From 5d897b89daa71f204f60402adc586fd6297c1d07 Mon Sep 17 00:00:00 2001 From: Martin Beseda <martin.beseda@vsb.cz> Date: Fri, 22 Mar 2019 11:40:30 +0100 Subject: [PATCH] [ENH] [RUNTIME ERROR]: moved 'optimal_parameters' variable and its getter to the LearningMethod class. --- src/LearningMethods/GradientDescent.cpp | 10 +---- src/LearningMethods/GradientDescent.h | 10 ----- src/LearningMethods/GradientDescentBB.cpp | 10 +---- src/LearningMethods/GradientDescentBB.h | 10 ----- .../GradientDescentSingleItem.cpp | 6 --- .../GradientDescentSingleItem.h | 6 --- src/LearningMethods/LearningMethod.h | 9 ++++- src/LearningMethods/LearningMethods.cpp | 4 ++ src/LearningMethods/LearningSequence.cpp | 17 ++++----- src/LearningMethods/LearningSequence.h | 11 ------ src/LearningMethods/LevenbergMarquardt.cpp | 15 +------- src/LearningMethods/LevenbergMarquardt.h | 2 - src/LearningMethods/ParticleSwarm.cpp | 38 ++++++++----------- src/LearningMethods/ParticleSwarm.h | 10 ----- src/LearningMethods/RandomSolution.cpp | 8 ---- src/LearningMethods/RandomSolution.h | 6 --- src/Solvers/DESolver.cpp | 2 +- 17 files changed, 42 insertions(+), 132 deletions(-) diff --git a/src/LearningMethods/GradientDescent.cpp b/src/LearningMethods/GradientDescent.cpp index c82db8d6..15cd6c30 100644 --- a/src/LearningMethods/GradientDescent.cpp +++ b/src/LearningMethods/GradientDescent.cpp @@ -295,20 +295,14 @@ namespace lib4neuro { #endif } - this->optimal_parameters = params_current; + this->optimal_parameters = *params_current; // std::shared_ptr<std::vector<double>> params; // params.reset(this->optimal_parameters); - ef.get_network_instance()->copy_parameter_space( this->optimal_parameters ); + ef.get_network_instance()->copy_parameter_space( &this->optimal_parameters ); // delete gradient_current; // delete gradient_prev; // delete params_current; // delete params_prev; } - - std::vector<double> GradientDescent::get_parameters() { -// std::shared_ptr<std::vector<double>> ret; -// ret.reset(&this->optimal_parameters); - return std::vector<double>(*this->optimal_parameters); - } } diff --git a/src/LearningMethods/GradientDescent.h b/src/LearningMethods/GradientDescent.h index e8db77af..ff1a7b3f 100644 --- a/src/LearningMethods/GradientDescent.h +++ b/src/LearningMethods/GradientDescent.h @@ -41,11 +41,6 @@ namespace lib4neuro { */ long long int maximum_niters; - /** - * Vector of minima coordinates - */ - std::vector<double>* optimal_parameters = new std::vector<double>(5); - /** * Adaptive calculation of the step-size based on several historical characteristics. * ---------------------------------------------------------------------------------- @@ -112,11 +107,6 @@ namespace lib4neuro { */ LIB4NEURO_API void optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs = nullptr) override; - /** - * - * @return - */ - LIB4NEURO_API std::vector<double> get_parameters() override; }; } diff --git a/src/LearningMethods/GradientDescentBB.cpp b/src/LearningMethods/GradientDescentBB.cpp index 55d5043c..823edc1f 100644 --- a/src/LearningMethods/GradientDescentBB.cpp +++ b/src/LearningMethods/GradientDescentBB.cpp @@ -209,12 +209,12 @@ namespace lib4neuro { #endif } - this->optimal_parameters = params_best; + this->optimal_parameters = *params_best; // ef.analyze_error_gradient(*params_current, *gradient_current, 1.0, this->batch); // std::vector<double>* params; // params.reset(this->optimal_parameters); - ef.get_network_instance()->copy_parameter_space(this->optimal_parameters); + ef.get_network_instance()->copy_parameter_space(&this->optimal_parameters); // // delete gradient_current; // delete gradient_prev; @@ -223,10 +223,4 @@ namespace lib4neuro { // delete params_best; } - std::vector<double> GradientDescentBB::get_parameters() { -// std::vector<double>* ret; -// ret.reset(&this->optimal_parameters); - return std::vector<double>(*this->optimal_parameters); - } - } diff --git a/src/LearningMethods/GradientDescentBB.h b/src/LearningMethods/GradientDescentBB.h index db5008ad..5284c281 100644 --- a/src/LearningMethods/GradientDescentBB.h +++ b/src/LearningMethods/GradientDescentBB.h @@ -52,11 +52,6 @@ namespace lib4neuro { */ long long int maximum_niters; - /** - * Vector of minima coordinates - */ - std::vector<double>* optimal_parameters = new std::vector<double>(5); - public: /** @@ -78,11 +73,6 @@ namespace lib4neuro { */ LIB4NEURO_API void optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs = nullptr) override; - /** - * - * @return - */ - LIB4NEURO_API std::vector<double> get_parameters() override; }; } diff --git a/src/LearningMethods/GradientDescentSingleItem.cpp b/src/LearningMethods/GradientDescentSingleItem.cpp index 6d33cbdd..58d473e6 100644 --- a/src/LearningMethods/GradientDescentSingleItem.cpp +++ b/src/LearningMethods/GradientDescentSingleItem.cpp @@ -105,10 +105,4 @@ namespace lib4neuro { } - std::vector<double> GradientDescentSingleItem::get_parameters() { -// std::shared_ptr<std::vector<double>> ret; -// ret.reset(&this->optimal_parameters); - return std::vector<double>(*this->optimal_parameters); - } - } diff --git a/src/LearningMethods/GradientDescentSingleItem.h b/src/LearningMethods/GradientDescentSingleItem.h index 61084edc..fccca9f4 100644 --- a/src/LearningMethods/GradientDescentSingleItem.h +++ b/src/LearningMethods/GradientDescentSingleItem.h @@ -92,12 +92,6 @@ namespace lib4neuro { * @param ef */ LIB4NEURO_API void optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs = nullptr) override; - - /** - * - * @return - */ - LIB4NEURO_API std::vector<double> get_parameters() override; }; } diff --git a/src/LearningMethods/LearningMethod.h b/src/LearningMethods/LearningMethod.h index 29b36233..aadc75a3 100644 --- a/src/LearningMethods/LearningMethod.h +++ b/src/LearningMethods/LearningMethod.h @@ -14,6 +14,13 @@ namespace lib4neuro { class LearningMethod { + protected: + + /** + * Vector of minima coordinates + */ + std::vector<double> optimal_parameters; + public: /** * Runs the method specific learning algorithm minimizing the given error function @@ -24,7 +31,7 @@ namespace lib4neuro { /** * Updates the optimal weight&bias settings in the passed vector */ - virtual std::vector<double> get_parameters() = 0; + virtual std::vector<double>* get_parameters(); }; class GradientLearningMethod : public LearningMethod { diff --git a/src/LearningMethods/LearningMethods.cpp b/src/LearningMethods/LearningMethods.cpp index 8c4b3b48..f1aba80e 100644 --- a/src/LearningMethods/LearningMethods.cpp +++ b/src/LearningMethods/LearningMethods.cpp @@ -8,6 +8,10 @@ #include "LearningMethod.h" namespace lib4neuro { + std::vector<double>* LearningMethod::get_parameters() { + return &this->optimal_parameters; + } + void GradientLearningMethod::optimize(ErrorFunction& ef, std::ofstream* ofs) { this->optimize(ef, ofs); diff --git a/src/LearningMethods/LearningSequence.cpp b/src/LearningMethods/LearningSequence.cpp index 33e943cd..92bf350d 100644 --- a/src/LearningMethods/LearningSequence.cpp +++ b/src/LearningMethods/LearningSequence.cpp @@ -13,15 +13,11 @@ namespace lib4neuro { LearningSequence::LearningSequence( double tolerance, int max_n_cycles ){ this->tol = tolerance; this->max_number_of_cycles = max_n_cycles; -// this->best_parameters = new std::vector<double>(); +// this->optimal_parameters = new std::vector<double>(); } LearningSequence::~LearningSequence() = default; - std::vector<double> LearningSequence::get_parameters() { - return this->best_parameters; - } - void LearningSequence::add_learning_method(std::shared_ptr<LearningMethod> method) { this->learning_sequence.push_back( method ); } @@ -37,7 +33,7 @@ namespace lib4neuro { double the_best_error = error; int mcycles = this->max_number_of_cycles, cycle_idx = 0; -// std::shared_ptr<std::vector<double>> best_params = std::make_shared<std::vector<double>>(this->best_parameters); +// std::shared_ptr<std::vector<double>> best_params = std::make_shared<std::vector<double>>(this->optimal_parameters); std::vector<double> params; while( error > this->tol && mcycles != 0){ mcycles--; @@ -52,7 +48,8 @@ namespace lib4neuro { m->optimize( ef, ofs ); puts("*********************** 9"); - params = m->get_parameters(); + //TODO do NOT copy vectors if not needed + params = *m->get_parameters(); error = ef.eval(¶ms); puts("*********************** 10"); @@ -64,18 +61,18 @@ namespace lib4neuro { if( error < the_best_error ){ the_best_error = error; - this->best_parameters = ef.get_parameters(); + this->optimal_parameters = ef.get_parameters(); // best_params = ef.get_parameters(); // best_params.reset(ef.get_parameters().get()); } if( error <= this->tol ){ - ef.get_network_instance()->copy_parameter_space( &this->best_parameters ); + ef.get_network_instance()->copy_parameter_space( &this->optimal_parameters ); return; } } COUT_DEBUG("Cycle: " << cycle_idx << ", the lowest error: " << the_best_error << std::endl ); } - ef.get_network_instance()->copy_parameter_space( &this->best_parameters ); + ef.get_network_instance()->copy_parameter_space( &this->optimal_parameters ); } } \ No newline at end of file diff --git a/src/LearningMethods/LearningSequence.h b/src/LearningMethods/LearningSequence.h index 1399081a..2e2b9511 100644 --- a/src/LearningMethods/LearningSequence.h +++ b/src/LearningMethods/LearningSequence.h @@ -31,11 +31,6 @@ namespace lib4neuro { */ double tol; - /** - * - */ - std::vector<double> best_parameters; // = nullptr; - /** * */ @@ -61,12 +56,6 @@ namespace lib4neuro { */ LIB4NEURO_API void optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs = nullptr) override; - /** - * - * @return - */ - LIB4NEURO_API std::vector<double> get_parameters() override; - /** * * @param method diff --git a/src/LearningMethods/LevenbergMarquardt.cpp b/src/LearningMethods/LevenbergMarquardt.cpp index 8320487a..71bc9019 100644 --- a/src/LearningMethods/LevenbergMarquardt.cpp +++ b/src/LearningMethods/LevenbergMarquardt.cpp @@ -28,11 +28,6 @@ struct lib4neuro::LevenbergMarquardt::LevenbergMarquardtImpl { unsigned long batch_size; - /** - * Vector of minimum coordinates - */ - std::vector<double> optimal_parameters; - /** * Returns Jacobian matrix of the residual function using the backpropagation algorithm * Returns the right hand side of the resulting system of equations related to data errors in @data and approximating function @f @@ -232,7 +227,7 @@ namespace lib4neuro { COUT_DEBUG("Iteration: " << iter_counter << " Current error: " << current_err << ", Current gradient norm: " << gradient_norm << ", Direction norm: " << update_norm << std::endl); /* Store the optimized parameters */ - this->p_impl->optimal_parameters = *params_current; + this->optimal_parameters = *params_current; /* Dealloc vector of parameters */ if(params_current) { @@ -241,17 +236,11 @@ namespace lib4neuro { } // std::shared_ptr<std::vector<double>> params = std::make_shared<std::vector<double>>(this->p_impl->optimal_parameters); - ef.get_network_instance()->copy_parameter_space(&this->p_impl->optimal_parameters); + ef.get_network_instance()->copy_parameter_space(&this->optimal_parameters); // delete params_tmp; } - std::vector<double> LevenbergMarquardt::get_parameters() { -// std::shared_ptr<std::vector<double>> ret; -// ret.reset(&this->p_impl->optimal_parameters); - return this->p_impl->optimal_parameters; - } - LevenbergMarquardt::~LevenbergMarquardt() = default; } \ No newline at end of file diff --git a/src/LearningMethods/LevenbergMarquardt.h b/src/LearningMethods/LevenbergMarquardt.h index 0ae18154..1622b88f 100644 --- a/src/LearningMethods/LevenbergMarquardt.h +++ b/src/LearningMethods/LevenbergMarquardt.h @@ -47,8 +47,6 @@ namespace lib4neuro { LM_UPDATE_TYPE update_type, std::ofstream* ofs = nullptr); - std::vector<double> get_parameters() override; - ~LevenbergMarquardt(); }; diff --git a/src/LearningMethods/ParticleSwarm.cpp b/src/LearningMethods/ParticleSwarm.cpp index eadc193f..af97eb13 100644 --- a/src/LearningMethods/ParticleSwarm.cpp +++ b/src/LearningMethods/ParticleSwarm.cpp @@ -271,9 +271,9 @@ namespace lib4neuro { // delete this->domain_bounds; // } // -// if (this->p_min_glob) { -// delete this->p_min_glob; -// this->p_min_glob = nullptr; +// if (this->optimal_parameters) { +// delete this->optimal_parameters; +// this->optimal_parameters = nullptr; // } } @@ -310,10 +310,10 @@ namespace lib4neuro { } this->radius_factor *= 1.25; -// if (!this->p_min_glob) { -// this->p_min_glob = new std::vector<double>(this->func_dim); +// if (!this->optimal_parameters) { +// this->optimal_parameters = new std::vector<double>(this->func_dim); // } else { - this->p_min_glob.resize(this->func_dim); + this->optimal_parameters.resize(this->func_dim); // } size_t outer_it = 0; @@ -333,7 +333,7 @@ namespace lib4neuro { double euclidean_dist; double current_err = -1; - this->determine_optimal_coordinate_and_value(this->p_min_glob, optimal_value); + this->determine_optimal_coordinate_and_value(this->optimal_parameters, optimal_value); // for(unsigned int i = 0; i < this->n_particles; ++i){ // this->particle_swarm[i]->print_coordinate(); // } @@ -346,10 +346,10 @@ namespace lib4neuro { ////////////////////////////////////////////////// // Clustering algorithm - termination condition // ////////////////////////////////////////////////// - particle = this->determine_optimal_coordinate_and_value(this->p_min_glob, optimal_value); + particle = this->determine_optimal_coordinate_and_value(this->optimal_parameters, optimal_value); - if (std::find(global_best_vec.begin(), global_best_vec.end(), this->p_min_glob) == global_best_vec.end()) { - global_best_vec.emplace_back(this->p_min_glob); // TODO rewrite as std::set + if (std::find(global_best_vec.begin(), global_best_vec.end(), this->optimal_parameters) == global_best_vec.end()) { + global_best_vec.emplace_back(this->optimal_parameters); // TODO rewrite as std::set } cluster.insert(particle); @@ -373,7 +373,7 @@ namespace lib4neuro { for (size_t pi = 0; pi < this->n_particles; pi++) { particle = this->particle_swarm.at(pi); - tmp_velocity = particle->change_coordinate(this->w, this->c1, this->c2, this->p_min_glob, + tmp_velocity = particle->change_coordinate(this->w, this->c1, this->c2, this->optimal_parameters, global_best_vec); // particle->print_coordinate(); @@ -413,8 +413,8 @@ namespace lib4neuro { // } // } -// std::shared_ptr<std::vector<double>> coord = std::make_shared<std::vector<double>>(this->p_min_glob); - current_err = ef.eval(&this->p_min_glob); +// std::shared_ptr<std::vector<double>> coord = std::make_shared<std::vector<double>>(this->optimal_parameters); + current_err = ef.eval(&this->optimal_parameters); COUT_DEBUG(std::string("Iteration: ") << (unsigned int)(outer_it) << ". Total error: " << current_err @@ -447,7 +447,7 @@ namespace lib4neuro { << ". Objective function value: " << optimal_value << "." << std::endl ); - this->determine_optimal_coordinate_and_value(this->p_min_glob, optimal_value); + this->determine_optimal_coordinate_and_value(this->optimal_parameters, optimal_value); //TODO rewrite following output using COUT_INFO if (outer_it < this->iter_max) { /* Convergence reached */ @@ -458,8 +458,8 @@ namespace lib4neuro { } // std::shared_ptr<std::vector<double>> coord; -// coord.reset(this->p_min_glob); - ef.get_network_instance()->copy_parameter_space(&this->p_min_glob); +// coord.reset(this->optimal_parameters); + ef.get_network_instance()->copy_parameter_space(&this->optimal_parameters); delete centroid; } @@ -534,12 +534,6 @@ namespace lib4neuro { return std::sqrt(dist); } - std::vector<double> ParticleSwarm::get_parameters() { -// std::shared_ptr<std::vector<double>> ret; -// ret.reset(&this->p_min_glob); - return this->p_min_glob; - } - void ParticleSwarm::init_constructor(std::vector<double>* domain_bounds, double c1, double c2, diff --git a/src/LearningMethods/ParticleSwarm.h b/src/LearningMethods/ParticleSwarm.h index ac6d6c9d..0a80ed70 100644 --- a/src/LearningMethods/ParticleSwarm.h +++ b/src/LearningMethods/ParticleSwarm.h @@ -197,11 +197,6 @@ namespace lib4neuro { */ std::vector<double> domain_bounds; // = nullptr; - /** - * Coordinates of the found global minima - */ - std::vector<double> p_min_glob; - protected: /** * @@ -305,11 +300,6 @@ namespace lib4neuro { */ LIB4NEURO_API void optimize(lib4neuro::ErrorFunction &ef, std::ofstream* ofs = nullptr) override; - /** - * - * @return - */ - LIB4NEURO_API std::vector<double> get_parameters() override; }; } diff --git a/src/LearningMethods/RandomSolution.cpp b/src/LearningMethods/RandomSolution.cpp index f5a187de..8372d058 100644 --- a/src/LearningMethods/RandomSolution.cpp +++ b/src/LearningMethods/RandomSolution.cpp @@ -16,14 +16,6 @@ namespace lib4neuro { RandomSolution::~RandomSolution() {} - std::vector<double> RandomSolution::get_parameters() { -// std::shared_ptr<std::vector<double>> ret; -// ret.reset(&this->optimal_parameters); -// return ret; - - return this->optimal_parameters; - } - void RandomSolution::optimize(lib4neuro::ErrorFunction &ef, std::ofstream *ofs) { ef.get_network_instance()->randomize_parameters(); diff --git a/src/LearningMethods/RandomSolution.h b/src/LearningMethods/RandomSolution.h index cdcda7df..cb61a566 100644 --- a/src/LearningMethods/RandomSolution.h +++ b/src/LearningMethods/RandomSolution.h @@ -16,9 +16,6 @@ namespace lib4neuro { class RandomSolution : public lib4neuro::LearningMethod { - private: - std::vector<double> optimal_parameters; - protected: public: @@ -28,9 +25,6 @@ namespace lib4neuro { void optimize(lib4neuro::ErrorFunction &ef, std::ofstream *ofs = nullptr) override; - - std::vector<double> get_parameters() override; - }; } diff --git a/src/Solvers/DESolver.cpp b/src/Solvers/DESolver.cpp index 50fcb254..4b9df8c6 100644 --- a/src/Solvers/DESolver.cpp +++ b/src/Solvers/DESolver.cpp @@ -410,7 +410,7 @@ namespace lib4neuro { learning_method.optimize(total_error); // std::shared_ptr<std::vector<double>> params; // params.reset(learning_method.get_parameters()); - std::vector<double> params = learning_method.get_parameters(); + std::vector<double> params = *learning_method.get_parameters(); this->solution->copy_parameter_space(¶ms); printf("error after optimization: %f\n", total_error.eval(nullptr)); -- GitLab