diff --git a/include/4neuro.h b/include/4neuro.h
index 2ccc19415ff0a5eb8910422951ce84c14994c881..c963a773017eb617fbbc8a1074e8ae38ae973615 100644
--- a/include/4neuro.h
+++ b/include/4neuro.h
@@ -33,6 +33,7 @@
 #include "../src/constants.h"
 #include "../src/Coordinates/coordinates.h"
 #include "../src/LearningMethods/NelderMead.h"
+#include "../src/SymmetryFunction/ACSFParametersOptimizer.h"
 
 // Abbreviate lib4neuro namespace to l4n
 namespace l4n = lib4neuro;
diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt
index 575da7ef454ffc396f5d4bc2eb1fd3c0a40d30e1..865ac0bd50b8c578574db06064b1e8c78847050b 100644
--- a/src/CMakeLists.txt
+++ b/src/CMakeLists.txt
@@ -120,6 +120,7 @@ IF("${BUILD_LIB}" STREQUAL "yes")
         Reader/Reader.cpp
         Coordinates/coordinates.cpp
         LearningMethods/NelderMead.cpp
+        SymmetryFunction/ACSFParametersOptimizer.cpp
     )
 
     # Detect Threading library
diff --git a/src/ErrorFunction/ErrorFunctions.cpp b/src/ErrorFunction/ErrorFunctions.cpp
index 45139360e8460a2ccd5e6b35b8a5885fb5494589..7e67dc32d87bbf58bc7dbbcc1ccac1f5a0fab293 100644
--- a/src/ErrorFunction/ErrorFunctions.cpp
+++ b/src/ErrorFunction/ErrorFunctions.cpp
@@ -15,6 +15,14 @@ namespace lib4neuro {
         return this->dimension;
     }
 
+    std::vector<NeuralNetwork*>& ErrorFunction::get_nets() {
+        return nets;
+    }
+
+    DataSet* ErrorFunction::get_dataset() const {
+        return ds;
+    }
+
     void MSE::divide_data_train_test(double percent_test) {
         size_t ds_size = this->ds->get_n_elements();
 
diff --git a/src/ErrorFunction/ErrorFunctions.h b/src/ErrorFunction/ErrorFunctions.h
index f15e10d2cfbfbfe0b282526a7ee5854b10a271bd..d3aa5126d749e40f89017b0c19503ea8d5a42ca7 100644
--- a/src/ErrorFunction/ErrorFunctions.h
+++ b/src/ErrorFunction/ErrorFunctions.h
@@ -232,6 +232,10 @@ namespace lib4neuro {
          */
         virtual void randomize_parameters(double scaling) = 0;
 
+        [[nodiscard]] std::vector<NeuralNetwork*>& get_nets();
+
+        [[nodiscard]] DataSet* get_dataset() const;
+
     protected:
 
         /**
diff --git a/src/LearningMethods/NelderMead.cpp b/src/LearningMethods/NelderMead.cpp
index 15db89df126ce00a76133dc41ae9393860e7e3c9..8c43c2a85d21a4d46e352653c1a0573d243dcec0 100644
--- a/src/LearningMethods/NelderMead.cpp
+++ b/src/LearningMethods/NelderMead.cpp
@@ -141,7 +141,7 @@ void lib4neuro::NelderMead::optimize(lib4neuro::ErrorFunction& ef,
         ef.set_parameters(this->optimal_parameters);
 
         /* Termination condition */
-
+        //TODO
 
         /* Compute centroid */
         arma::Col<double> centroid(problem_dim);
diff --git a/src/Network/ACSFNeuralNetwork.cpp b/src/Network/ACSFNeuralNetwork.cpp
index c2231666ceeb97bd0dd41ddbc0760d5b9ef8235e..9ab44255af60f1801a68aa2db5ad165c5ebc9f2b 100644
--- a/src/Network/ACSFNeuralNetwork.cpp
+++ b/src/Network/ACSFNeuralNetwork.cpp
@@ -7,6 +7,7 @@
 #include "../exceptions.h"
 #include "../settings.h"
 #include "ACSFNeuralNetwork.h"
+#include "../ErrorFunction/ErrorFunctions.h"
 
 lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBOL, Element*>& elements,
                                                 std::vector<ELEMENT_SYMBOL>& elements_list,
@@ -24,6 +25,10 @@ lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBO
         }
     }
 
+    /* Save info about elements */
+    this->elements = &elements;
+    this->elements_list = &elements_list;
+
     /* Construct the neural network */
     std::vector<size_t> inputs;
 
@@ -46,7 +51,7 @@ lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBO
 		
         /* Create input neurons for sub-net */
         std::shared_ptr<NeuronLinear> inp_n;
-        for(size_t j = 0; j < elements[elements_list.at(i)]->getSymmetryFunctions().size(); j++) {
+        for(size_t j = 0; j < elements[elements_list.at(i)]->getSymmetryFunctions()->size(); j++) {
             inp_n = std::make_shared<NeuronLinear>();
             last_neuron_idx = this->add_neuron(inp_n, BIAS_TYPE::NO_BIAS);
             previous_layer.emplace_back(last_neuron_idx);
@@ -136,52 +141,21 @@ lib4neuro::ACSFNeuralNetwork::ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBO
             new_layer.clear();
         }
 
