matlabpool size should correspond to total number of cores available on
allocated nodes.

Non-interactive Session and Licenses

If you want to run batch jobs with Matlab, be sure to request appropriate
license features with the PBS Pro scheduler, at least the ” -l __fea-
ture__matlab__MATLAB=1” for EDU variant of Matlab. More information
about how to check the license features states and how to request them with
PBS Pro, please look here.

In case of non-interactive session please read the following information on how
to modify the qsub command to test for available licenses prior getting the
resource allocation.

Matlab Distributed Computing Engines start up time

Starting Matlab workers is an expensive process that requires certain amount
of time. For your information please see the following table:

5

../isv_licenses.html
../isv_licenses.html

|compute nodes|number of workers|start-up time[s]| |—|—|—| 16 256 1008 8 128
534 4 64 333 2 32 210

6

	Matlab 2013-2014
	Introduction
	Running parallel Matlab using Distributed Computing Toolbox / Engine
	Parallel Matlab interactive session
	Parallel Matlab batch job
	Parallel Matlab program example
	Non-interactive Session and Licenses
	Matlab Distributed Computing Engines start up time

