Valgrind

Valgrind is a tool for memory debugging and profiling.

About Valgrind

Valgrind is an open-source tool, used mainly for debuggig memory-related prob-
lems, such as memory leaks, use of uninitalized memory etc. in C/C++ applica-
tions. The toolchain was however extended over time with more functionality,
such as debugging of threaded applications, cache profiling, not limited only to
C/CH+.

Valgind is an extremely useful tool for debugging memory errors such as off-by-
one. Valgrind uses a virtual machine and dynamic recompilation of binary code,
because of that, you can expect that programs being debugged by Valgrind run
5-100 times slower.

The main tools available in Valgrind are :

e Memcheck, the original, must used and default tool. Verifies memory
access in you program and can detect use of unitialized memory, out of
bounds memory access, memory leaks, double free, etc.

e Massif, a heap profiler.

e Hellgrind and DRD can detect race conditions in multi-threaded appli-
cations.

e Cachegrind, a cache profiler.

e Callgrind, a callgraph analyzer.

e For a full list and detailed documentation, please refer to the official Val-
grind documentation.

Installed versions

There are two versions of Valgrind available on Anselm.

. Version 3.6.0, installed by operating system vendor in /usr/bin/valgrind.
This version is available by default, without the need to load
any module. This version however does not provide additional
MPI support.

. Version 3.9.0 with support for Intel MPI, available in mod-
ule valgrind/3.9.0-impi. After loading the module, this version
replaces the default valgrind.


http://en.wikipedia.org/wiki/Off-by-one_error
http://en.wikipedia.org/wiki/Off-by-one_error
http://valgrind.org/docs/
http://valgrind.org/docs/
../../environment-and-modules.html
../../environment-and-modules.html

Usage

Compile the application which you want to debug as usual. It is advisable to
add compilation flags -g (to add debugging information to the binary so that you
will see original source code lines in the output) and -O0 (to disable compiler

optimizations).
For example, lets look at this C code, which has two problems :

#include <stdlib.h>

void f(void)

{
int* x = malloc(10 * sizeof(int));
x[10] = 0; // problem 1: heap block overrun
} // problem 2: memory leak -- x not freed

int main(void)
{
£0O;
return 0;

}

Now, compile it with Intel compiler :

$ module add intel
$ icc -g valgrind-example.c -o valgrind-example

Now, lets run it with Valgrind. The syntax is :

valgrind [valgrind options] <your program binary> [your program options]

If no Valgrind options are specified, Valgrind defaults to running Memcheck tool.
Please refer to the Valgrind documentation for a full description of command

line options.

$ valgrind ./valgrind-example
==12652== Memcheck, a memory error detector

==12652== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==12652== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info

==12652== Command: ./valgrind-example

==12652==

==12652== Invalid write of size 4

==12652== at 0x40053E: f (valgrind-example.c:6)
==12652== by 0x40054E: main (valgrind-example.c:11)

==12652== Address 0x5861068 is 0 bytes after a block of size 40 alloc'd

==12652== at 0x4C27AAA: malloc (vg_replace_malloc.c:291)
==12652== by 0x400528: f (valgrind-example.c:5)
==12652== by 0x40054E: main (valgrind-example.c:11)



==12652==

==12652==

==12652== HEAP SUMMARY:

==12652== in use at exit: 40 bytes in 1 blocks

==12652== total heap usage: 1 allocs, O frees, 40 bytes allocated
==12652==

==12652== LEAK SUMMARY:

==12652== definitely lost: 40 bytes in 1 blocks

==12652== indirectly lost: O bytes in O blocks

==12652== possibly lost: O bytes in O blocks

==12652== still reachable: O bytes in O blocks

==12652== suppressed: O bytes in O blocks

==12652== Rerun with --leak-check=full to see details of leaked memory
==12652==

==12652== For counts of detected and suppressed errors, rerun with: -v
==12652== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

In the output we can see that Valgrind has detected both errors - the off-by-one
memory access at line 5 and a memory leak of 40 bytes. If we want a detailed
analysis of the memory leak, we need to run Valgrind with —leak-check=full
option :

