Job submission and execution

Job Submission

When allocating computational resources for the job, please specify

1. suitable queue for your job (default is qprod)

2. number of computational nodes required

3. number of cores per node required

4. maximum wall time allocated to your calculation, note that jobs exceeding
maximum wall time will be killed

5. Project ID

6. Jobscript or interactive switch

Use the qsub command to submit your job to a queue for allocation of the
computational resources.

Submit the job using the gsub command:
$ gsub -A Project_ID -q queue -1 select=x:ncpus=y,walltime=[[hh:]mm:]ss[.ms]
jobscript

The gsub submits the job into the queue, in another words the qsub command
creates a request to the PBS Job manager for allocation of specified resources.
The resources will be allocated when available, subject to above described poli-
cies and constraints. After the resources are allocated the jobscript or
interactive shell is executed on first of the allocated nodes.

Job Submission Examples
$ gsub -A OPEN-0-0 -q gprod -1 select=64:ncpus=16,walltime=03:00:00
./myjob

In this example, we allocate 64 nodes, 16 cores per node, for 3 hours. We allocate
these resources via the gprod queue, consumed resources will be accounted to the
Project identified by Project ID OPEN-0-0. Jobscript myjob will be executed
on the first node in the allocation.

$ gsub -q gexp -1 select=4:ncpus=16 -I

In this example, we allocate 4 nodes, 16 cores per node, for 1 hour. We allocate
these resources via the gexp queue. The resources will be available interactively

$ gsub -A OPEN-0-0 -q gnvidia -1 select=10:ncpus=16 ./myjob

In this example, we allocate 10 nvidia accelerated nodes, 16 cores per node,
for 24 hours. We allocate these resources via the qnvidia queue. Jobscript
myjob will be executed on the first node in the allocation.

$ gsub -A OPEN-0-0 -q gfree -1 select=10:ncpus=16 ./myjob

In this example, we allocate 10 nodes, 16 cores per node, for 12 hours. We
allocate these resources via the qfree queue. It is not required that the project
OPEN-0-0 has any available resources left. Consumed resources are still ac-
counted for. Jobscript myjob will be executed on the first node in the allocation.

All gsub options may be saved directly into the jobscript. In such a case, no
options to gsub are needed.

$ gsub ./myjob

By default, the PBS batch system sends an e-mail only when the job is aborted.
Disabling mail events completely can be done like this:

$ gsub -m n

Advanced job placement
Placement by name

Specific nodes may be allocated via the PBS
gqsub -A OPEN-0-0 -q gprod -1 select=1:ncpus=16:host=cnl171+1:ncpus=16:host=cnl172
-I

In this example, we allocate nodes cnl171 and cnl72, all 16 cores per node, for
24 hours. Consumed resources will be accounted to the Project identified by
Project ID OPEN-0-0. The resources will be available interactively.

Placement by CPU type

Nodes equipped with Intel Xeon E5-2665 CPU have base clock frequency
2.4GHz, nodes equipped with Intel Xeon E5-2470 CPU have base frequency 2.3
GHz (see section Compute Nodes for details). Nodes may be selected via the
PBS resource attribute cpu_ freq .

CPU Type base freq. Nodes cpu_ freq attribute —— | —|—|—

Intel Xeon E5-2665 2.4GHz cn[1-180], ¢n[208-209] 24
Intel Xeon E5-2470 2.3GHz cn[181-207] 23

job-submission-and-execution.html#PBSsaved

$ qsub -A OPEN-0-0 -q gprod -1 select=4:ncpus=16:cpu_freq=24 -I

In this example, we allocate 4 nodes, 16 cores, selecting only the nodes with
Intel Xeon E5-2665 CPU.

Placement by IB switch

Groups of computational nodes are connected to chassis integrated Infiniband
switches. These switches form the leaf switch layer of the Infiniband network fat
tree topology. Nodes sharing the leaf switch can communicate most efficiently.
Sharing the same switch prevents hops in the network and provides for unbiased,
most efficient network communication.

