
Capacity computing

Introduction

In many cases, it is useful to submit huge (>100+) number of computational
jobs into the PBS queue system. Huge number of (small) jobs is one of the
most effective ways to execute embarrassingly parallel calculations, achieving
best runtime, throughput and computer utilization.

However, executing huge number of jobs via the PBS queue may strain the sys-
tem. This strain may result in slow response to commands, inefficient scheduling
and overall degradation of performance and user experience, for all users. For
this reason, the number of jobs is limited to 100 per user, 1000 per job
array

Please follow one of the procedures below, in case you wish to schedule more
than >100 jobs at a time.

• Use Job arrays when running huge number of multithread (bound to one
node only) or multinode (multithread across several nodes) jobs

• Use GNU parallel when running single core jobs
• CombineGNU parallel with Job arrays when running huge number of

single core jobs

Policy
1. A user is allowed to submit at most 100 jobs. Each job may be a job

array.
2. The array size is at most 1000 subjobs.

Job arrays

Huge number of jobs may be easily submitted and managed as a job array.

A job array is a compact representation of many jobs, called subjobs. The
subjobs share the same job script, and have the same values for all attributes
and resources, with the following exceptions:

• each subjob has a unique index, $PBS_ARRAY_INDEX
• job Identifiers of subjobs only differ by their indices
• the state of subjobs can differ (R,Q,…etc.)

All subjobs within a job array have the same scheduling priority and schedule as
independent jobs. Entire job array is submitted through a single qsub command
and may be managed by qdel, qalter, qhold, qrls and qsig commands as a single
job.

1

capacity-computing.html#job-arrays
capacity-computing.html#shared-jobscript-on-one-node
capacity-computing.html#gnu-parallel
capacity-computing.html#combining-job-arrays-and-gnu-parallel
capacity-computing.html#job-arrays
capacity-computing.html#job-arrays


Shared jobscript

All subjobs in job array use the very same, single jobscript. Each subjob runs its
own instance of the jobscript. The instances execute different work controlled
by $PBS_ARRAY_INDEX variable.

Example:

Assume we have 900 input files with name beginning with “file” (e. g. file001,
…, file900). Assume we would like to use each of these input files with program
executable myprog.x, each as a separate job.

First, we create a tasklist file (or subjobs list), listing all tasks (subjobs) - all
input files in our example:

$ find . -name 'file*' > tasklist

Then we create jobscript:

‘ #!/bin/bash #PBS -A PROJECT_ID #PBS -q qprod #PBS -l se-
lect=1:ncpus=16,walltime=02:00:00

change to local scratch directory

SCR=/lscratch/$PBS_JOBID mkdir -p $SCR ; cd $SCR || exit

get individual tasks from tasklist with index from
PBS JOB ARRAY

TASK=$(sed -n ”${PBS_ARRAY_INDEX}p” $PBS_O_WORKDIR/tasklist)

copy input file and executable to scratch

cp PBSOW ORKDIR/TASK input ; cp $PBS_O_WORKDIR/myprog.x .

execute the calculation

./myprog.x < input > output

2



copy output file to submit directory

cp output PBSOW ORKDIR/TASK.out ‘

In this example, the submit directory holds the 900 input files, executable
myprog.x and the jobscript file. As input for each run, we take the filename
of input file from created tasklist file. We copy the input file to local scratch
/lscratch/PBSJOBID,�executethemyprog.xandcopytheoutputfilebackto�>�thesubmitdirectory,�undertheTASK.out
name. The myprog.x runs on one node only and must use threads to run in
parallel. Be aware, that if the myprog.x is not multithreaded, then all the
jobs are run as single thread programs in sequential manner. Due to
allocation of the whole node, the accounted time is equal to the usage of whole
node**, while using only 1/16 of the node!

If huge number of parallel multicore (in means of multinode multithread, e. g.
MPI enabled) jobs is needed to run, then a job array approach should also be
used. The main difference compared to previous example using one node is that
the local scratch should not be used (as it’s not shared between nodes) and MPI
or other technique for parallel multinode run has to be used properly.

Submit the job array

To submit the job array, use the qsub -J command. The 900 jobs of the example
above may be submitted like this:

$ qsub -N JOBNAME -J 1-900 jobscript 12345[].dm2

In this example, we submit a job array of 900 subjobs. Each subjob will run
on full node and is assumed to take less than 2 hours (please note the #PBS
directives in the beginning of the jobscript file, dont’ forget to set your valid
PROJECT_ID and desired queue).