-        /* Create hidden layers in sub-net */
-//        std::vector<unsigned int> n_neurons = n_hidden_neurons[elements_list.at(i)];
-//        std::vector<NEURON_TYPE> types = type_hidden_neurons[elements_list.at(i)];
-//        for(size_t j = 0; j < n_neurons.size(); j++) { /* Iterate over hidden layers */
-//            /* Create hidden neurons */
-//            for(size_t k = 0; k < n_neurons.at(j); k++) {
-//                std::shared_ptr<Neuron> hid_n;
-//                switch(types.at(j)) {
-//                    case NEURON_TYPE::LOGISTIC: {
-//                        hid_n = std::make_shared<NeuronLogistic>();
-//                        break;
-//                    }
-//                    case NEURON_TYPE::BINARY: {
-//                        hid_n = std::make_shared<NeuronBinary>();
-//                        break;
-//                    }
-//                    case NEURON_TYPE::CONSTANT: {
-//                        hid_n = std::make_shared<NeuronConstant>();
-//                        break;
-//                    }
-//                    case NEURON_TYPE::LINEAR: {
-//                        hid_n = std::make_shared<NeuronLinear>();
-//                        break;
-//                    }
-//                }
-//
-//                neuron_idx = this->add_neuron(hid_n, BIAS_TYPE::NEXT_BIAS);
-//                new_layer.emplace_back(neuron_idx);
-//
-//                /* Connect hidden neuron to the previous layer */
-//                for(auto prev_n : previous_layer) {
-//                    this->add_connection_simple(prev_n, neuron_idx, SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT);
-//                }
-//                previous_layer = new_layer;
-//                new_layer.clear();
-//            }
-//        }
-
         /* Create output neurons for sub-net */
         for(auto prev_n : previous_layer) {
             this->add_connection_constant(prev_n, outputs[ 0 ], 1.0);
         }
-		
     }
 
     /* Specify network inputs and outputs */
     this->specify_input_neurons(inputs);
     this->specify_output_neurons(outputs);
 }
+
+std::unordered_map<lib4neuro::ELEMENT_SYMBOL, lib4neuro::Element*>* lib4neuro::ACSFNeuralNetwork::get_elements() {
+    return this->elements;
+}
+
+std::vector<lib4neuro::ELEMENT_SYMBOL>* lib4neuro::ACSFNeuralNetwork::get_elements_list() {
+    return this->elements_list;
+}
diff --git a/src/Network/ACSFNeuralNetwork.h b/src/Network/ACSFNeuralNetwork.h
index 2d6fa571d5924a089530b0dd35a1b2beab05cbf8..071c58fb2b867ef6ac0942ac14b9daaac43814d3 100644
--- a/src/Network/ACSFNeuralNetwork.h
+++ b/src/Network/ACSFNeuralNetwork.h
@@ -9,15 +9,25 @@
 
 #include "NeuralNetwork.h"
 #include "../DataSet/DataSet.h"
+#include "../SymmetryFunction/SymmetryFunction.h"
 
 namespace lib4neuro {
     class ACSFNeuralNetwork : public NeuralNetwork {
+    private:
+        std::unordered_map<ELEMENT_SYMBOL, Element*>* elements;
+
+        std::vector<ELEMENT_SYMBOL>* elements_list;
+
     public:
         LIB4NEURO_API explicit ACSFNeuralNetwork(std::unordered_map<ELEMENT_SYMBOL, Element*>& elements,
                                                  std::vector<ELEMENT_SYMBOL>& elements_list,
                                                  bool with_charge,
                                                  std::unordered_map<ELEMENT_SYMBOL, std::vector<unsigned int >> n_hidden_neurons,
                                                  std::unordered_map<ELEMENT_SYMBOL, std::vector<NEURON_TYPE>> type_hidden_neurons);
+
+        LIB4NEURO_API std::unordered_map<ELEMENT_SYMBOL, Element*>* get_elements();
+
+        LIB4NEURO_API std::vector<ELEMENT_SYMBOL>* get_elements_list();
     };
 }
 
diff --git a/src/Network/NeuralNetwork.cpp b/src/Network/NeuralNetwork.cpp
index a492ddeb05c70f0eb209e2fbf2bba39eabe7f151..338b1595724f4a2fd2566c90a40b982ada589ffb 100644
--- a/src/Network/NeuralNetwork.cpp
+++ b/src/Network/NeuralNetwork.cpp
@@ -271,7 +271,7 @@ namespace lib4neuro {
         double potential, bias;
         int    bias_idx;
 
-        this->copy_parameter_space(custom_weights_and_biases);
+        this->copy_parameter_space(custom_weights_and_biases);  // TODO rewrite, so the original parameters are not edited!
 
         this->analyze_layer_structure();
 
@@ -292,6 +292,7 @@ namespace lib4neuro {
         for (auto layer: this->neuron_layers_feedforward) {
             /* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */
 
+//#pragma omp parallel for collapse(3)
             for (auto si: *layer) {
                 bias      = 0.0;
                 bias_idx  = this->neuron_bias_indices.at(si);
@@ -1057,5 +1058,13 @@ namespace lib4neuro {
         return std::make_pair(*std::min_element(this->connection_weights.begin(), this->connection_weights.end()),
                               *std::max_element(this->connection_weights.begin(), this->connection_weights.end()));
     }
+
+    size_t NeuralNetwork::get_input_neurons_number() {
+        return this->input_neuron_indices.size();
+    }
+
+    size_t NeuralNetwork::get_output_neurons_number() {
+        return this->output_neuron_indices.size();
+    }
 }
 
diff --git a/src/Network/NeuralNetwork.h b/src/Network/NeuralNetwork.h
index f6c1b157a1c8605b17679e185df1a5b30c883194..303e5f67affdc7f57b298e6016e83602eebed172 100644
--- a/src/Network/NeuralNetwork.h
+++ b/src/Network/NeuralNetwork.h
@@ -494,6 +494,10 @@ namespace lib4neuro {
         //TODO WHY IS THIS HERE?
         LIB4NEURO_API void set_normalization_strategy_instance(NormalizationStrategy* ns);
 
