Remote visualization service

Introduction

The goal of this service is to provide the users a GPU accelerated use of OpenGL
applications, especially for pre- and post- processing work, where not only the
GPU performance is needed but also fast access to the shared file systems of
the cluster and a reasonable amount of RAM.

The service is based on integration of open source tools VirtualGL and Tur-
boVNC together with the cluster’s job scheduler PBS Professional.

Currently two compute nodes are dedicated for this service with following con-
figuration for each node:

Visualization node configuration CPU 2x Intel Sandy Bridge E5-2670,
2.6GHz Processor cores 16 (2x8 cores) RAM 64 GB, min. 4 GB per core GPU
NVIDIA Quadro 4000, 2GB RAM Local disk drive yes - 500 GB Compute
network InfiniBand QDR Schematic overview ——

xauth merge fetc/opt/VirtualGLIvgl_xauth_key

module add virtualgl/2.4
vglrun gixgears vglconnect srv8
L

— T L —
N N VirtualGL Transport . X7
(X F4—>|vglclient —> VNC ;.

S P e N4 vglconnect — __SW, Y.

(SSH + vglclient) LOGIN Taosriop
‘-’ WNC srv
X srv - PY A | VirtualGL

NVIDIA drv
VirtualGL

gsub -q qviz | SSH ‘,.‘"‘I
(PBSpro) nln\\'/r_y'

NG dli -/ VNC

Figure 1: rem_ vis_ scheme

How to use the service
Setup and start your own TurboVINC server.
TurboVNC is designed and implemented for cooperation with VirtualGL and

available for free for all major platforms. For more information and download,
please refer to: http://sourceforge.net/projects/turbovnc/

compute-nodes.html
http://sourceforge.net/projects/turbovnc/

Legend

User

Hardware node

LOGIN

Logical Component @NC\

t_'.:|iEI'It//'

Software Component
Hardware component @

Application

Command

vglconnect srvd

"

Figure 2: rem_ vis_ legend

Always use TurboVNC on both sides** (server and client) don’t mix Tur-
boVNC and other VNC implementations (Tight VNC, TigerVNC, ...) as
the VNC protocol implementation may slightly differ and diminish your user
experience by introducing picture artifacts, etc.

The procedure is:

1. Connect to a login node. {#1-connect-to-a-login-node}

Please follow the documentation.

2. Run your own instance of TurboVNC server. {#2-run-your-own-
instance-of-turbovnc-server}

To have the OpenGL acceleration, 24 bit color depth must be used. Oth-
erwise only the geometry (desktop size) definition is needed.

At first VNC server run you need to define a password.

This example defines desktop with dimensions 1200x700 pixels and 24 bit color
depth.

“ $ module load turbovnc/1.2.2 $ vneserver -geometry 1200x700 -depth 24
Desktop ‘TurboVNC: login2:1 (username)’ started on display login2:1

Starting applications specified in /home/username/.vnc/xstartup.turbovnc Log
file is /home/username/.vnc/login2:1.log

3. Remember which display number your VNC server runs (you
will need it in the future to stop the server). {#3-remember-which-
display-number-your-vnc-server-runs-you-will-need-it-in-the-future-
to-stop-the-server}

*$ vncserver -list
TurboVNC server sessions:
X DISPLAY # PROCESS ID :1 23269 *

In this example the VNC server runs on display :1.

4. Remember the exact login node, where your VINNC server runs.
{#4-remember-the-exact-login-node-where-your-vnc-server-runs}

$ uname -n login2

In this example the VNC server runs on login2.

https://docs.it4i.cz/anselm-cluster-documentation/resolveuid/5d3d6f3d873a42e584cbf4365c4e251b

5. Remember on which TCP port your own VINC server is running.
{#5-remember-on-which-tcp-port-your-own-vnc-server-is-running }

To get the port you have to look to the log file of your VNC server.

$ grep -E "VUNC.*port" /home/username/.vnc/login2:1.log 20/02/2015
14:46:41 Listening for VNC connections on TCP port 5901

In this example the VNC server listens on TCP port 5901.

6. Connect to the login node where your VNC server runs with SSH
to tunnel your VNC session. {#6-connect-to-the-login-node-where-
your-vnc-server-runs-with-ssh-to-tunnel-your-vnc-session}

Tunnel the TCP port on which your VNC server is listenning.
$ ssh login2.anselm.it4i.cz -L 5901:localhost:5901

If you use Windows and Putty, please refer to port forwarding setup in the
documentation: https://docs.itdi.cz/anselm-cluster-documentation /accessing-
the-cluster /x-window-and-vnc#section-12

7. If you don’t have Turbo VNC installed on your workstation. {#7-
if-you-don-t-have-turbo-vnc-installed-on-your-workstation}

Get it from: http://sourceforge.net/projects/turbovnc/

8. Run TurboVNC Viewer from your workstation. {#8-run-
turbovne-viewer-from-your-workstation}

Mind that you should connect through the SSH tunneled port. In this example
it is 5901 on your workstation (localhost).

