Matlab

Introduction

Matlab is available in versions R2015a and R2015b. There are always two
variants of the release:

e Non commercial or so called EDU variant, which can be used for common
research and educational purposes.

o Commercial or so called COM variant, which can used also for commercial
activities. The licenses for commercial variant are much more expensive,
so usually the commercial variant has only subset of features compared to
the EDU available.

To load the latest version of Matlab load the module
$ module load MATLAB

By default the EDU variant is marked as default. If you need other version or
variant, load the particular version. To obtain the list of available versions use

$ module avail MATLAB

If you need to use the Matlab GUI to prepare your Matlab programs, you can
use Matlab directly on the login nodes. But for all computations use Matlab on
the compute nodes via PBS Pro scheduler.

If you require the Matlab GUI, please follow the general informations about
running graphical applications.

Matlab GUT is quite slow using the X forwarding built in the PBS (gsub -X), so
using X11 display redirection either via SSH or directly by xauth (please see the
“GUI Applications on Compute Nodes over VNC” part here) is recommended.

To run Matlab with GUI, use
$ matlab

To run Matlab in text mode, without the Matlab Desktop GUI environment,
use

$ matlab -nodesktop -nosplash

plots, images, etc... will be still available.

Running parallel Matlab using Distributed Computing
Toolbox / Engine

Distributed toolbox is available only for the EDU variant


../../../get-started-with-it4innovations/accessing-the-clusters/graphical-user-interface/x-window-system/x-window-and-vnc.html
../../../get-started-with-it4innovations/accessing-the-clusters/graphical-user-interface/x-window-system/x-window-and-vnc.html

The MPIEXEC mode available in previous versions is no longer available in
MATLAB 2015. Also, the programming interface has changed. Refer to Release
Notes.

Delete previously used file mpiLibConf.m, we have observed crashes when using
Intel MPI.

To use Distributed Computing, you first need to setup a parallel profile. We have
provided the profile for you, you can either import it in MATLAB command
line:

> parallel.importProfile('/apps/all/MATLAB/2015a-EDU/SalomonPBSPro.settings')
ans =

SalomonPBSPro

Or in the GUI, go to tab HOME -> Parallel -> Manage Cluster Profiles..., click
Import and navigate to :

/apps/all/ MATLAB/2015a-EDU/SalomonPBSPro.settings

With the new mode, MATLAB itself launches the workers via PBS, so you
can either use interactive mode or a batch mode on one node, but the actual
parallel processing will be done in a separate job started by MATLAB itself.
Alternatively, you can use “local” mode to run parallel code on just a single
node.

The profile is confusingly named Salomon, but you can use it also on Anselm.

Parallel Matlab interactive session

Following example shows how to start interactive session with support for Mat-
lab GUI. For more information about GUI based applications on Anselm see
this page.

$ xhost +
$ qsub -I -v DISPLAY=$(uname -n) :$(echo $DISPLAY | cut -d ':' -f 2) -A NONE-0-0 -q gexp -1 select:
-1 feature__matlab__MATLAB=1

This gsub command example shows how to run Matlab on a single node.

The second part of the command shows how to request all necessary licenses. In
this case 1 Matlab-EDU license and 48 Distributed Computing Engines licenses.

Once the access to compute nodes is granted by PBS, user can load following
modules and start Matlab:

r1i0On17$ module load MATLAB/2015b-EDU
r1iOni17$ matlab &


http://www.mathworks.com/help/distcomp/release-notes.html#buanp9e-1
http://www.mathworks.com/help/distcomp/release-notes.html#buanp9e-1
../../../get-started-with-it4innovations/accessing-the-clusters/graphical-user-interface/x-window-system/x-window-and-vnc.html

Parallel Matlab batch job in Local mode

To run matlab in batch mode, write an matlab script, then write a bash jobscript
and execute via the gsub command. By default, matlab will execute one matlab
worker instance per allocated core.

#!/bin/bash

#PBS -A PROJECT ID

#PBS -q gprod

#PBS -1 select=1:ncpus=16:mpiprocs=16:ompthreads=1

# change to shared scratch directory
SCR=/scratch/work/user/$USER/$PBS_JOBID
mkdir -p $SCR ; cd $SCR || exit

# copy input file to scratch
cp $PBS_O_WORKDIR/matlabcode.m .

# load modules
module load MATLAB/2015a-EDU

# execute the calculation
matlab -nodisplay -r matlabcode > output.out

# copy output file to home
cp output.out $PBS_0O_WORKDIR/.

This script may be submitted directly to the PBS workload manager via the
gsub command. The inputs and matlab script are in matlabcode.m file, outputs
in output.out file. Note the missing .m extension in the matlab -r matlabcodefile
call, the .m must not be included. Note that the shared /scratch must
be used. Further, it is important to include quit statement at the end of
the matlabcode.m script.

Submit the jobscript using gsub

$ gsub ./jobscript

Parallel Matlab Local mode program example

The last part of the configuration is done directly in the user Matlab script
before Distributed Computing Toolbox is started.

cluster = parcluster('local')

This script creates scheduler object “cluster” of type “local” that starts workers
locally.



Please note: Every Matlab script that needs to initialize/use matlabpool has to
contain these three lines prior to calling parpool(sched, ...) function.