+        LIB4NEURO_API size_t get_input_neurons_number();
+
+        LIB4NEURO_API size_t get_output_neurons_number();
+
     }; // class NeuralNetwork
 
     class FullyConnectedFFN : public NeuralNetwork {
diff --git a/src/Reader/XYZReader.cpp b/src/Reader/XYZReader.cpp
index aa68f95bba8f2d9454ad3dc438d285ce7f75b65d..9214f415b3ed794931090ffb6693edded928442c 100644
--- a/src/Reader/XYZReader.cpp
+++ b/src/Reader/XYZReader.cpp
@@ -150,7 +150,7 @@ void lib4neuro::XYZReader::transform_input_to_acsf(std::unordered_map<ELEMENT_SY
         double coord_val;
         for(size_t i = 0; i < particles.size(); i++) { /* Iterate over all the particles */
             single_coords_check.clear();
-            for (auto sym_func : element_description[particles.at(i).first]->getSymmetryFunctions()) {
+            for (auto sym_func : *element_description[particles.at(i).first]->getSymmetryFunctions()) {
                 coord_val = sym_func->eval(i, particles);
                 acsf_coords.emplace_back(coord_val);
                 single_coords_check.emplace_back(coord_val);
@@ -180,9 +180,9 @@ void lib4neuro::XYZReader::transform_input_to_acsf(std::unordered_map<ELEMENT_SY
             THROW_RUNTIME_ERROR("Not all descriptors are unique with currently specified symmetry functions!");
         }
 
-        if(this->acsf_data_set == nullptr) {
+//        if(this->acsf_data_set == nullptr) {
             this->acsf_data_set = std::make_shared<DataSet>();
-        }
+//        }
 
         this->acsf_data_set->add_data_pair(acsf_coords, configuration.second);
         acsf_coords.clear();
@@ -208,9 +208,9 @@ lib4neuro::ELEMENT_SYMBOL lib4neuro::XYZReader::get_element_symbol(std::string s
 
 std::shared_ptr<lib4neuro::DataSet>
 lib4neuro::XYZReader::get_acsf_data_set(std::unordered_map<ELEMENT_SYMBOL, Element*>& element_description) {
-    if(acsf_data_set == nullptr) {
+//    if(acsf_data_set == nullptr) {
         this->transform_input_to_acsf(element_description);
-    }
+//    }
     return this->acsf_data_set;
 }
 