Nodes sharing the same switch may be selected via the PBS resource attribute
ibswitch. Values of this attribute are iswXX, where XX is the switch number.
The node-switch mapping can be seen at Hardware Overview section.

We recommend allocating compute nodes of a single switch when best possible
computational network performance is required to run the job efficiently:

gsub -A OPEN-0-0 -q gprod -1 select=18:ncpus=16:ibswitch=iswll ./myjob

In this example, we request all the 18 nodes sharing the iswll switch for 24
hours. Full chassis will be allocated.

Advanced job handling
Selecting Turbo Boost off
Intel Turbo Boost Technology is on by default. We strongly recommend keeping

the default.

If necessary (such as in case of benchmarking) you can disable the Turbo for all
nodes of the job by using the PBS resource attribute cpu_ turbo_ boost

$ gsub -A OPEN-0-0 -q gprod -1 select=4:ncpus=16 -1 cpu_turbo_boost=0 -I
More about the Intel Turbo Boost in the TurboBoost section

Advanced examples
In the following example, we select an allocation for benchmarking a very special

and demanding MPI program. We request Turbo off, 2 full chassis of compute
nodes (nodes sharing the same IB switches) for 30 minutes:

../network.html
../hardware-overview.html

$ gsub -A OPEN-0-0 -q gprod

-1 select=18:ncpus=16:ibswitch=iswl0:mpiprocs=1:ompthreads=16+18:ncpus=16:ibswitch=isw20:mpi
-1 cpu_turbo_boost=0,walltime=00:30:00

-N Benchmark ./mybenchmark

The MPI processes will be distributed differently on the nodes connected to
the two switches. On the iswl0 nodes, we will run 1 MPI process per node 16
threads per process, on isw20 nodes we will run 16 plain MPI processes.

Although this example is somewhat artificial, it demonstrates the flexibility of
the gsub command options.

Job Management

Check status of your jobs using the gstat and check-pbs-jobs commands

$ gstat -a $ gstat -a -u username $ gstat -an -u username $ gstat
-f 12345.srvil

Example:
“§ gstat -a

srvll: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS TSK
Memory Time S Time - -] — — — — —_-—
16287.srv11 userl qlong jobl 6183 4 64 — 144:0 R 38:25 16468.srv11 userl qlong
job2 8060 4 64 — 144:0 R 17:44 16547.srv11 user2 gprod job3x 13516 2 32 — 48:00
R 00:58 ¢

In this example userl and user2 are running jobs named jobl, job2 and job3x.
The jobs jobl and job2 are using 4 nodes, 16 cores per node each. The jobl
already runs for 38 hours and 25 minutes, job2 for 17 hours 44 minutes. The jobl
already consumed 6438.41 = 2458.6 core hours. The job3x already consumed
0.9632 = 30.93 core hours. These consumed core hours will be accounted on
the respective project accounts, regardless of whether the allocated cores were
actually used for computations.

Check status of your jobs using check-pbs-jobs command. Check presence of
user’s PBS jobs’ processes on execution hosts. Display load, processes. Display
job standard and error output. Continuously display (tail -f) job standard or
error output.

“ $ check-pbs-jobs —check-all $ check-pbs-jobs —print-load —print-processes $
check-pbs-jobs —print-job-out —print-job-err

$ check-pbs-jobs —jobid JOBID —check-all —print-all
$ check-pbs-jobs —jobid JOBID -tailf-job-out

Examples:

$ check-pbs-jobs --check-all JOB 35141.dm2, session_id 71995, user
user2, nodes cnl64,cnl165 Check session id: 0K Check processes cnl64:
0K cnl165: No process

In this example we see that job 35141.dm2 currently runs no process on allocated
node c¢nl65, which may indicate an execution error.

$ check-pbs-jobs --print-load --print-processes J0B 35141.dm2,
session_id 71995, user user2, nodes cnl64,cnl65 Print load cnl64:
LOAD: 16.01, 16.01, 16.00 cn165: LOAD: 0.01, 0.00, 0.01 Print
processes %CPU CMD cnl164: 0.0 -bash cn164: 0.0 /bin/bash
/var/spool/PBS/mom_priv/jobs/35141.dm2.SC cnl164: 99.7 run-task ...