The last step is to start matlabpool with “cluster” object and correct number
of workers. We have 24 cores per node, so we start 24 workers.

parpool(cluster,16);

. parallel code ...

parpool close

The complete example showing how to use Distributed Computing Toolbox in
local mode is shown here.

cluster = parcluster('local');
cluster

parpool(cluster,24);

n=2000;

rand(n,n);
distributed (W) ;
(1:n)';
distributed(x);

MM ==
I

spmd
[~, name] = system('hostname')

T = Wxx; % Calculation performed on labs, in parallel.
% T and W are both codistributed arrays here.
end
T;
whos % T and W are both distributed arrays here.

parpool close
quit

You can copy and paste the example in a .m file and execute. Note that the
parpool size should correspond to total number of cores available on allocated
nodes.



Parallel Matlab Batch job using PBS mode (workers spawned in a
separate job)

This mode uses PBS scheduler to launch the parallel pool. It uses the Sa-
lomonPBSPro profile that needs to be imported to Cluster Manager, as men-
tioned before. This methodod uses MATLAB’s PBS Scheduler interface - it
spawns the workers in a separate job submitted by MATLAB using qgsub.

This is an example of m-script using PBS mode:

cluster = parcluster('SalomonPBSPro');

set(cluster, 'SubmitArguments', '-A OPEN-0-0');

set(cluster, 'ResourceTemplate', '-q gprod -1 select=10:ncpus=16"');
set(cluster, 'NumWorkers', 160);

pool = parpool(cluster, 160);

n=2000;

W = rand(n,n);

W = distributed (W) ;

x = (1:n)';

x = distributed(x);

spmd

[~, name] = system('hostname')

T = W*xx; % Calculation performed on labs, in parallel.
% T and W are both codistributed arrays here.
end
whos % T and W are both distributed arrays here.

% shut down parallel pool
delete(pool)

Note that we first construct a cluster object using the imported profile, then
set some important options, namely : SubmitArguments, where you need to
specify accounting id, and ResourceTemplate, where you need to specify number
of nodes to run the job.

You can start this script using batch mode the same way as in Local mode
example.

Parallel Matlab Batch with direct launch (workers spawned within
the existing job)

This method is a “hack” invented by us to emulate the mpiexec functional-
ity found in previous MATLAB versions. We leverage the MATLAB Generic



Scheduler interface, but instead of submitting the workers to PBS, we launch
the workers directly within the running job, thus we avoid the issues with mas-
ter script and workers running in separate jobs (issues with license not available,
waiting for the worker’s job to spawn etc.)

Please note that this method is experimental.

For this method, you need to use SalomonDirect profile, import it using the
same way as SalomonPBSPro

This is an example of m-script using direct mode:

parallel.importProfile('/apps/all/MATLAB/2015a-EDU/SalomonDirect.settings"')
cluster = parcluster('SalomonDirect');
set(cluster, 'NumWorkers', 48);

pool = parpool(cluster, 48);

n=2000;

rand(n,n);
distributed (W) ;
(1:n)';
distributed(x);

Ho= =
I

X
spmd
[~, name] = system('hostname')

T = Wxx; % Calculation performed on labs, in parallel.
% T and W are both codistributed arrays here.
end
whos % T and W are both distributed arrays here.

% shut down parallel pool
delete(pool)

Non-interactive Session and Licenses

If you want to run batch jobs with Matlab, be sure to request appropriate
license features with the PBS Pro scheduler, at least the ” -1 _ fea-
ture matlab ~ MATLAB=1” for EDU variant of Matlab. More information
about how to check the license features states and how to request them with
PBS Pro, please look here.

In case of non-interactive session please read the following information on how
to modify the qsub command to test for available licenses prior getting the
resource allocation.


copy_of_matlab.html#running-parallel-matlab-using-distributed-computing-toolbox---engine
copy_of_matlab.html#running-parallel-matlab-using-distributed-computing-toolbox---engine
../isv_licenses.html
../isv_licenses.html

Matlab Distributed Computing Engines start up time

Starting Matlab workers is an expensive process that requires certain amount
of time. For your information please see the following table:

compute nodes number of workers start-up time[s]

16 384 831
8 192 807
4 96 483
2 48 16

MATLAB on UV2000

UV2000 machine available in queue “qfat” can be used for MATLAB computa-
tions. This is a SMP NUMA machine with large amount of RAM, which can
be beneficial for certain types of MATLAB jobs. CPU cores are allocated in
chunks of 8 for this machine.

You can use MATLAB on UV2000 in two parallel modes :

Threaded mode

Since this is a SMP machine, you can completely avoid using Parallel Toolbox
and use only MATLAB’s threading. MATLAB will automatically detect the
number of cores you have allocated and will set maxNumCompThreads accord-
ingly and certain operations, such as fft, , eig, svd, etc. will be automatically
run in threads. The advantage of this mode is that you don’t need to modify
your existing sequential codes.

Local cluster mode

You can also use Parallel Toolbox on UV2000. Use local cluster mode, “Sa-
lomonPBSPro” profile will not work.


copy_of_matlab.html#parallel-matlab-batch-job-in-local-mode

	Matlab
	Introduction
	Running parallel Matlab using Distributed Computing Toolbox / Engine
	Parallel Matlab interactive session
	Parallel Matlab batch job in Local mode
	Parallel Matlab Local mode program example
	Parallel Matlab Batch job using PBS mode (workers spawned in a separate job)
	Parallel Matlab Batch with direct launch (workers spawned within the existing job)
	Non-interactive Session and Licenses
	Matlab Distributed Computing Engines start up time

	MATLAB on UV2000 
	Threaded mode
	Local cluster mode



