diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 71271162ad7fc6fee1e3cb274eb142d517459e01..9526f91ffb6c8ab0aeed995306a14d8363005d3a 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -28,7 +28,7 @@ target_link_libraries(test_cases 4neuro) add_executable(neuron_serialization_example neuron_serialization_example.cpp) target_link_libraries(neuron_serialization_example 4neuro) -add_executable(net_test_1 net_test_1.cpp) +add_executable(net_test_1 net_test_1.cpp settings.h) target_link_libraries(net_test_1 4neuro) add_executable(net_test_2 net_test_2.cpp) diff --git a/src/LearningMethods/ParticleSwarm.cpp b/src/LearningMethods/ParticleSwarm.cpp index 77bdff10562285c8be25c2c2d147bff79c7f4c46..20c79490e3f7fcf25a60224a1bf0d961bb318101 100644 --- a/src/LearningMethods/ParticleSwarm.cpp +++ b/src/LearningMethods/ParticleSwarm.cpp @@ -42,7 +42,7 @@ Particle::Particle(ErrorFunction* ef, double *domain_bounds) { this->domain_bounds = domain_bounds; for(unsigned int i = 0; i < this->coordinate_dim; ++i){ - this->coordinate[i] = (rand() % 100001) / (double)100000 * (domain_bounds[2 * i + 1] - domain_bounds[2 * i]) + domain_bounds[2 * i]; + this->coordinate[i] = (rand() % 100001) / (double)100000 + domain_bounds[2 * i] / (domain_bounds[2 * i + 1] - domain_bounds[2 * i]); this->optimal_coordinate[i] = this->coordinate[i]; } @@ -192,7 +192,7 @@ void ParticleSwarm::optimize( double gamma, double epsilon, double delta) { unsigned int outer_it = 0; Particle *particle; double *p_min_glob = new double[this->func_dim]; - double optimal_value; + double optimal_value = 0.0; std::set<Particle*> cluster; //!< Particles in a cluster double* coords; diff --git a/src/NetConnection/Connection.cpp b/src/NetConnection/Connection.cpp index cd6b07918e0900f18d4658e96ab34c82b572746b..25eb8c90e42d7e32acbb0ac0f7eeaf2c47135ca4 100644 --- a/src/NetConnection/Connection.cpp +++ b/src/NetConnection/Connection.cpp @@ -45,7 +45,9 @@ Neuron* Connection::get_neuron_out() { //} void Connection::pass_signal() { -// printf(" passing signal between neurons %d -> %d, value: %f * %f\n", this->neuron_in, this->neuron_out, this->neuron_in->get_state(), this->con->eval()); +#ifdef VERBOSE_NN_EVAL + printf(" passing signal between neurons %d -> %d, value: %f * %f\n", this->neuron_in, this->neuron_out, this->neuron_in->get_state(), this->con->eval()); +#endif this->neuron_out->adjust_potential(this->neuron_in->get_state() * this->con->eval()); } diff --git a/src/NetConnection/Connection.h b/src/NetConnection/Connection.h index 293754cb24039fb784630f3aa284a643f96b395c..b9895f32ff29223c804c07ab886b08d06df7b6f0 100644 --- a/src/NetConnection/Connection.h +++ b/src/NetConnection/Connection.h @@ -10,6 +10,7 @@ #include "../Neuron/Neuron.h" #include "ConnectionWeight.h" +#include "../settings.h" class Neuron; class ConnectionWeight; diff --git a/src/Network/NeuralNetwork.cpp b/src/Network/NeuralNetwork.cpp index c5331f20986521a791a5d9f75e484316d2a5aad6..66246c83fd46a6e3d11e525f10c8f9b1fc5a86a6 100644 --- a/src/Network/NeuralNetwork.cpp +++ b/src/Network/NeuralNetwork.cpp @@ -472,8 +472,9 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> neuron->set_potential(input[i]); -// printf("INPUT NEURON %d, POTENTIAL: %f\n", neuron, input[i]); - +#ifdef VERBOSE_NN_EVAL + printf("INPUT NEURON %d, POTENTIAL: %f\n", neuron, input[i]); +#endif ++i; } Neuron* active_neuron; @@ -485,8 +486,9 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> for(i = 0; i < active_set_size[idx1]; ++i){ active_neuron = this->active_eval_set->at(i + n * idx1); active_neuron->activate();//computes the activation function on its potential -// printf(" active neuron %d, potential: %f, state: %f\n", active_neuron, active_neuron->get_potential(), active_neuron->get_state()); - +#ifdef VERBOSE_NN_EVAL + printf(" active neuron %d, potential: %f, state: %f\n", active_neuron, active_neuron->get_potential(), active_neuron->get_state()); +#endif for(Connection* connection: *(active_neuron->get_connections_out())){ connection->pass_signal(); @@ -499,7 +501,9 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> } } } -// printf("-----------\n"); +#ifdef VERBOSE_NN_EVAL + printf("-----------\n"); +#endif idx1 = idx2; idx2 = (idx1 + 1) % 2; @@ -512,7 +516,9 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> output[i] = neuron->get_state(); -// printf("OUTPUT NEURON %d, VALUE: %f\n", neuron, output[i]); +#ifdef VERBOSE_NN_EVAL + printf("OUTPUT NEURON %d, VALUE: %f\n", neuron, output[i]); +#endif ++i; } diff --git a/src/Network/NeuralNetwork.h b/src/Network/NeuralNetwork.h index 1bfa39a5c47e8bd1110958e1a0291ac85a42e1fe..68b558fd5751c8b0a8e1c20ae34b243492253327 100644 --- a/src/Network/NeuralNetwork.h +++ b/src/Network/NeuralNetwork.h @@ -13,6 +13,7 @@ #include <vector> #include "../Neuron/Neuron.h" +#include "../settings.h" enum NET_TYPE{GENERAL}; diff --git a/src/Solvers/DESolver.cpp b/src/Solvers/DESolver.cpp index cda2606bebf231e5b3304abf371451a8e7cac025..5c37a97084d926db5b3ab5067f47d5fb2e22be30 100644 --- a/src/Solvers/DESolver.cpp +++ b/src/Solvers/DESolver.cpp @@ -64,7 +64,7 @@ DESolver::DESolver( unsigned int n_equations, unsigned int n_inputs, unsigned in } printf("Differential Equation Solver with %d equations\n--------------------------------------------------------------------------\n", n_equations); - printf("Constructing NN structure representing the solution [%d input neurons][%d inner neurons][%d output neurons]...", n_inputs, m, n_outputs); + printf("Constructing NN structure representing the solution [%d input neurons][%d inner neurons][%d output neurons]...\n", n_inputs, m, n_outputs); this->dim_i = n_inputs; this->dim_o = n_outputs; @@ -102,17 +102,20 @@ DESolver::DESolver( unsigned int n_equations, unsigned int n_inputs, unsigned in } /* connections between input neurons and inner neurons */ + size_t weight_idx; unsigned int dim_shift = this->dim_i + this->dim_o; for(unsigned int i = 0; i < this->dim_i; ++i){ for(unsigned int j = 0; j < this->dim_inn; ++j){ - this->solution->add_connection_simple(i, dim_shift + j); + weight_idx = this->solution->add_connection_simple(i, dim_shift + j); + printf(" adding a connection between input neuron %2d and inner neuron %2d, weight index %d\n", i, j, weight_idx); } } /* connections between inner neurons and output neurons */ for(unsigned int i = 0; i < this->dim_inn; ++i){ for(unsigned int j = 0; j < this->dim_o; ++j){ - this->solution->add_connection_simple(dim_shift + i, this->dim_i + j); + weight_idx = this->solution->add_connection_simple(dim_shift + i, this->dim_i + j); + printf(" adding a connection between inner neuron %2d and output neuron %2d, weight