$ vncviewer localhost:5901

If you use Windows version of TurboVNC' Viewer, just run the Viewer and use
address localhost:5901.

9. Proceed to the chapter “Access the visualization node.” {#?9-
proceed-to-the-chapter-access-the-visualization-node}

Now you should have working TurboVNC session connected to your workstation.

10. After you end your visualization session. {#10-after-you-end-
your-visualization-session}

Don’t forget to correctly shutdown your own VNC server on the login node!

accessing-the-cluster/x-window-and-vnc.html#section-12
accessing-the-cluster/x-window-and-vnc.html#section-12
http://sourceforge.net/projects/turbovnc/

$ vncserver -kill :1

Access the visualization node

To access the node use a dedicated PBS Professional scheduler queue qviz**.
The queue has following properties:

|queue |active project |project resources |nodes

min ncpus*

priority

authorization

walltime | | — | — | |qviz Visualization queue |yes |none required |2
|4 |>150 |no |1 hour / 2 hours |

Currently when accessing the node, each user gets 4 cores of a CPU allocated,
thus approximately 16 GB of RAM and 1/4 of the GPU capacity. If more GPU
power or RAM is required, it is recommended to allocate one whole node per
user, so that all 16 cores, whole RAM and whole GPU 1is exclusive. This is
currently also the maximum allowed allocation per one user. One hour of work
is allocated by default, the user may ask for 2 hours mazximum.

To access the visualization node, follow these steps:

1. In your VNC session, open a terminal and allocate a node using
PBSPro gqsub command. {#1-in-your-vnc-session-open-a-terminal-
and-allocate-a-node-using-pbspro-gsub-command }

This step is necessary to allow you to proceed with next steps.
$ gsub -I -q qviz -A PROJECT_ID
In this example the default values for CPU cores and usage time are used.

$ qgsub -I -q qviz -A PROJECT_ID -1 select=1l:ncpus=16 -1
walltime=02:00:00

Substitute PROJECT _ID with the assigned project identification string.
In this example a whole node for 2 hours is requested.

If there are free resources for your request, you will have a shell running on an
assigned node. Please remember the name of the node.

$ uname -n srv8

In this example the visualization session was assigned to node srv8.

2. In your VNC session open another terminal (keep the one with in-
teractive PBSPro job open). {#2-in-your-vnc-session-open-another-
terminal-keep-the-one-with-interactive-pbspro-job-open}

Setup the VirtualGL connection to the node, which PBSPro allocated for your
job.

$ vglconnect srv8

You will be connected with created VirtualGL tunnel to the visualization node,
where you will have a shell.

3. Load the VirtualGL module. {#3-load-the-virtualgl-module}
$ module load virtualgl/2.4

4. Run your desired OpenGL accelerated application using Vir-
tualGL script “vglrun”. {#4-run-your-desired-opengl-accelerated-
application-using-virtualgl-script-vglrun}

$ vglrun glxgears

Please note, that if you want to run an OpenGL application which is available
through modules, you need at first load the respective module. E. g. to run the
Mentat OpenGL application from MARC software package use:

$ module load marc/2013.1 $ vglrun mentat

5. After you end your work with the OpenGL application. {#5-after-
you-end-your-work-with-the-opengl-application}

Just logout from the visualization node and exit both opened terminals and end
your VNC server session as described above.

Tips and Tricks
If you want to increase the responsibility of the visualization, please adjust your
TurboVNC client settings in this way:

To have an idea how the settings are affecting the resulting picture quality three
levels of “JPEG image quality” are demonstrated:

1. JPEG image quality = 30
2. JPEG image quality = 15
3. JPEG image quality = 10

-

TurboWNC Viewer Options
[’Encuding rCnnnectiun |/G|oba| |/Securit},-' |

Encoding method:

Custom -

Allow JPEG Compression

|IPEG chrominance subsampling: 4X

fast a ' best
I I 1 I

|IPEG image guality: 30

I~

pcmr' a ' best
L L T T T T T O Y (O A I |

Compression level (see docs): &

fast C|| I| best

Interframe Comparison

QK

Cancel

Figure 3: rem_ vis_ settings

Figure 4: rem_ vis_ q3

Figure 5: rem_ vis_ g2

Figure 6: rem_ vis_ ql

	Remote visualization service
	Introduction
	How to use the service
	Setup and start your own TurboVNC server.

	Access the visualization node
	Tips and Tricks

