
MPI4Py (MPI for Python)

OpenMPI interface to Python

Introduction

MPI for Python provides bindings of the Message Passing Interface (MPI) stan-
dard for the Python programming language, allowing any Python program to
exploit multiple processors.

This package is constructed on top of the MPI-1/2 specifications and provides
an object oriented interface which closely follows MPI-2 C++ bindings. It
supports point-to-point (sends, receives) and collective (broadcasts, scatters,
gathers) communications of any picklable Python object, as well as optimized
communications of Python object exposing the single-segment buffer interface
(NumPy arrays, builtin bytes/string/array objects).

On Anselm MPI4Py is available in standard Python modules.

Modules

MPI4Py is build for OpenMPI. Before you start with MPI4Py you need to load
Python and OpenMPI modules.

$ module load python
$ module load openmpi

Execution

You need to import MPI to your python program. Include the following line to
the python script:

from mpi4py import MPI

The MPI4Py enabled python programs execute as any other OpenMPI code.The
simpliest way is to run

$ mpiexec python <script>.py

For example

$ mpiexec python hello_world.py

1

Running_OpenMPI.html

Examples

Hello world!

from mpi4py import MPI

comm = MPI.COMM_WORLD

print "Hello! I'm rank %d from %d running in total..." % (comm.rank, comm.size)

comm.Barrier() # wait for everybody to synchronize

Collective Communication with NumPy arrays

from mpi4py import MPI
from __future__ import division
import numpy as np

comm = MPI.COMM_WORLD

print("-"*78)
print(" Running on %d cores" % comm.size)
print("-"*78)

comm.Barrier()

Prepare a vector of N=5 elements to be broadcasted...
N = 5
if comm.rank == 0:
 A = np.arange(N, dtype=np.float64) # rank 0 has proper data
else:
 A = np.empty(N, dtype=np.float64) # all other just an empty array

Broadcast A from rank 0 to everybody
comm.Bcast([A, MPI.DOUBLE])

Everybody should now have the same...
print "[%02d] %s" % (comm.rank, A)

Execute the above code as:

$ qsub -q qexp -l select=4:ncpus=16:mpiprocs=16:ompthreads=1 -I

$ module load python openmpi

$ mpiexec -bycore -bind-to-core python hello_world.py

2

In this example, we run MPI4Py enabled code on 4 nodes, 16 cores per node
(total of 64 processes), each python process is bound to a different core. More
examples and documentation can be found on MPI for Python webpage.

3

https://pythonhosted.org/mpi4py/usrman/index.html

	MPI4Py (MPI for Python)
	Introduction
	Modules
	Execution
	Examples
	Hello world!
	Collective Communication with NumPy arrays