diff --git a/src/SymmetryFunction/ACSFParametersOptimizer.cpp b/src/SymmetryFunction/ACSFParametersOptimizer.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..a83cbca9b7b87753b2e9cc97ee5a37f48e214154
--- /dev/null
+++ b/src/SymmetryFunction/ACSFParametersOptimizer.cpp
@@ -0,0 +1,148 @@
+//
+// Created by martin on 10.09.19.
+//
+
+#include <algorithm>
+#include <random>
+#include <unordered_map>
+
+#include "Reader/XYZReader.h"
+#include "../exceptions.h"
+#include "ACSFParametersOptimizer.h"
+#include "../Network/ACSFNeuralNetwork.h"
+#include "../LearningMethods/GradientDescentBB.h"
+
+lib4neuro::ACSFParametersOptimizer::ACSFParametersOptimizer(lib4neuro::ErrorFunction* ef, XYZReader* reader) {
+    this->error_func = ef;
+
+    if(this->error_func->get_nets().size() > 1) {
+        THROW_LOGIC_ERROR("Only single network can be passed as an argument!");
+    }
+
+    this->net = dynamic_cast<ACSFNeuralNetwork*>(this->error_func->get_nets().at(0));
+    this->data_set = this->error_func->get_dataset();
+    this->reader = reader;
+}
+
+void lib4neuro::ACSFParametersOptimizer::fit_ACSF_parameters(std::vector<SYMMETRY_FUNCTION_PARAMETER>& fitted_params,
+                                                             bool random_init_params) {
+
+    /* Seed the random numbers' generator */
+    std::random_device rd{};
+    std::mt19937 gen{rd()};
+
+    DataSet* ds;
+
+    GradientDescentBB gd(1e-6,
+                         1000,
+                         10000);
+
+    /* Construct and train a new linear neural network to evaluate the chosen symmetry functions' parameters */
+    std::vector<unsigned int> neuron_numbers = {static_cast<unsigned int>(this->net->get_input_neurons_number()), 1};
+    std::vector<NEURON_TYPE> type_hidden_neurons = {};
+    FullyConnectedFFN nn(&neuron_numbers, &type_hidden_neurons);
+
+    /* Initial parameters' values */
+    std::unordered_map<SYMMETRY_FUNCTION_PARAMETER, double> init_param_values;
+    std::normal_distribution<> d{1, 10};  // TODO make probability distribution choice more flexible by adding function parameters
+    std::uniform_real_distribution<> d_uni(0, 2);
+    std::vector<short int> shift_max_vals = {-1, 1};
+    if(random_init_params) {
+            /* Iterate over element's description */
+            for(auto el : *this->net->get_elements()) {
+                for(auto func : *el.second->getSymmetryFunctions()) {
+                    for (auto param : *func->get_parameters()) {
+                        /* Check, if the parameter is supposed to be optimized */
+                        if (std::find(fitted_params.begin(),
+                                      fitted_params.end(),
+                                      param.first) != fitted_params.end()) {
+                            if (param.first == SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX) {
+                                func->set_parameter(param.first,
+                                                    shift_max_vals.at((int) (d_uni(gen))));
+                            } else {
+                                func->set_parameter(param.first,
+                                                    d(gen));
+                            }
+                        }
+                    }
+                }
+            }
+    }
+
+    double previous_error;
+    double current_error;
+    double delta_error;
+
+    double temperature = 3e-4;  //TODO make flexible by adding function parameters
+
+    ds = this->reader->get_acsf_data_set(*this->net->get_elements()).get();
+    MSE mse_init(&nn, ds);
+    previous_error = mse_init.eval();
+
+    // TODO what is the termination condition?
+    /* Iteratively improve the parameters */
+    for(unsigned int i = 0; i < 10; i++) {
+        /* Temperature iterations */
+        for(unsigned int j = 0; j < 10; j++) {
+            /* Change the selected parameters in ACSFs */
+            for (auto el : *this->net->get_elements()) {
+                for (auto func : *el.second->getSymmetryFunctions()) {
+                    for (auto param : *func->get_parameters()) {
+                        /* Check, if the parameter is supposed to be optimized */
+                        if (std::find(fitted_params.begin(),
+                                      fitted_params.end(),
+                                      param.first) != fitted_params.end()) {
+                            if (param.first == SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX) {
+                                func->set_parameter(param.first,
+                                                    shift_max_vals.at((int) (d_uni(gen))));
+                            } else {
+                                std::normal_distribution<> dd{param.second, 10};
+                                func->set_parameter(param.first,
+                                                    dd(gen));
+                            }
+                        }
+                    }
+                }
+            }
+
+            /* Re-compute coordinates for the new set of ACSFs */
+            try {
+                ds = this->reader->get_acsf_data_set(*this->net->get_elements()).get();
+            } catch(const std::runtime_error& err) {
+                continue;
+            }
+
+            /* Train the network */
+            MSE mse(&nn,
+                    ds);
+
+            gd.optimize(mse);
+
+            current_error = mse.eval();
+            delta_error   = current_error - previous_error;
+
+            std::bernoulli_distribution bernoulli_d(std::exp(-delta_error / temperature));
+            if (!(delta_error < 0 || (delta_error > 0 && (bool)bernoulli_d(gen)))) {
+                /* If conditions are not met, revert the parameter changes */
+                for (auto el : *this->net->get_elements()) {
+                    for (auto func : *el.second->getSymmetryFunctions()) {
+                        for (auto param : *func->get_parameters()) {
+                            /* Check, if the parameter is supposed to be optimized */
+                            if (std::find(fitted_params.begin(),
+                                          fitted_params.end(),
+                                          param.first) != fitted_params.end()) {
+                                func->revert_parameter_change(param.first);
+                            }
+                        }
+                    }
+                }
+            }
+
+            previous_error = current_error;
+
+            std::cout << "it: " << i*j+j << " Delta error: " << delta_error << std::endl;
+        }
+
+        temperature *= 0.98;
+    }
+}
diff --git a/src/SymmetryFunction/ACSFParametersOptimizer.h b/src/SymmetryFunction/ACSFParametersOptimizer.h
new file mode 100644
index 0000000000000000000000000000000000000000..c0e8bd4213dd575b3bf275f0d2c1b1f07316d4be
--- /dev/null
+++ b/src/SymmetryFunction/ACSFParametersOptimizer.h
@@ -0,0 +1,32 @@
+//
+// Created by martin on 10.09.19.
+//
+
+#ifndef LIB4NEURO_ACSFPARAMETERSOPTIMIZER_H
+#define LIB4NEURO_ACSFPARAMETERSOPTIMIZER_H
+
+#include "../settings.h"
+#include "../ErrorFunction/ErrorFunctions.h"
+#include "../SymmetryFunction/SymmetryFunction.h"
+#include "../Network/ACSFNeuralNetwork.h"
+
+namespace lib4neuro {
+    class ACSFParametersOptimizer {
+    private:
+        ErrorFunction* error_func;
+
+        ACSFNeuralNetwork* net;
+
+        DataSet* data_set;
+
+        XYZReader* reader;  // TODO implement for Reader class in general
+
+    public:
+        LIB4NEURO_API explicit ACSFParametersOptimizer(ErrorFunction* ef, XYZReader* reader);
+
+        LIB4NEURO_API void fit_ACSF_parameters(std::vector<SYMMETRY_FUNCTION_PARAMETER>& fitted_params,
+                                               bool random_init_params);
+    };
+}
+
+#endif //LIB4NEURO_ACSFPARAMETERSOPTIMIZER_H
diff --git a/src/SymmetryFunction/Element.cpp b/src/SymmetryFunction/Element.cpp
index a9986ee89accc7ce4f48ddb3734275832bc52ede..1876ee679337f2ede845047090d7a0fb5625e8b5 100644
--- a/src/SymmetryFunction/Element.cpp
+++ b/src/SymmetryFunction/Element.cpp
@@ -15,8 +15,8 @@ const std::string& lib4neuro::Element::getElementSymbol() const {
 //    return n_particles;
 //}
 
-std::vector<lib4neuro::SymmetryFunction*>& lib4neuro::Element::getSymmetryFunctions() {
-    return symmetry_functions;
+std::vector<lib4neuro::SymmetryFunction*>* lib4neuro::Element::getSymmetryFunctions() {
+    return &symmetry_functions;
 }
 
 //const std::vector<unsigned int>& lib4neuro::Element::getNHiddenNeurons() const {
diff --git a/src/SymmetryFunction/Element.h b/src/SymmetryFunction/Element.h
index da726901b631defee3e9f7f90e9e4e6fb84c92e1..3bb1d849767d9415f22f5b41fa133709e60caf96 100644
--- a/src/SymmetryFunction/Element.h
+++ b/src/SymmetryFunction/Element.h
@@ -29,7 +29,7 @@ namespace lib4neuro {
 
