
MPI

Setting up MPI Environment

The Anselm cluster provides several implementations of the MPI library:

MPI
Li-
brary

Thread
sup-
port

The
highly
op-
ti-
mized
and
sta-
ble
bul-
lxmpi 1.2.4.1

Partial
thread
sup-
port
up
to
MPI_THREAD_SERIALIZED

The
In-
tel
MPI
4.1

Full
thread
sup-
port
up
to
MPI_THREAD_MULTIPLE

The <a
href=“http://www.open-
mpi.org/”
Open-
MPI
1.6.5

Full
thread
sup-
port
up
to
MPI_THREAD_MULTIPLE,
BLCR
c/r
sup-
port

1

MPI
Li-
brary

Thread
sup-
port

The
Open-
MPI
1.8.1

Full
thread
sup-
port
up
to
MPI_THREAD_MULTIPLE,
MPI-
3.0
sup-
port

The
mpich2
1.9

Full
thread
sup-
port
up
to
MPI_THREAD_MULTIPLE,
BLCR
c/r
sup-
port

MPI libraries are activated via the environment modules.

Look up section modulefiles/mpi in module avail

$ module avail
------------------------- /opt/modules/modulefiles/mpi -------------------------
bullxmpi/bullxmpi-1.2.4.1 mvapich2/1.9-icc
impi/4.0.3.008 openmpi/1.6.5-gcc(default)
impi/4.1.0.024 openmpi/1.6.5-gcc46
impi/4.1.0.030 openmpi/1.6.5-icc
impi/4.1.1.036(default) openmpi/1.8.1-gcc
openmpi/1.8.1-gcc46
mvapich2/1.9-gcc(default) openmpi/1.8.1-gcc49
mvapich2/1.9-gcc46 openmpi/1.8.1-icc

There are default compilers associated with any particular MPI implementation.
The defaults may be changed, the MPI libraries may be used in conjunction with

2

any compiler. The defaults are selected via the modules in following way

Module MPI Compiler suite ——– |—|—|——– —————————————
—————————————– PrgEnv-gnu bullxmpi-1.2.4.1 bullx GNU 4.4.6
PrgEnv-intel Intel MPI 4.1.1 Intel 13.1.1 bullxmpi bullxmpi-1.2.4.1 none, select
via module impi Intel MPI 4.1.1 none, select via module openmpi OpenMPI 1.6.5
GNU compilers 4.8.1, GNU compilers 4.4.6, Intel Compilers openmpi OpenMPI
1.8.1 GNU compilers 4.8.1, GNU compilers 4.4.6, GNU compilers 4.9.0, Intel
Compilers mvapich2 MPICH2 1.9 GNU compilers 4.8.1, GNU compilers 4.4.6,
Intel Compilers

Examples:

$ module load openmpi

In this example, we activate the latest openmpi with latest GNU compilers

To use openmpi with the intel compiler suite, use

$ module load intel
$ module load openmpi/1.6.5-icc

In this example, the openmpi 1.6.5 using intel compilers is activated

Compiling MPI Programs

After setting up your MPI environment, compile your program using one of the
mpi wrappers

$ mpicc -v
$ mpif77 -v
$ mpif90 -v

Example program:

// helloworld_mpi.c
#include <stdio.h>

#include<mpi.h>

int main(int argc, char **argv) {

int len;
int rank, size;
char node[MPI_MAX_PROCESSOR_NAME];

// Initiate MPI
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);

3

// Get hostame and print
MPI_Get_processor_name(node,&len);
printf("Hello world! from rank %d of %d on host %sn",rank,size,node);

// Finalize and exit
MPI_Finalize();

return 0;
}

Compile the above example with

$ mpicc helloworld_mpi.c -o helloworld_mpi.x

Running MPI Programs

The MPI program executable must be compatible with the loaded MPI module.
Always compile and execute using the very same MPI module.

It is strongly discouraged to mix mpi implementations. Linking an application
with one MPI implementation and running mpirun/mpiexec form other imple-
mentation may result in unexpected errors.

The MPI program executable must be available within the same path on all
nodes. This is automatically fulfilled on the /home and /scratch filesystem.
You need to preload the executable, if running on the local scratch /lscratch
filesystem.

Ways to run MPI programs

Optimal way to run an MPI program depends on its memory requirements,
memory access pattern and communication pattern.

Consider these ways to run an MPI program: 1. One MPI process per node, 16
threads per process 2. Two MPI processes per node, 8 threads per process 3. 16
MPI processes per node, 1 thread per process.

One MPI** process per node, using 16 threads, is most useful for memory
demanding applications, that make good use of processor cache memory and are
not memory bound. This is also a preferred way for communication intensive
applications as one process per node enjoys full bandwidth access to the network
interface.

Two MPI** processes per node, using 8 threads each, bound to processor socket
is most useful for memory bandwidth bound applications such as BLAS1 or FFT,
with scalable memory demand. However, note that the two processes will share

4

access to the network interface. The 8 threads and socket binding should ensure
maximum memory access bandwidth and minimize communication, migration
and numa effect overheads.

Important! Bind every OpenMP thread to a core!

In the previous two cases with one or two MPI processes per node, the oper-
ating system might still migrate OpenMP threads between cores. You want
to avoid this by setting the KMP_AFFINITY or GOMP_CPU_AFFINITY
environment variables.

16 MPI** processes per node, using 1 thread each bound to processor core is
most suitable for highly scalable applications with low communication demand.

Running OpenMPI

The bullxmpi-1.2.4.1 and OpenMPI 1.6.5 are both based on OpenMPI.
Read more on how to run OpenMPI based MPI.

Running MPICH2

The Intel MPI and mpich2 1.9 are MPICH2 based implementations. Read
more on how to run MPICH2 based MPI.

The Intel MPI may run on the Intel Xeon Phi accelerators as well. Read more
on how to run Intel MPI on accelerators.

5

http://www.open-mpi.org/
Running_OpenMPI.html
running-mpich2.html
../intel-xeon-phi.html

	MPI
	Setting up MPI Environment
	Compiling MPI Programs
	Running MPI Programs
	Ways to run MPI programs
	Running OpenMPI
	Running MPICH2