index %d\n", i, j, weight_idx); } } @@ -129,7 +132,7 @@ DESolver::DESolver( unsigned int n_equations, unsigned int n_inputs, unsigned in this->errors_functions_types = new std::vector<ErrorFunctionType >(this->n_equations); this->errors_functions_data_sets = new std::vector<DataSet*>(this->n_equations); - printf(" done\n"); + printf("done\n\n"); } @@ -248,7 +251,7 @@ void DESolver::add_to_differential_equation( unsigned int equation_idx, MultiInd size_t weight_idx = 0; for(unsigned int i = 0; i < this->dim_i; ++i){ for(unsigned int j = 0; j < this->dim_inn; ++j){ -// printf(" adding a connection between input neuron %2d and inner neuron %2d, weight index %d\n", i, j, weight_idx); + printf(" adding a connection between input neuron %2d and inner neuron %2d, weight index %d\n", i, j, weight_idx); new_net->add_connection_simple(i, dim_shift + j, weight_idx); weight_idx++; } @@ -260,7 +263,7 @@ void DESolver::add_to_differential_equation( unsigned int equation_idx, MultiInd // size_t weight_idx_mem = weight_idx; for(unsigned int i = 0; i < this->dim_inn; ++i){ for(unsigned int j = 0; j < this->dim_o; ++j){ -// printf(" adding a connection between inner neuron %2d and glue neuron %2d, weight index %d\n", i, i * this->dim_o + j, weight_idx); + printf(" adding a connection between inner neuron %2d and glue neuron %2d, weight index %d\n", i, i * this->dim_o + j, weight_idx); new_net->add_connection_simple(dim_shift + i, glue_shift + i * this->dim_o + j, weight_idx ); weight_idx++; } @@ -274,7 +277,7 @@ void DESolver::add_to_differential_equation( unsigned int equation_idx, MultiInd unsigned int local_weight_idx = pi * this->dim_inn + i; for(unsigned int j = 0; j < this->dim_o; ++j){ -// printf(" adding a connection between glue neuron %2d and output neuron %2d, weight index %d\n", i * this->dim_o + j, j, local_weight_idx); + printf(" adding a connection between glue neuron %2d and output neuron %2d, weight index %d\n", i * this->dim_o + j, j, local_weight_idx); new_net->add_connection_simple(glue_shift + i * this->dim_o + j, j + this->dim_i, local_weight_idx ); } } @@ -288,7 +291,7 @@ void DESolver::add_to_differential_equation( unsigned int equation_idx, MultiInd unsigned int local_weight_idx = pi * this->dim_inn + i; for(unsigned int j = 0; j < this->dim_o; ++j){ -// printf(" adding a connection between glue neuron[1] %2d and glue neuron[2] %2d, weight index %d\n", i * this->dim_o + j, i * this->dim_o + j, local_weight_idx); + printf(" adding a connection between glue neuron[1] %2d and glue neuron[2] %2d, weight index %d\n", i * this->dim_o + j, i * this->dim_o + j, local_weight_idx); new_net->add_connection_simple(glue_shift + i * this->dim_o + j, glue_shift_2 + i * this->dim_o + j, local_weight_idx ); } } @@ -300,8 +303,8 @@ void DESolver::add_to_differential_equation( unsigned int equation_idx, MultiInd unsigned int local_weight_idx = pi * this->dim_inn + i; for(unsigned int j = 0; j < this->dim_o; ++j){ -// printf(" adding a connection between glue neuron[2] %2d and output neuron %2d, weight index %d\n", i * this->dim_o + j, j, local_weight_idx); - new_net->add_connection_simple(glue_shift_2 + i * this->dim_o + j, j, local_weight_idx ); + printf(" adding a connection between glue neuron[2] %2d and output neuron %2d, weight index %d\n", i * this->dim_o + j, j, local_weight_idx); + new_net->add_connection_simple(glue_shift_2 + i * this->dim_o + j, this->dim_i + j, local_weight_idx ); } } } @@ -349,10 +352,28 @@ void DESolver::solve_via_particle_swarm(double *domain_bounds, double c1, double ParticleSwarm swarm_01(&total_error, domain_bounds, c1, c2, w, n_particles, max_iters); + this->solution->randomize_weights(); + swarm_01.optimize(gamma, epsilon, delta); } NeuralNetwork* DESolver::get_solution() { return this->solution; +} + +void DESolver::eval_equation( unsigned int equation_idx, double *weight_values, std::vector<double> &input ) { + std::vector<double> output(this->dim_o); + + this->differential_equations->at( equation_idx )->eval_single( input, output, weight_values ); + + printf("Input: "); + for( auto e: input ){ + printf("%f, ", e); + } + printf("\nOutput: "); + for( auto e: output ){ + printf("%f, ", e); + } + printf("\n"); } \ No newline at end of file diff --git a/src/Solvers/DESolver.h b/src/Solvers/DESolver.h index 5165c5c30d48bcf70ef5648349fe71c5c87727eb..f3c3379778470720355f449ca9583211514cd2db 100644 --- a/src/Solvers/DESolver.h +++ b/src/Solvers/DESolver.h @@ -162,6 +162,11 @@ public: * @return */ NeuralNetwork* get_solution( ); + + /** + * For testing purposes only + */ + void eval_equation( unsigned int equation_idx, double * weight_values, std::vector<double> &input ); }; diff --git a/src/net_test_ode_1.cpp b/src/net_test_ode_1.cpp index abafd1c8c221e7971da23374ec57e757f4b6ccf3..02be2df3369e9f9af7f2bcd18b244c536c1f9835 100644 --- a/src/net_test_ode_1.cpp +++ b/src/net_test_ode_1.cpp @@ -18,7 +18,7 @@ int main() { unsigned int n_inputs = 1; - unsigned int n_inner_neurons = 1; + unsigned int n_inner_neurons = 64; unsigned int n_outputs = 1; unsigned int n_equations = 3; @@ -42,6 +42,10 @@ int main() { /* neumann boundary condition */ solver_01.add_to_differential_equation( 2, alpha_1, 1.0 ); +// double weights[2] = {0.5, 1.0}; +// std::vector<double> inp = { 1.0 }; +// solver_01.eval_equation( 0, weights, inp ); + /* SETUP OF THE TRAINING DATA */ std::vector<double> inp, out; @@ -94,7 +98,7 @@ int main() { /* PARTICLE SWARM TRAINING METHOD SETUP */ - unsigned int max_iters = 100; + unsigned int max_iters = 1000; //must encapsulate each of the partial error functions double *domain_bounds = new double[ 2 * n_inner_neurons * (n_inputs + n_outputs) ]; @@ -105,11 +109,11 @@ int main() { double c1 = 0.5, c2 = 1.5, w = 0.8; - unsigned int n_particles = 10; + unsigned int n_particles = 100; double gamma = 0.5, epsilon = 0.02, delta = 0.9; - solver_01.solve_via_particle_swarm( domain_bounds, c1, c2, w, n_particles, max_iters, gamma, epsilon, delta); + solver_01.solve_via_particle_swarm( domain_bounds, c1, c2, w, n_particles, max_iters, gamma, epsilon, delta ); NeuralNetwork *solution = solver_01.get_solution(); diff --git a/src/settings.h b/src/settings.h new file mode 100644 index 0000000000000000000000000000000000000000..008004e49aa55e5bc18c8c9f64ab190c6a49d914 --- /dev/null +++ b/src/settings.h @@ -0,0 +1,17 @@ +/** + * DESCRIPTION OF THE FILE + * + * @author Michal KravÄŤenko + * @date 24.7.18 - + */ + +#ifndef INC_4NEURO_SETTINGS_H +#define INC_4NEURO_SETTINGS_H + +/** + * If defined, the NN feed-forward will print out whats happening + */ +//#define VERBOSE_NN_EVAL + + +#endif //INC_4NEURO_SETTINGS_H