 //        LIB4NEURO_API [[nodiscard]] unsigned int getNParticles() const;
 
-        LIB4NEURO_API [[nodiscard]] std::vector<SymmetryFunction*>& getSymmetryFunctions();
+        LIB4NEURO_API [[nodiscard]] std::vector<SymmetryFunction*>* getSymmetryFunctions();
 
 //        LIB4NEURO_API [[nodiscard]] const std::vector<unsigned int>& getNHiddenNeurons() const;
 //
diff --git a/src/SymmetryFunction/SymmetryFunction.cpp b/src/SymmetryFunction/SymmetryFunction.cpp
index 0d7d74d80f65c5678048062ed8d3fcfc4f9a1b21..33e60cf29809737c77eb78d5ab4a603209c2dcd5 100644
--- a/src/SymmetryFunction/SymmetryFunction.cpp
+++ b/src/SymmetryFunction/SymmetryFunction.cpp
@@ -54,6 +54,25 @@ double lib4neuro::SymmetryFunction::euclid_distance(std::vector<double> v1,
 
 lib4neuro::SymmetryFunction::SymmetryFunction() {}
 
+std::unordered_map<lib4neuro::SYMMETRY_FUNCTION_PARAMETER, double>* lib4neuro::SymmetryFunction::get_parameters() {
+    return &this->parameters;
+}
+
+void lib4neuro::SymmetryFunction::set_parameter(lib4neuro::SYMMETRY_FUNCTION_PARAMETER parameter, double value) {
+    if(this->parameters.find(parameter) != this->parameters.end()) {
+        this->previous_parameters[parameter] = this->parameters.at(parameter);
+    }
+    this->parameters[parameter] = value;
+}
+
+void lib4neuro::SymmetryFunction::revert_parameter_change(SYMMETRY_FUNCTION_PARAMETER parameter) {
+    this->parameters.at(parameter) = this->previous_parameters.at(parameter);
+}
+
+//lib4neuro::SYMMETRY_FUNCTION_TYPE lib4neuro::SymmetryFunction::get_type() {
+//    return this->type;
+//}
+
 double lib4neuro::G1::eval(unsigned int particle_ind, std::vector<std::vector<double>> cartesian_coord) {
     double sum = 0;
     double distance;
@@ -73,7 +92,10 @@ double lib4neuro::G1::eval(unsigned int particle_ind, std::vector<std::vector<do
     return sum;
 }
 
-lib4neuro::G1::G1(lib4neuro::CutoffFunction* cutoff_func) : SymmetryFunction(cutoff_func) {}
+lib4neuro::G1::G1(lib4neuro::CutoffFunction* cutoff_func) : SymmetryFunction(cutoff_func) {
+    this->parameters = {};
+//    this->type = SYMMETRY_FUNCTION_TYPE::G1;
+}
 
 double lib4neuro::G1::eval(unsigned int particle_ind,
                            std::vector<std::pair<ELEMENT_SYMBOL, std::vector<double>>>& cartesian_coord) {
@@ -107,8 +129,12 @@ lib4neuro::CutoffFunction2::CutoffFunction2() {}
 
 lib4neuro::G2::G2(lib4neuro::CutoffFunction* cutoff_func,
                   double extension, double shift) : SymmetryFunction(cutoff_func) {
-    this->extension = extension;
-    this->shift = shift;
+//    this->extension = extension;
+//    this->shift = shift;
+//    this->parameters = {SYMMETRY_FUNCTION_PARAMETER::EXTENSION, SYMMETRY_FUNCTION_PARAMETER::SHIFT};
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::EXTENSION]= extension;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::SHIFT] = shift;
+//    this->type = SYMMETRY_FUNCTION_TYPE::G2;
 }
 
 double lib4neuro::G2::eval(unsigned int particle_ind,
@@ -116,6 +142,9 @@ double lib4neuro::G2::eval(unsigned int particle_ind,
     double sum = 0;
     double distance;
 
+    double extension = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::EXTENSION);
+    double shift = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::SHIFT);
+
     for(size_t i = 0; i < cartesian_coord.size(); i++) {
         if(i == particle_ind) {
             continue;
@@ -125,7 +154,7 @@ double lib4neuro::G2::eval(unsigned int particle_ind,
         distance = this->euclid_distance(cartesian_coord.at(particle_ind).second, cartesian_coord.at(i).second);
 
         /* Call cutoff function */
-        sum +=  std::exp(-this->extension * (distance - this->shift) * (distance - this->shift)) * this->cutoff_func->eval(distance);
+        sum +=  std::exp(-extension * (distance - shift) * (distance - shift)) * this->cutoff_func->eval(distance);
     }
 
     return sum;
@@ -141,7 +170,9 @@ lib4neuro::G2::G2() {}
 
 lib4neuro::G3::G3(lib4neuro::CutoffFunction* cutoff_func,
                   double period_length) : SymmetryFunction(cutoff_func) {
-    this->period_length = period_length;
+//    this->period_length = period_length;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::PERIOD_LENGTH] = period_length;
+//    this->type = SYMMETRY_FUNCTION_TYPE::G3;
 }
 
 lib4neuro::G3::G3() {}
@@ -151,6 +182,8 @@ double lib4neuro::G3::eval(unsigned int particle_ind,
     double sum = 0;
     double distance;
 
