diff --git a/src/examples/simulator.cpp b/src/examples/simulator.cpp index 292f706801f049ee5f3463a3c41dbd6b917db823..93ba934c60cfa10f3b4c8ac06abdd861798e6150 100644 --- a/src/examples/simulator.cpp +++ b/src/examples/simulator.cpp @@ -39,12 +39,13 @@ int main(int argc, char** argv){ try { /* Read data from the file */ - l4n::CSVReader reader("/home/martin/Desktop/ANN_DATA_1_SET.txt", "\t", true); +// l4n::CSVReader reader("/home/martin/Desktop/ANN_DATA_1_SET.txt", "\t", true); + l4n::CSVReader reader("/tmp/data_Heaviside.txt", "\t", false); reader.read(); /* Create data set for both the training and testing of the neural network */ - std::vector<unsigned int> inputs = { 2, 3, 4, 5, 6, 7, 8, 27, 28, 29 }; - std::vector<unsigned int> outputs = {18, 19, 20, 21, 22, 23, 24, 25, 26}; + std::vector<unsigned int> inputs = { 0 }; + std::vector<unsigned int> outputs = { 1 }; l4n::DataSet ds = reader.get_data_set(&inputs, &outputs); ds.normalize(); @@ -52,7 +53,7 @@ int main(int argc, char** argv){ // ds.print_data(); /* Neural network construction */ - std::vector<unsigned int> neuron_numbers_in_layers = {1, 10, 10, 9}; + std::vector<unsigned int> neuron_numbers_in_layers = {1, 10, 10, 1}; l4n::FullyConnectedFFN nn(&neuron_numbers_in_layers, l4n::NEURON_TYPE::LOGISTIC); /* Error function */ @@ -124,10 +125,13 @@ int main(int argc, char** argv){ return 0; } catch(const std::runtime_error& e) { - std::cerr << e.what(); + std::cerr << e.what() << std::endl; exit(EXIT_FAILURE); } catch(const std::out_of_range& e) { - std::cerr << e.what(); + std::cerr << e.what() << std::endl; + exit(EXIT_FAILURE); + } catch(const std::invalid_argument& e) { + std::cerr << e.what() << std::endl; exit(EXIT_FAILURE); }