Sometimes for testing purposes, you may need to submit only one-element array.
This is not allowed by PBSPro, but there’s a workaround:

$ qsub -N JOBNAME -J 9-10:2 jobscript

This will only choose the lower index (9 in this example) for submitting/running
your job.

Manage the job array

Check status of the job array by the qstat command.

‘ $ qstat -a 12345[].dm2

3

capacity-computing.html#array_example
capacity-computing.html#array_example


dm2: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS TSK
Memory Time S Time ————— ——– – |—|—| —— — — —— —– - —–
12345[].dm2 user2 qprod xx 13516 1 16 – 00:50 B 00:02 ‘

The status B means that some subjobs are already running.

Check status of the first 100 subjobs by the qstat command.

‘ $ qstat -a 12345[1-100].dm2

dm2: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS TSK
Memory Time S Time ————— ——– – |—|—| —— — — —— —– - —–
12345[1].dm2 user2 qprod xx 13516 1 16 – 00:50 R 00:02 12345[2].dm2 user2
qprod xx 13516 1 16 – 00:50 R 00:02 12345[3].dm2 user2 qprod xx 13516 1 16 –
00:50 R 00:01 12345[4].dm2 user2 qprod xx 13516 1 16 – 00:50 Q – . . . . . . . .
. . . , . . . . . . . . . . 12345[100].dm2 user2 qprod xx 13516 1 16 – 00:50 Q – ‘

Delete the entire job array. Running subjobs will be killed, queueing subjobs
will be deleted.

$ qdel 12345[].dm2

Deleting large job arrays may take a while.

Display status information for all user’s jobs, job arrays, and subjobs.

$ qstat -u $USER -t

Display status information for all user’s subjobs.

$ qstat -u $USER -tJ

Read more on job arrays in the PBSPro Users guide.

GNU parallel

Use GNU parallel to run many single core tasks on one node.

GNU parallel is a shell tool for executing jobs in parallel using one or more
computers. A job can be a single command or a small script that has to be run
for each of the lines in the input. GNU parallel is most useful in running single
core jobs via the queue system on Anselm.

For more information and examples see the parallel man page:

$ module add parallel $ man parallel

GNU parallel jobscript

The GNU parallel shell executes multiple instances of the jobscript using all
cores on the node. The instances execute different work, controlled by the
$PARALLEL_SEQ variable.

4

../../pbspro-documentation.html


Example:

Assume we have 101 input files with name beginning with “file” (e. g. file001,
…, file101). Assume we would like to use each of these input files with program
executable myprog.x, each as a separate single core job. We call these single
core jobs tasks.

First, we create a tasklist file, listing all tasks - all input files in our example:

$ find . -name 'file*' > tasklist

Then we create jobscript:

‘ #!/bin/bash #PBS -A PROJECT_ID #PBS -q qprod #PBS -l se-
lect=1:ncpus=16,walltime=02:00:00

[ -z “$PARALLEL_SEQ” ] && { module add parallel ; exec parallel -a
$PBS_O_WORKDIR/tasklist $0 ; }

change to local scratch directory

SCR=/lscratch/PBSJOBID/PARALLEL_SEQ mkdir -p $SCR ; cd $SCR ||
exit

get individual task from tasklist

TASK=$1

copy input file and executable to scratch

cp PBSOW ORKDIR/TASK input

execute the calculation

cat input > output

copy output file to submit directory

cp output PBSOW ORKDIR/TASK.out ‘

5



In this example, tasks from tasklist are executed via the GNU parallel. The
jobscript executes multiple instances of itself in parallel, on all cores of the node.
Once an instace of jobscript is finished, new instance starts until all entries in
tasklist are processed. Currently processed entry of the joblist may be retrieved
via $1 variable. Variable $TASK expands to one of the input filenames from
tasklist. We copy the input file to local scratch, execute the myprog.x and copy
the output file back to the submit directory, under the $TASK.out name.

Submit the job

To submit the job, use the qsub command. The 101 tasks’ job of the example
above may be submitted like this:

$ qsub -N JOBNAME jobscript 12345.dm2

In this example, we submit a job of 101 tasks. 16 input files will be processed
in parallel. The 101 tasks on 16 cores are assumed to complete in less than 2
hours.

Please note the #PBS directives in the beginning of the jobscript file, dont’
forget to set your valid PROJECT_ID and desired queue.

Job arrays and GNU parallel

Combine the Job arrays and GNU parallel for best throughput of single core
jobs

While job arrays are able to utilize all available computational nodes, the GNU
parallel can be used to efficiently run multiple single-core jobs on single node.
The two approaches may be combined to utilize all available (current and future)
resources to execute single core jobs.

