diff --git a/src/LearningMethods/LearningMethods.cpp b/src/LearningMethods/LearningMethods.cpp
index f816582a109c07326370322cc94ed821e266b0c8..545784952abd238a6c6f383157602d73b2f4fd0a 100644
--- a/src/LearningMethods/LearningMethods.cpp
+++ b/src/LearningMethods/LearningMethods.cpp
@@ -1,13 +1,8 @@
-/**
- * DESCRIPTION OF THE FILE
- *
- * @author Michal KravÄŤenko
- * @date 10.9.18 -
- */
 
 #include "LearningMethod.h"
 
 namespace lib4neuro {
+    //TODO NOT SAFE!!!!
     std::vector<double>* LearningMethod::get_parameters() {
         return &this->optimal_parameters;
     }
@@ -17,4 +12,4 @@ namespace lib4neuro {
         this->optimize(ef,
                        ofs);
     }
-}
\ No newline at end of file
+}
diff --git a/src/LearningMethods/ParticleSwarm.cpp b/src/LearningMethods/ParticleSwarm.cpp
index ccc823fee556a6d52d0a26cc89121205c6216fa0..dc3b35080ae059dd148e4c6874ed4783de7f30ed 100644
--- a/src/LearningMethods/ParticleSwarm.cpp
+++ b/src/LearningMethods/ParticleSwarm.cpp
@@ -299,7 +299,7 @@ namespace lib4neuro {
 
 
         /* initialize the particles */
-        for (size_t pi = 0; pi < this->n_particles; ++pi) {
+        for (size_t pi = 0; pi < this->particle_swarm.size(); ++pi) {
             if (this->particle_swarm.at(pi)) {
                 delete this->particle_swarm.at(pi);
             }
@@ -548,9 +548,10 @@ namespace lib4neuro {
         this->w = w;
         this->n_particles = n_particles;
         this->iter_max = iter_max;
+        this->particle_swarm.resize(this->n_particles);
         std::fill(this->particle_swarm.begin(),
                   this->particle_swarm.end(),
                   nullptr);
     }
 
-}
\ No newline at end of file
+}
diff --git a/src/Neuron/NeuronBiased.cpp b/src/Neuron/NeuronBiased.cpp
index 12974082e287e72898b839d40fb3a79267f5ea3a..65fd468d79f49196c69887862ddaf69058e19d8b 100644
--- a/src/Neuron/NeuronBiased.cpp
+++ b/src/Neuron/NeuronBiased.cpp
@@ -1,9 +1,3 @@
-/**
- * DESCRIPTION OF THE FILE
- *
- * @author Michal KravÄŤenko
- * @date 15.3.19 -
- */
 
 #include <boost/serialization/export.hpp>
 
@@ -40,4 +34,4 @@ namespace lib4neuro {
         return output;
     }
 
-}//end of namespace lib4neuro
\ No newline at end of file
+}//end of namespace lib4neuro
diff --git a/src/Solvers/DESolver.cpp b/src/Solvers/DESolver.cpp
index 3a82547c833731ea4576e4e4dba3bcb81246a4cf..2262b7bed1ea79e40df4ef7d1dbefb620ff1e7a8 100644
--- a/src/Solvers/DESolver.cpp
+++ b/src/Solvers/DESolver.cpp
@@ -91,6 +91,8 @@ namespace lib4neuro {
         this->dim_i = n_inputs;
         this->dim_inn = m;
         this->n_equations = n_equations;
+        this->errors_functions_types.resize(n_equations);
+        this->errors_functions_data_sets.resize(n_equations);
 
 
 
diff --git a/src/examples/net_test_1.cpp b/src/examples/net_test_1.cpp
index f659c71281d8e73a79a7cd4561ed31e04d2615ea..deeb7841c7db3779c97f948eb13f7de67096777e 100644
--- a/src/examples/net_test_1.cpp
+++ b/src/examples/net_test_1.cpp
@@ -159,7 +159,6 @@ int main() {
                                   mse);
 
     /* Normalize data to prevent 'nan' results */
-    ds.normalize();
     net.randomize_parameters();
     optimize_via_gradient_descent(net,
                                   mse);
diff --git a/src/examples/net_test_ode_1.cpp b/src/examples/net_test_ode_1.cpp
index e431de035b4d5569d783e20a02a2c5ff4d66895a..5b06cede8dc8d44609b7a3841dd3b709337f0013 100644
--- a/src/examples/net_test_ode_1.cpp
+++ b/src/examples/net_test_ode_1.cpp
@@ -67,12 +67,17 @@ void optimize_via_particle_swarm(l4n::DESolver& solver,
 void optimize_via_gradient_descent(l4n::DESolver& solver,
                                    double accuracy) {
     printf("Solution via a gradient descent method!\n");
+    solver.randomize_parameters();
+// TODO does not work (poor design of netsum)
+//    l4n::LevenbergMarquardt leven(10000, 0, 1e-6, 1e-6, 1e-6);
+//    solver.solve(leven);
+
+
     l4n::GradientDescent gd(accuracy,
                             1000,
                             500000);
-
-    solver.randomize_parameters();
     solver.solve(gd);
+
 }
 
 void export_solution(size_t n_test_points,
diff --git a/src/examples/net_test_pde_1.cpp b/src/examples/net_test_pde_1.cpp
index 4614467783aa2b560d76184e6c6bdfcd1508fd3c..a5465a6b945845fc7eb88b482f3835dd0ffbeed6 100644
--- a/src/examples/net_test_pde_1.cpp
+++ b/src/examples/net_test_pde_1.cpp
@@ -310,7 +310,7 @@ void test_pde(double accuracy,
     }
     l4n::DataSet ds_t(&data_vec_t);
     l4n::DataSet ds_x(&data_vec_x);
-
+    std::cout << "Train data setup finished" << std::endl;
 
 
 
@@ -324,6 +324,7 @@ void test_pde(double accuracy,
     solver_01.set_error_function(2,
                                  l4n::ErrorFunctionType::ErrorFuncMSE,
                                  &ds_x);
+    std::cout << "Error function defined" << std::endl;
 
     /* Solving the equation */
     optimize_via_particle_swarm(solver_01,
@@ -373,18 +374,18 @@ int main() {
             << "********************************************************************************************************************************************"
             << std::endl;
 
-    unsigned int n_inner_neurons = 4;
-    unsigned int train_size = 50;
+    unsigned int n_inner_neurons = 2;
+    unsigned int train_size = 5;
     double accuracy = 1e-3;
     double ds = 0.0;
     double de = 1.0;
 
-    unsigned int test_size = 100;
+    unsigned int test_size = 10;
     double ts = ds;
     double te = de + 0;
 
-    size_t particle_swarm_max_iters = 1000;
-    size_t n_particles = 50;
+    size_t particle_swarm_max_iters = 10;
+    size_t n_particles = 5;
     test_pde(accuracy,
              n_inner_neurons,
              train_size,
diff --git a/src/examples/x2_fitting.cpp b/src/examples/x2_fitting.cpp
index 7d8d3fb2b2b82dd8dc8164caf3c980c310fec151..86936ae3faccd147211d1701f71b074d19f0617b 100644
--- a/src/examples/x2_fitting.cpp
+++ b/src/examples/x2_fitting.cpp
@@ -1,4 +1,3 @@
-
 #include <iostream>
 
 #include "4neuro.h"
@@ -33,4 +32,4 @@ int main() {
     mse.eval_on_data_set(ds.get());
 
     return 0;
-}
\ No newline at end of file
+}