From a47613d0f4f6f01d274f0e0a5c23d5ce644a0480 Mon Sep 17 00:00:00 2001 From: bes0030 <bes0030@login3.smc.salomon.it4i.cz> Date: Mon, 2 Sep 2019 16:27:08 +0200 Subject: [PATCH] [WIP] trying to find an optimal configuration of network to fit He4+ cluster --- src/examples/dev_sandbox.cpp | 38 +++++++++++++++++------------------- 1 file changed, 18 insertions(+), 20 deletions(-) diff --git a/src/examples/dev_sandbox.cpp b/src/examples/dev_sandbox.cpp index 97255099..624aab95 100644 --- a/src/examples/dev_sandbox.cpp +++ b/src/examples/dev_sandbox.cpp @@ -12,15 +12,15 @@ void optimize_via_particle_swarm(l4n::NeuralNetwork& net, std::vector<double> domain_bounds(2 * (net.get_n_weights() + net.get_n_biases())); for (size_t i = 0; i < domain_bounds.size() / 2; ++i) { - domain_bounds[2 * i] = -10; - domain_bounds[2 * i + 1] = 10; + domain_bounds[2 * i] = -150; + domain_bounds[2 * i + 1] = 150; } double c1 = 1.7; double c2 = 1.7; double w = 0.7; - size_t n_particles = 100; - size_t iter_max = 30; + size_t n_particles = 300; + size_t iter_max = 500; /* if the maximal velocity from the previous step is less than 'gamma' times the current maximal velocity, then one * terminating criterion is met */ @@ -60,7 +60,8 @@ double optimize_via_gradient_descent(l4n::NeuralNetwork& net, << "***********************************************************************************************************************" << std::endl; l4n::GradientDescentBB gd(1e-6, - 1000); + 1000, + 60000); gd.optimize(ef); @@ -113,18 +114,18 @@ int main() { /* Specify cutoff functions */ // l4n::CutoffFunction1 cutoff1(10.1); l4n::CutoffFunction2 cutoff1(8); - l4n::CutoffFunction2 cutoff2(25); + //l4n::CutoffFunction2 cutoff2(25); // l4n::CutoffFunction2 cutoff2(15.2); // l4n::CutoffFunction2 cutoff4(10.3); // l4n::CutoffFunction2 cutoff5(12.9); // l4n::CutoffFunction2 cutoff6(11); /* Specify symmetry functions */ - l4n::G1 sym_f1(&cutoff1); +// l4n::G1 sym_f1(&cutoff1); l4n::G2 sym_f2(&cutoff1, 2.09, 0.8); l4n::G2 sym_f3(&cutoff1, 0.01, 0.04); - l4n::G2 sym_f4(&cutoff2, 0.02, 0.04); - l4n::G2 sym_f5(&cutoff2, 2.09, 0.04); +// l4n::G2 sym_f4(&cutoff2, 0.02, 0.04); +// l4n::G2 sym_f5(&cutoff2, 2.09, 0.04); // l4n::G3 sym_f4(&cutoff4, 0.3); @@ -133,7 +134,7 @@ int main() { // l4n::G4 sym_f7(&cutoff6, 0.5, true, 0.05); // l4n::G4 sym_f8(&cutoff6, 0.5, false, 0.05); - std::vector<l4n::SymmetryFunction*> helium_sym_funcs = {&sym_f1, &sym_f2, &sym_f3, &sym_f4, &sym_f5}; //, &sym_f6, &sym_f7, &sym_f8}; + std::vector<l4n::SymmetryFunction*> helium_sym_funcs = {&sym_f2, &sym_f3}; //, &sym_f4, &sym_f5}; //, &sym_f6, &sym_f7, &sym_f8}; l4n::Element helium = l4n::Element("He", helium_sym_funcs); @@ -141,7 +142,7 @@ int main() { elements[l4n::ELEMENT_SYMBOL::He] = &helium; /* Read data */ - l4n::XYZReader reader("/home/martin/Desktop/HE4+T0.xyz", true); + l4n::XYZReader reader("/home/bes0030/HE4+T0.xyz", true); reader.read(); std::cout << "Finished reading data" << std::endl; @@ -150,7 +151,7 @@ int main() { /* Create a neural network */ std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<unsigned int>> n_hidden_neurons; - n_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {10, 1}; + n_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {20, 1}; std::unordered_map<l4n::ELEMENT_SYMBOL, std::vector<l4n::NEURON_TYPE>> type_hidden_neurons; type_hidden_neurons[l4n::ELEMENT_SYMBOL::He] = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR}; @@ -159,16 +160,13 @@ int main() { l4n::MSE mse(&net, ds.get()); - std::cout << net.get_min_max_weight().first << " " << net.get_min_max_weight().second << std::endl; net.randomize_parameters(); - // optimize_via_particle_swarm(net, mse); - double err1 = optimize_via_LBMQ(net, mse); + optimize_via_particle_swarm(net, mse); +// double err1 = optimize_via_LBMQ(net, mse); double err2 = optimize_via_gradient_descent(net, mse); - if(err2 > 0.00001) { - throw std::runtime_error("Training was incorrect!"); - } + std::cout << "Weights: " << net.get_min_max_weight().first << " " << net.get_min_max_weight().second << std::endl; /* Print fit comparison with real data */ std::vector<double> output; @@ -177,11 +175,11 @@ int main() { for(auto e : *ds->get_data()) { for(unsigned int i = 0; i < e.first.size(); i++) { std::cout << e.first.at(i) << " "; - if(i % 5 == 4) { + if(i % 2 == 1) { std::cout << std::endl; } } - std::cout << e.second.at(0) << " "; + std::cout << "OUTS (DS, predict): " << e.second.at(0) << " "; net.eval_single(e.first, output); std::cout << output.at(0) << std::endl; } -- GitLab