Every subjob in an array runs GNU parallel to utilize all cores on the node

GNU parallel, shared jobscript

Combined approach, very similar to job arrays, can be taken. Job array is sub-
mitted to the queuing system. The subjobs run GNU parallel. The GNU parallel
shell executes multiple instances of the jobscript using all cores on the node. The
instances execute different work, controlled by the $PBS_JOB_ARRAY and
$PARALLEL_SEQ variables.

Example:

Assume we have 992 input files with name beginning with “file” (e. g. file001,
…, file992). Assume we would like to use each of these input files with program

6

capacity-computing.html#gp_example
capacity-computing.html#gp_example


executable myprog.x, each as a separate single core job. We call these single
core jobs tasks.

First, we create a tasklist file, listing all tasks - all input files in our example:

$ find . -name 'file*' > tasklist

Next we create a file, controlling how many tasks will be executed in one subjob

$ seq 32 > numtasks

Then we create jobscript:

‘ #!/bin/bash #PBS -A PROJECT_ID #PBS -q qprod #PBS -l se-
lect=1:ncpus=16,walltime=02:00:00

[ -z “$PARALLEL_SEQ” ] && { module add parallel ; exec parallel -a
$PBS_O_WORKDIR/numtasks $0 ; }

change to local scratch directory

SCR=/lscratch/PBSJOBID/PARALLEL_SEQ mkdir -p $SCR ; cd $SCR ||
exit

get individual task from tasklist with index from
PBS JOB ARRAY and index form Parallel

IDX=((PBS_ARRAY_INDEX + PARALLELSEQ�−�1))TASK=(sed -n
“${IDX}p” $PBS_O_WORKDIR/tasklist) [ -z ”$TASK” ] && exit

copy input file and executable to scratch

cp PBSOW ORKDIR/TASK input

execute the calculation

cat input > output

7



copy output file to submit directory

cp output PBSOW ORKDIR/TASK.out ‘

In this example, the jobscript executes in multiple instances in parallel, on all
cores of a computing node. Variable $TASK expands to one of the input
filenames from tasklist. We copy the input file to local scratch, execute the
myprog.x and copy the output file back to the submit directory, under the
$TASK.out name. The numtasks file controls how many tasks will be run per
subjob. Once an task is finished, new task starts, until the number of tasks in
numtasks file is reached.

Select subjob walltime and number of tasks per subjob carefully

When deciding this values, think about following guiding rules :

1. Let n=N/16. Inequality (n+1) * T < W should hold. The N is number
of tasks per subjob, T is expected single task walltime and W is subjob
walltime. Short subjob walltime improves scheduling and job throughput.

2. Number of tasks should be modulo 16.
3. These rules are valid only when all tasks have similar task walltimes T.

Submit the job array

To submit the job array, use the qsub -J command. The 992 tasks’ job of the
example above may be submitted like this:

$ qsub -N JOBNAME -J 1-992:32 jobscript 12345[].dm2

In this example, we submit a job array of 31 subjobs. Note the -J 1-992:32, this
must be the same as the number sent to numtasks file. Each subjob will run on
full node and process 16 input files in parallel, 32 in total per subjob. Every
subjob is assumed to complete in less than 2 hours.

Please note the #PBS directives in the beginning of the jobscript file, dont’
forget to set your valid PROJECT_ID and desired queue.

Examples

Download the examples in capacity.zip, illustrating the above listed ways to
run huge number of jobs. We recommend to try out the examples, before using
this for running production jobs.

Unzip the archive in an empty directory on Anselm and follow the instructions
in the README file

$ unzip capacity.zip $ cat README

8

capacity-computing.html#combined_example

	Capacity computing
	Introduction
	Policy
	Job arrays
	Shared jobscript


	change to local scratch directory
	get individual tasks from tasklist with index from PBS JOB ARRAY
	copy input file and executable to scratch
	execute the calculation
	copy output file to submit directory
	Submit the job array
	Manage the job array

	GNU parallel
	GNU parallel jobscript


	change to local scratch directory
	get individual task from tasklist
	copy input file and executable to scratch
	execute the calculation
	copy output file to submit directory
	Submit the job
	Job arrays and GNU parallel
	GNU parallel, shared jobscript


	change to local scratch directory
	get individual task from tasklist with index from PBS JOB ARRAY and index form Parallel
	copy input file and executable to scratch
	execute the calculation
	copy output file to submit directory
	Submit the job array
	Examples