In this example we see that job 35141.dm2 currently runs process run-task
on node cnl64, using one thread only, while node cn165 is empty, which may
indicate an execution error.

$ check-pbs-jobs --jobid 35141.dm2 --print-job-out JOB 35141.dm2,
session_id 71995, user user2, nodes cnl64,cnl65 Print job standard

output: Job start =
Started at : Fri Aug 30 02:47:53 CEST 2013 Script name
script Run loop 1 Run loop 2 Run loop 3

In this example, we see actual output (some iteration loops) of the job 35141.dm2

%ok
L,

Manage your queued or running jobs, using the qhold, qrls, qde gsig or

qalter commands

You may release your allocation at any time, using qdel command
$ qdel 12345.srvil

You may kill a running job by force, using gsig command

$ gsig -s 9 12345.srvil

Learn more by reading the pbs man page

$ man pbs_professional

Job Execution
Jobscript

Prepare the jobscript to run batch jobs in the PBS queue system

The Jobscript is a user made script, controlling sequence of commands for ex-
ecuting the calculation. It is often written in bash, other scripts may be used
as well. The jobscript is supplied to PBS gsub command as an argument and
executed by the PBS Professional workload manager.

The jobscript or interactive shell is executed on first of the allocated nodes.

* § gsub -q gexp -1 select=4:ncpus=16 -N Name0 ./myjob § gstat -n -u username

srvll: Req’d Req’d Elap Job ID Username Queue Jobname SessID NDS
TSK Memory Time S Time -] — — — —
—— - —— 15209.srv11 username qexp NameO 5530 4 64 — 01:00 R 00:00
cnl7/016+cn108/016+cn109/016+cn110/016 °

In this example, the nodes c¢nl7, cnl08, cnl109 and c¢nl10 were allocated for
1 hour via the gexp queue. The jobscript myjob will be executed on the node
cnl7, while the nodes cnl108, cn109 and c¢nl10 are available for use as well.

The jobscript or interactive shell is by default executed in home directory

“$ gsub -q gexp -1 select=4:ncpus=16 -I gsub: waiting for job 15210.srv11 to
start gsub: job 15210.srv11 ready

$ pwd /home/username

In this example, 4 nodes were allocated interactively for 1 hour via the gexp
queue. The interactive shell is executed in the home directory.

All nodes within the allocation may be accessed via ssh. Unallocated nodes are
not accessible to user.

The allocated nodes are accessible via ssh from login nodes. The nodes may
access each other via ssh as well.

Calculations on allocated nodes may be executed remotely via the MPI, ssh,
pdsh or clush. You may find out which nodes belong to the allocation by
reading the $PBS_NODEFILE file

‘ gsub -q qexp -1 select=4:ncpus=16 -1 gsub: waiting for job 15210.srv11 to start
gsub: job 15210.srv11 ready

$ pwd /home/username
$ sort -u $PBS NODEFILE cnl17.bullx cn108.bullx ¢nl109.bullx cn110.bullx

$ pdsh -w ¢nl7,en[108-110] hostname cnl7: cnl7 cnl08: cnl08 ¢nl09: ¢nl09
cnl10: cnll0 ¢

In this example, the hostname program is executed via pdsh from the interactive
shell. The execution runs on all four allocated nodes. The same result would be
achieved if the pdsh is called from any of the allocated nodes or from the login
nodes.

Example Jobscript for MPI Calculation

Production jobs must use the /scratch directory for I/0O

The recommended way to run production jobs is to change to /scratch directory
early in the jobscript, copy all inputs to /scratch, execute the calculations and
copy outputs to home directory.