$ valgrind --leak-check=full ./valgrind-example

==23856== Memcheck, a memory error detector

==23856== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.
==23856== Using Valgrind-3.6.0 and LibVEX; rerun with -h for copyright info
==23856== Command: ./valgrind-example

==23856==

==23856== Invalid write of size 4

==23856== at 0x40067E: f (valgrind-example.c:6)

==23856== by 0x40068E: main (valgrind-example.c:11)

==23856== Address 0x66e7068 is 0 bytes after a block of size 40 alloc'd
==23856== at 0x4C26FDE: malloc (vg_replace_malloc.c:236)

==23856== by 0x400668: f (valgrind-example.c:5)

==23856== by 0x40068E: main (valgrind-example.c:11)

==23856==

==23856==

==23856== HEAP SUMMARY:

==23856== in use at exit: 40 bytes in 1 blocks

==23856== total heap usage: 1 allocs, O frees, 40 bytes allocated
==23856==

==23856== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==23856== at 0x4C26FDE: malloc (vg_replace_malloc.c:236)

==23856== by 0x400668: f (valgrind-example.c:5)

==23856== by 0x40068E: main (valgrind-example.c:11)

==23856==

==23856== LEAK SUMMARY:



==23856== definitely lost: 40 bytes in 1 blocks

==23856== indirectly lost: O bytes in O blocks

==23856== possibly lost: O bytes in O blocks

==23856== still reachable: O bytes in O blocks

==23856== suppressed: O bytes in O blocks

==23856==

==23856== For counts of detected and suppressed errors, rerun with: -v
==23856== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Now we can see that the memory leak is due to the malloc() at line 6.

Usage with MPI

Although Valgrind is not primarily a parallel debugger, it can be used to de-
bug parallel applications as well. When launching your parallel applications,
prepend the valgrind command. For example :

$ mpirun -np 4 valgrind myapplication

The default version without MPI support will however report a large number of
false errors in the MPI library, such as :

==30166== Conditional jump or move depends on uninitialised value(s)
==30166== at 0x4C287E8: strlen (mc_replace_strmem.c:282)

==30166== by 0x55443BD: I_MPI_Processor_model_number (init_interface.c:427)
==30166== by 0x55439E0: I_MPI_Processor_arch_code (init_interface.c:171)
==30166== by 0x558D5AE: MPID_nem_impi_init_shm_configuration (mpid_nem_impi_extensions.c:1091
==30166== by 0x5598F4C: MPID_nem_init_ckpt (mpid_nem_init.c:566)
==30166== by 0x5598B65: MPID_nem_init (mpid_nem_init.c:489)

==30166== by 0x539BD75: MPIDI_CH3_Init (ch3_init.c:64)

==30166== by 0x5578743: MPID_Init (mpid_init.c:193)

==30166== by 0x554650A: MPIR_Init_thread (initthread.c:539)

==30166== by 0x553369F: PMPI_Init (init.c:195)

==30166== by 0x4008BD: main (valgrind-example-mpi.c:18)

so it is better to use the MPI-enabled valgrind from module. The MPI ver-

sion requires library /apps/tools/valgrind/3.9.0/impi/lib/valgrind /libmpiwrap-
amd64-linux.so, which must be included in the LD PRELOAD environment
variable.

Lets look at this MPI example :

#include <stdlib.h>
#include <mpi.h>

int main(int argc, char *argv[])

{

int *data = malloc(sizeof (int)*99);



MPI_Init(&argc, &argv);
MPI_Bcast(data, 100, MPI_INT, O, MPI_COMM_WORLD);
MPI_Finalize();

return O;

}

There are two errors - use of uninitialized memory and invalid length of the
buffer. Lets debug it with valgrind :

$ module add intel impi

$ mpicc -g valgrind-example-mpi.c -o valgrind-example-mpi

$ module add valgrind/3.9.0-impi

$ mpirun -np 2 -env LD_PRELOAD /apps/tools/valgrind/3.9.0/impi/lib/valgrind/libmpiwrap-amd64-:

Prints this output : (note that there is output printed for every launched MPI
process)

==31318== Memcheck, a memory error detector

==31318== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==31318== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info
==31318== Command: ./valgrind-example-mpi

