# MPI4Py (MPI for Python) ## Introduction MPI for Python provides bindings of the Message Passing Interface (MPI) standard for the Python programming language, allowing any Python program to exploit multiple processors. This package is constructed on top of the MPI-1/2 specifications and provides an object oriented interface which closely follows MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any picklable Python object, as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy arrays, builtin bytes/string/array objects). On Anselm MPI4Py is available in standard Python modules. ## Modules MPI4Py is build for OpenMPI. Before you start with MPI4Py you need to load Python and OpenMPI modules. ```console $ ml av Python/ --------------------------------------- /apps/modules/lang ------------------------- Python/2.7.8-intel-2015b Python/2.7.11-intel-2016a Python/3.5.1-intel-2017.00 Python/2.7.11-intel-2017a Python/2.7.9-foss-2015b Python/2.7.9-intel-2015b Python/2.7.11-foss-2016a Python/3.5.2-foss-2016a Python/3.5.1 Python/2.7.9-foss-2015g Python/3.4.3-intel-2015b Python/2.7.9 Python/2.7.11-intel-2015b Python/3.5.2 $ ml av OpenMPI/ --------------------------------------- /apps/modules/mpi -------------------------- OpenMPI/1.8.6-GCC-4.4.7-system OpenMPI/1.8.8-GNU-4.9.3-2.25 OpenMPI/1.10.1-GCC-4.9.3-2.25 OpenMPI/1.8.6-GNU-5.1.0-2.25 OpenMPI/1.8.8-GNU-5.1.0-2.25 OpenMPI/1.10.1-GNU-4.9.3-2.25 OpenMPI/1.8.8-iccifort-2015.3.187-GNU-4.9.3-2.25 OpenMPI/2.0.2-GCC-6.3.0-2.27 ``` !!! Warning "" * modules Python/x.x.x-intel... - intel MPI * modules Python/x.x.x-foss... - OpenMPI * modules Python/x.x.x - without MPI ## Execution You need to import MPI to your python program. Include the following line to the python script: ```cpp from mpi4py import MPI ``` The MPI4Py enabled python programs [execute as any other OpenMPI](Running_OpenMPI/) code.The simpliest way is to run ```console $ mpiexec python <script>.py ``` For example ```console $ mpiexec python hello_world.py ``` ## Examples ### Hello World! ```cpp from mpi4py import MPI comm = MPI.COMM_WORLD print "Hello! I'm rank %d from %d running in total..." % (comm.rank, comm.size) comm.Barrier() # wait for everybody to synchronize ``` ### Collective Communication With NumPy Arrays ```cpp from mpi4py import MPI from __future__ import division import numpy as np comm = MPI.COMM_WORLD print("-"*78) print(" Running on %d cores" % comm.size) print("-"*78) comm.Barrier() # Prepare a vector of N=5 elements to be broadcasted... N = 5 if comm.rank == 0: A = np.arange(N, dtype=np.float64) # rank 0 has proper data else: A = np.empty(N, dtype=np.float64) # all other just an empty array # Broadcast A from rank 0 to everybody comm.Bcast( [A, MPI.DOUBLE] ) # Everybody should now have the same... print "[%02d] %s" % (comm.rank, A) ``` Execute the above code as: ```console $ qsub -q qexp -l select=4:ncpus=16:mpiprocs=16:ompthreads=1 -I $ ml Python $ ml OpenMPI $ mpiexec -bycore -bind-to-core python hello_world.py ``` In this example, we run MPI4Py enabled code on 4 nodes, 16 cores per node (total of 64 processes), each python process is bound to a different core. More examples and documentation can be found on [MPI for Python webpage](https://pypi.python.org/pypi/mpi4py).