+    double period_length = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::PERIOD_LENGTH);
+
     for(size_t i = 0; i < cartesian_coord.size(); i++) {
         if(i == particle_ind) {
             continue;
@@ -160,7 +193,7 @@ double lib4neuro::G3::eval(unsigned int particle_ind,
         distance = this->euclid_distance(cartesian_coord.at(particle_ind).second, cartesian_coord.at(i).second);
 
         /* Call cutoff function */
-        sum +=  cos(this->period_length*distance) * this->cutoff_func->eval(distance);
+        sum +=  cos(period_length*distance) * this->cutoff_func->eval(distance);
     }
 
     return sum;
@@ -174,11 +207,21 @@ double lib4neuro::G3::eval(unsigned int particle_ind,
 
 lib4neuro::G4::G4(lib4neuro::CutoffFunction* cutoff_func,
                   double extension,
-                  bool shift_max,
+                  int shift_max,
                   double angular_resolution) : SymmetryFunction(cutoff_func) {
-    this->extension = extension;
-    this->shift_max = shift_max;
-    this->angular_resolution = angular_resolution;
+//    this->extension = extension;
+//    this->shift_max = shift_max;
+//    this->angular_resolution = angular_resolution;
+//    this->parameters = {SYMMETRY_FUNCTION_PARAMETER::EXTENSION, SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION};
+//    this->type = SYMMETRY_FUNCTION_TYPE::G4;
+
+    if(shift_max != 1 && shift_max != -1) {
+        THROW_LOGIC_ERROR("shift_max parameter can be only 1 or -1!");
+    }
+
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::EXTENSION] = extension;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX] = shift_max;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION] = angular_resolution;
 }
 
 lib4neuro::G4::G4() {}
@@ -196,6 +239,10 @@ double lib4neuro::G4::eval(unsigned int particle_ind,
     double distance2;
     double distance3;
 
+    double angular_resolution = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION);
+    double shift_max = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX);
+    double extension = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::EXTENSION);
+
     for(size_t i = 0; i < cartesian_coord.size(); i++) {
         if(i == particle_ind) {
             continue;
@@ -212,7 +259,7 @@ double lib4neuro::G4::eval(unsigned int particle_ind,
             distance3 = this->euclid_distance(cartesian_coord.at(i).second, cartesian_coord.at(j).second);
 
             /* Call cutoff function */
-            int lambda = (this->shift_max) ? 1 : -1;
+            int lambda = shift_max;
             std::vector<double> v1;
             std::vector<double> v2;
             double scalar_product = 0;
@@ -223,24 +270,30 @@ double lib4neuro::G4::eval(unsigned int particle_ind,
             }
 
             double theta = acos(scalar_product / (distance1 * distance2));
-            sum +=  pow(1 + lambda * cos(theta), this->angular_resolution)
-                    * exp(-this->extension * (distance1*distance1 + distance2*distance2 + distance3*distance3))
+            sum +=  pow(1 + lambda * cos(theta), angular_resolution)
+                    * exp(-extension * (distance1*distance1 + distance2*distance2 + distance3*distance3))
                     * this->cutoff_func->eval(distance1)
                     * this->cutoff_func->eval(distance2)
                     * this->cutoff_func->eval(distance3);
         }
     }
 
-    return pow(2, 1-this->angular_resolution)*sum;
+    return pow(2, 1-angular_resolution)*sum;
 }
 
 lib4neuro::G5::G5(lib4neuro::CutoffFunction* cutoff_func,
                   double extension,
                   bool shift_max,
                   double angular_resolution) : SymmetryFunction(cutoff_func) {
-    this->extension = extension;
-    this->shift_max = shift_max;
-    this->angular_resolution = angular_resolution;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::EXTENSION] = extension;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX] = shift_max;
+    this->parameters[SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION] = angular_resolution;
+
+//    this->extension = extension;
+//    this->shift_max = shift_max;
+//    this->angular_resolution = angular_resolution;
+//    this->parameters = {SYMMETRY_FUNCTION_PARAMETER::EXTENSION, SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION};
+//    this->type = SYMMETRY_FUNCTION_TYPE::G5;
 }
 
 lib4neuro::G5::G5() {}
@@ -257,6 +310,10 @@ double lib4neuro::G5::eval(unsigned int particle_ind,
     double distance1;
     double distance2;
 
+    double angular_resolution = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::ANGULAR_RESOLUTION);
+    double shift_max = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::SHIFT_MAX);
+    double extension = this->parameters.at(SYMMETRY_FUNCTION_PARAMETER::EXTENSION);
+
     for(size_t i = 0; i < cartesian_coord.size(); i++) {
         if(i == particle_ind) {
             continue;
@@ -272,7 +329,7 @@ double lib4neuro::G5::eval(unsigned int particle_ind,
             distance2 = this->euclid_distance(cartesian_coord.at(particle_ind).second, cartesian_coord.at(j).second);
 
             /* Call cutoff function */
-            int lambda = (this->shift_max) ? 1 : -1;
+            int lambda = (shift_max) ? 1 : -1;
             std::vector<double> v1;
             std::vector<double> v2;
             double scalar_product = 0;
@@ -283,18 +340,12 @@ double lib4neuro::G5::eval(unsigned int particle_ind,
             }
 
             double theta = acos(scalar_product / (distance1 * distance2));
-            sum +=  pow(1 + lambda * cos(theta), this->angular_resolution)
-                    * exp(-this->extension * (distance1*distance1 + distance2*distance2))
+            sum +=  pow(1 + lambda * cos(theta), angular_resolution)
+                    * exp(-extension * (distance1*distance1 + distance2*distance2))
                     * this->cutoff_func->eval(distance1)
                     * this->cutoff_func->eval(distance2);
         }
     }
 