==31318==

==31319== Memcheck, a memory error detector

==31319== Copyright (C) 2002-2013, and GNU GPL'd, by Julian Seward et al.
==31319== Using Valgrind-3.9.0 and LibVEX; rerun with -h for copyright info
==31319== Command: ./valgrind-example-mpi

==31319==

valgrind MPI wrappers 31319: Active for pid 31319

valgrind MPI wrappers 31319: Try MPIWRAP_DEBUG=help for possible options
valgrind MPI wrappers 31318: Active for pid 31318

valgrind MPI wrappers 31318: Try MPIWRAP_DEBUG=help for possible options
==31319== Unaddressable byte(s) found during client check request
==31319== at 0x4E35974: check_mem_is_addressable_untyped (libmpiwrap.c:960)
==31319== by O0x4ESDOFE: PMPI_Bcast (libmpiwrap.c:908)

==31319== by 0x400911: main (valgrind-example-mpi.c:20)

==31319== Address 0x69291cc is 0 bytes after a block of size 396 alloc'd
==31319== at 0x4C27AAA: malloc (vg_replace_malloc.c:291)

==31319== by 0x4007BC: main (valgrind-example-mpi.c:8)

==31319==

==31318== Uninitialised byte(s) found during client check request
==31318== at 0x4E3591D: check_mem_is_defined_untyped (libmpiwrap.c:952)
==31318== by 0x4E5D06D: PMPI_Bcast (libmpiwrap.c:908)

==31318== by 0x400911: main (valgrind-example-mpi.c:20)

==31318== Address 0x6929040 is O bytes inside a block of size 396 alloc'd
==31318== at 0x4C27AAA: malloc (vg_replace_malloc.c:291)

==31318== by 0x4007BC: main (valgrind-example-mpi.c:8)



==31318==

==31318== Unaddressable byte(s) found during client check request
==31318== at 0x4E3591D: check_mem_is_defined_untyped (libmpiwrap.c:952)
==31318== by 0x4E5D06D: PMPI_Bcast (libmpiwrap.c:908)

==31318== by 0x400911: main (valgrind-example-mpi.c:20)

==31318== Address 0x69291cc is 0 bytes after a block of size 396 alloc'd
==31318== at 0x4C27AAA: malloc (vg_replace_malloc.c:291)

==31318== by 0x4007BC: main (valgrind-example-mpi.c:8)

==31318==

==31318==

==31318== HEAP SUMMARY:

==31318== in use at exit: 3,172 bytes in 67 blocks

==31318== total heap usage: 191 allocs, 124 frees, 81,203 bytes allocated
==31318==

==31319==

==31319== HEAP SUMMARY:

==31319== in use at exit: 3,172 bytes in 67 blocks

==31319== total heap usage: 175 allocs, 108 frees, 48,435 bytes allocated
==31319==

==31318== LEAK SUMMARY:

==31318== definitely lost: 408 bytes in 3 blocks

==31318== indirectly lost: 256 bytes in 1 blocks

==31318== possibly lost: O bytes in O blocks

==31318== still reachable: 2,508 bytes in 63 blocks

==31318== suppressed: 0 bytes in O blocks

==31318== Rerun with --leak-check=full to see details of leaked memory
==31318==

==31318== For counts of detected and suppressed errors, rerun with: -v
==31318== Use —-track-origins=yes to see where uninitialised values come from
==31318== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 4 from 4)
==31319== LEAK SUMMARY:

==31319== definitely lost: 408 bytes in 3 blocks

==31319== indirectly lost: 256 bytes in 1 blocks

==31319== possibly lost: O bytes in O blocks

==31319== still reachable: 2,508 bytes in 63 blocks

==31319== suppressed: 0 bytes in O blocks

==31319== Rerun with --leak-check=full to see details of leaked memory
==31319==

==31319== For counts of detected and suppressed errors, rerun with: -v
==31319== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 4 from 4)

We can see that Valgrind has reported use of unitialised memory on the master
process (which reads the array to be broadcasted) and use of unaddresable
memory on both processes.



	Valgrind
	About Valgrind
	Installed versions
	Usage
	Usage with MPI