‘ #!/bin/bash
change to scratch directory, exit on failure

SCRDIR=/scratch/$USER/myjob mkdir -p $SCRDIR, c¢d $SCRDIR || exit

copy input file to scratch

cp $PBS_O_WORKDIR/input . cp $PBS_O_ WORKDIR/mympiprog.x .

load the mpi module

module load openmpi

execute the calculation

mpiexec -pernode ./mympiprog.x

copy output file to home

cp output $PBS_O_WORKDIR/.

exit

exit ¢

In this example, some directory on the /home holds the input file input and
executable mympiprog.x . We create a directory myjob on the /scratch filesys-
tem, copy input and executable files from the /home directory where the gsub
was invoked ($PBS_O_WORKDIR) to /scratch, execute the MPI programm
mympiprog.x and copy the output file back to the /home directory. The
mympiprog.x is executed as one process per node, on all allocated nodes.

Consider preloading inputs and executables onto shared scratch before the cal-
culation starts.

In some cases, it may be impractical to copy the inputs to scratch and outputs to
home. This is especially true when very large input and output files are expected,
or when the files should be reused by a subsequent calculation. In such a case, it
is users responsibility to preload the input files on shared /scratch before the job
submission and retrieve the outputs manually, after all calculations are finished.

Store the gsub options within the jobscript. Use mpiprocs and ompthreads
gsub options to control the MPI job execution.

Example jobscript for an MPI job with preloaded inputs and executables, op-
tions for gsub are stored within the script :

‘ #!/bin/bash #PBS -q qprod #PBS -N MYJOB #PBS -1 select=100:ncpus=16:mpiprocs=1:ompthreads=16
#PBS -A OPEN-0-0

change to scratch directory, exit on failure

SCRDIR=/scratch/$USER/myjob cd $SCRDIR || exit

load the mpi module

module load openmpi

execute the calculation

mpiexec ./mympiprog.x

exit

exit, ¢

In this example, input and executable files are assumed preloaded manually
in /scratch/$USER/myjob directory. Note the mpiprocs and ompthreads**
gsub options, controlling behavior of the MPI execution. The mympiprog.x is

executed as one process per node, on all 100 allocated nodes. If mympiprog.x
implements OpenMP threads, it will run 16 threads per node.

More information is found in the Running OpenMPI and Running MPICH2
sections.

../storage.html
../software/mpi-1/Running_OpenMPI.html
../software/mpi-1/running-mpich2.html

Example Jobscript for Single Node Calculation

Local scratch directory is often useful for single node jobs. Local scratch will
be deleted immediately after the job ends.

Example jobscript for single node calculation, using local scratch on the node:
‘ #!/bin/bash
change to local scratch directory

cd /lscratch/$PBS_JOBID || exit

copy input file to scratch

cp $PBS_O_WORKDIR /input . ¢p $PBS_O_ WORKDIR/myprog.x .

execute the calculation

./myprog.x

copy output file to home

cp output $PBS_O_WORKDIR/.

exit

exit ¢

In this example, some directory on the home holds the input file input and ex-
ecutable myprog.x . We copy input and executable files from the home directory

where the gsub was invoked (PBS o,, ORKDIR)tolocalscratch/lscratch/PBS_JOBID,

execute the myprog.x and copy the output file back to the /home directory.
The myprog.x runs on one node only and may use threads.

../storage.html

Other Jobscript Examples

Further jobscript examples may be found in the Software section and the Ca-
pacity computing section.

10

../software.1.html
capacity-computing.html
capacity-computing.html

	Job submission and execution
	Job Submission
	Job Submission Examples

	Advanced job placement
	Placement by name
	Placement by CPU type
	Placement by IB switch

	Advanced job handling
	Selecting Turbo Boost off
	Advanced examples

	Job Management
	Job Execution
	Jobscript
	Example Jobscript for MPI Calculation

	change to scratch directory, exit on failure
	copy input file to scratch
	load the mpi module
	execute the calculation
	copy output file to home
	exit
	change to scratch directory, exit on failure
	load the mpi module
	execute the calculation
	exit
	Example Jobscript for Single Node Calculation

	change to local scratch directory
	copy input file to scratch
	execute the calculation
	copy output file to home
	exit
	Other Jobscript Examples