-    return pow(2, 1-this->angular_resolution)*sum;
+    return pow(2, 1-angular_resolution)*sum;
 }
-
-
-
-
-
-
diff --git a/src/SymmetryFunction/SymmetryFunction.h b/src/SymmetryFunction/SymmetryFunction.h
index 8e267a53d860e447ebdb1912faecb33f44517c58..d756b32f4c86fca3a1c3f96e9fd4d7f3d9a7b8ce 100644
--- a/src/SymmetryFunction/SymmetryFunction.h
+++ b/src/SymmetryFunction/SymmetryFunction.h
@@ -5,6 +5,7 @@
 #ifndef LIB4NEURO_SYMMETRYFUNCTION_H
 #define LIB4NEURO_SYMMETRYFUNCTION_H
 
+#include <unordered_map>
 #include <vector>
 #include "../settings.h"
 
@@ -17,6 +18,19 @@ namespace lib4neuro {
         Fl,Mc,Lv,Ts,Og
     };
 
+    enum class SYMMETRY_FUNCTION_PARAMETER {
+        //radius, // TODO make available also fitting of cutoff functions
+        EXTENSION,
+        SHIFT,
+        ANGULAR_RESOLUTION,
+        SHIFT_MAX,
+        PERIOD_LENGTH
+    };
+
+//    enum class SYMMETRY_FUNCTION_TYPE {
+//        G1, G2, G3, G4, G5
+//    };
+
     class CutoffFunction {
     public:
         LIB4NEURO_API explicit CutoffFunction(double radius);
@@ -81,15 +95,27 @@ namespace lib4neuro {
                                           std::vector<std::pair<ELEMENT_SYMBOL,
                                                                 std::vector<double>>>& cartesian_coord) = 0;
 
-        struct access;
+        LIB4NEURO_API std::unordered_map<SYMMETRY_FUNCTION_PARAMETER, double>* get_parameters();
+
+        LIB4NEURO_API void set_parameter(SYMMETRY_FUNCTION_PARAMETER parameter, double value);
 
-//        LIB4NEURO_API unsigned int get_n_particles();
+        LIB4NEURO_API void revert_parameter_change(SYMMETRY_FUNCTION_PARAMETER parameter);
+
+//        LIB4NEURO_API SYMMETRY_FUNCTION_TYPE get_type();
+
+        struct access;
 
     protected:
-//        unsigned int n_particles;
+//        std::vector<SYMMETRY_FUNCTION_PARAMETER> parameters;
 
         CutoffFunction* cutoff_func;
 
+        std::unordered_map<SYMMETRY_FUNCTION_PARAMETER, double> parameters;
+
+        std::unordered_map<SYMMETRY_FUNCTION_PARAMETER, double> previous_parameters;
+
+//        SYMMETRY_FUNCTION_TYPE type;
+
         double euclid_distance(std::vector<double> v1, std::vector<double> v2);
     };
 
@@ -128,9 +154,9 @@ namespace lib4neuro {
 
         struct access;
 
-    protected:
-        double extension;
-        double shift;
+//    protected:
+//        double extension;
+//        double shift;
     };
 
     class G3 : public SymmetryFunction {
@@ -150,15 +176,13 @@ namespace lib4neuro {
 
         struct access;
 
-    protected:
-        double period_length;
     };
 
     class G4 : public SymmetryFunction {
     public:
         LIB4NEURO_API explicit G4(CutoffFunction* cutoff_func,
                                   double extension,
-                                  bool shift_max,
+                                  int shift_max,
                                   double angular_resolution);
 
         /**
@@ -173,11 +197,6 @@ namespace lib4neuro {
                                       std::vector<double>>>& cartesian_coord) override;
 
         struct access;
-
-    protected:
-        double extension;
-        bool shift_max;
-        double angular_resolution;
     };
 
     class G5 : public SymmetryFunction {
@@ -200,10 +219,6 @@ namespace lib4neuro {
 
         struct access;
 
-    protected:
-        double extension;
-        bool shift_max;
-        double angular_resolution;
     };
 }
 
diff --git a/src/SymmetryFunction/SymmetryFunctionSerialization.h b/src/SymmetryFunction/SymmetryFunctionSerialization.h
index 89e4a36ca0cc926fe901858810831e007f0784fb..7879969d946a3270de342b83e749e0d14c16ad4f 100644
--- a/src/SymmetryFunction/SymmetryFunctionSerialization.h
+++ b/src/SymmetryFunction/SymmetryFunctionSerialization.h
@@ -46,8 +46,6 @@ struct lib4neuro::G2::access {
                           lib4neuro::G2& sf,
                           const unsigned int version) {
         ar & boost::serialization::base_object<lib4neuro::SymmetryFunction>(sf);
-        ar & sf.shift;
-        ar & sf.extension;
     }
 };
 
@@ -56,7 +54,6 @@ struct lib4neuro::CutoffFunction::access {
     static void serialize(Archive& ar,
                           lib4neuro::CutoffFunction& f,
                           const unsigned int version) {
-        ar & f.radius;
     }
 };
 
diff --git a/src/examples/dev_sandbox.cpp b/src/examples/dev_sandbox.cpp
index 53fcb8433743483597b3fbd464bd72424b45d308..135f5b7c82b30af1e08cfd79e46ebd088d57279e 100644
--- a/src/examples/dev_sandbox.cpp
+++ b/src/examples/dev_sandbox.cpp
@@ -111,7 +111,7 @@ double optimize_via_LBMQ(l4n::NeuralNetwork& net,
 }
 
 double optimize_via_NelderMead(l4n::NeuralNetwork& net, l4n::ErrorFunction& ef) {
-    l4n::NelderMead nm(10e-4, 10e-7, 5, 50);
+    l4n::NelderMead nm(10e-4, 10e-7, 500, 150);
 
     nm.optimize(ef);
     net.copy_parameter_space(nm.get_parameters());
@@ -132,7 +132,7 @@ int main() {
 
         /* Specify cutoff functions */
 //        l4n::CutoffFunction1 cutoff1(10.1);
-        l4n::CutoffFunction2 cutoff1(8);
+        l4n::CutoffFunction2 cutoff2(8);
         //l4n::CutoffFunction2 cutoff2(25);
 //        l4n::CutoffFunction2 cutoff2(15.2);
 //        l4n::CutoffFunction2 cutoff4(10.3);
@@ -140,12 +140,13 @@ int main() {
 //        l4n::CutoffFunction2 cutoff6(11);
 
         /* Specify symmetry functions */
-//        l4n::G1 sym_f1(&cutoff1);
-        l4n::G2 sym_f2(&cutoff1, 2.09, 0.8);
-        l4n::G2 sym_f3(&cutoff1, 0.01, 0.04);
-//        l4n::G2 sym_f4(&cutoff2, 0.02, 0.04);
-//        l4n::G2 sym_f5(&cutoff2, 2.09, 0.04);
-
+        l4n::G2 sym_f1(&cutoff2, 1.9, 0.7);
+        l4n::G2 sym_f2(&cutoff2, 2.09, 0.8);
+        l4n::G2 sym_f3(&cutoff2, 0.01, 0.04);
+        l4n::G2 sym_f4(&cutoff2, 0.02, 0.04);
+        l4n::G2 sym_f5(&cutoff2, 2.09, 0.04);
+        l4n::G2 sym_f6(&cutoff2, 2.09, 0.04);
+        l4n::G2 sym_f7(&cutoff2, 2.09, 0.04);
 
 //        l4n::G3 sym_f4(&cutoff4, 0.3);
 //        l4n::G4 sym_f5(&cutoff5, 0.05, true, 0.05);
@@ -153,6 +154,13 @@ int main() {
 //        l4n::G4 sym_f7(&cutoff6, 0.5, true, 0.05);
 //        l4n::G4 sym_f8(&cutoff6, 0.5, false, 0.05);
 
+        l4n::G5 sym_f8(&cutoff2, 2.1, -1, 0.9);
+        l4n::G5 sym_f9(&cutoff2, 2.1, -1, 0.9);
+        l4n::G5 sym_f10(&cutoff2, 2.1, -1, 0.9);
+        l4n::G5 sym_f11(&cutoff2, 2.1, -1, 0.9);
+        l4n::G5 sym_f12(&cutoff2, 2.1, -1, 0.9);
+        l4n::G5 sym_f13(&cutoff2, 2.1, -1, 0.9);
+
         std::vector<l4n::SymmetryFunction*> helium_sym_funcs = {&sym_f2, &sym_f3}; //, &sym_f4, &sym_f5}; //, &sym_f6, &sym_f7, &sym_f8};
 
         l4n::Element helium = l4n::Element("He",
@@ -170,23 +178,28 @@ int main() {
 
         /* Create a neural network */
         std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<unsigned int>> n_hidden_neurons;
-        n_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {20, 1};
+        n_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {20, 20, 1};
 
         std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<l4n::NEURON_TYPE>> type_hidden_neurons;
-        type_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR};
+        type_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR};
 
         l4n::ACSFNeuralNetwork net(elements, *reader.get_element_list(), reader.contains_charge(), n_hidden_neurons, type_hidden_neurons);
 
         l4n::MSE mse(&net, ds.get());
 
         net.randomize_parameters();
+
+        l4n::ACSFParametersOptimizer param_optim(&mse, &reader);
+        std::vector<l4n::SYMMETRY_FUNCTION_PARAMETER> fitted_params = {l4n::SYMMETRY_FUNCTION_PARAMETER::EXTENSION};
+        param_optim.fit_ACSF_parameters(fitted_params, true);
+
 //         optimize_via_particle_swarm(net, mse);
 
 
-        optimize_via_NelderMead(net, mse);
+//        optimize_via_NelderMead(net, mse);
 
 //        double err1 = optimize_via_LBMQ(net, mse);
-        double err2 = optimize_via_gradient_descent(net, mse);
+//        double err2 = optimize_via_gradient_descent(net, mse);
 
         std::cout << "Weights: " << net.get_min_max_weight().first << " " << net.get_min_max_weight().second << std::endl;
 
@@ -194,17 +207,17 @@ int main() {
         std::vector<double> output;
         output.resize(1);
 
-        for(auto e : *ds->get_data()) {
-            for(unsigned int i = 0; i < e.first.size(); i++) {
-                std::cout << e.first.at(i) << " ";
-                if(i % 2 == 1) {
-                    std::cout << std::endl;
-                }
-            }
-            std::cout << "OUTS (DS, predict): " << e.second.at(0) << " ";
-            net.eval_single(e.first, output);
-            std::cout << output.at(0) << std::endl;
-        }
+//        for(auto e : *ds->get_data()) {
+//            for(unsigned int i = 0; i < e.first.size(); i++) {
+//                std::cout << e.first.at(i) << " ";
+//                if(i % 2 == 1) {
+//                    std::cout << std::endl;
+//                }
+//            }
+//            std::cout << "OUTS (DS, predict): " << e.second.at(0) << " ";
+//            net.eval_single(e.first, output);
+//            std::cout << output.at(0) << std::endl;
+//        }
 
     } catch (const std::exception& e) {
         std::cerr << e.what() << std::endl;