diff --git a/src/DataSet/DataSet.cpp b/src/DataSet/DataSet.cpp index 822f1f400e8eff7c9a5edc5d6fbd96389c93a6af..799d2df1b88bfedc1d8e3be0c3082caaa366096d 100644 --- a/src/DataSet/DataSet.cpp +++ b/src/DataSet/DataSet.cpp @@ -285,6 +285,7 @@ namespace lib4neuro { } void DataSet::normalize() { + this->normalized = false; if(!this->normalization_strategy) { THROW_INVALID_ARGUMENT_ERROR("There is no normalization strategy given for this data set, so it can not be " "normalized!"); @@ -333,10 +334,17 @@ namespace lib4neuro { } } -// this->normalized = true; + this->normalized = true; } + double DataSet::get_normalized_value(double val){ + if(!this->normalized || !this->normalization_strategy) { + return val; + } + return this->normalization_strategy->normalize(val, this->max_min_inp_val.at(0), this->max_min_inp_val.at(1)); + } + void DataSet::get_input(std::vector<double> &d, size_t idx){ assert(d.size() == this->data[idx].first.size()); for (size_t j = 0; j < this->data[idx].first.size(); ++j) { diff --git a/src/DataSet/DataSet.h b/src/DataSet/DataSet.h index 8702313467dadff2acb4358ad9fc87ef0f02f736..fddb67dbabbfd018e1559a6e6d7f36148f32b789 100644 --- a/src/DataSet/DataSet.h +++ b/src/DataSet/DataSet.h @@ -51,6 +51,8 @@ namespace lib4neuro { // */ // double min_inp_val = std::numeric_limits<double>::quiet_NaN(); + bool normalized = false; + /** * Maximum (index 0) and minimum (index 1) input value */ @@ -233,6 +235,13 @@ namespace lib4neuro { */ LIB4NEURO_API void normalize(); + /** + * returns the normalized value of @val + * @param val + * @return + */ + LIB4NEURO_API double get_normalized_value(double val); + /** * Denormalizes the data set */ diff --git a/src/Network/NeuralNetwork.cpp b/src/Network/NeuralNetwork.cpp index a51d704c1d6af870ce4e993e050191638ec21b27..d48bfa27bbec4d2e209be998820792bbf75a5299 100644 --- a/src/Network/NeuralNetwork.cpp +++ b/src/Network/NeuralNetwork.cpp @@ -506,7 +506,7 @@ namespace lib4neuro { return this->connection_list->size() - 1; } - void + size_t NeuralNetwork::add_connection_constant(size_t n1_idx, size_t n2_idx, double weight) { ConnectionFunctionConstant *con_weight_u1u2 = new ConnectionFunctionConstant( weight ); @@ -517,6 +517,8 @@ namespace lib4neuro { this->add_inward_connection(n2_idx, n1_idx, conn_idx); this->layers_analyzed = false; + + return conn_idx; } void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx, diff --git a/src/Network/NeuralNetwork.h b/src/Network/NeuralNetwork.h index 8edb9e876a526f4807c9756cf4795118a5eb76a1..00d189214fd92461fd6a0b8d6cbcb58dc5675c72 100644 --- a/src/Network/NeuralNetwork.h +++ b/src/Network/NeuralNetwork.h @@ -279,7 +279,7 @@ namespace lib4neuro { * @param n2_idx * @param weight */ - LIB4NEURO_API void add_connection_constant(size_t n1_idx, size_t n2_idx, double weight); + LIB4NEURO_API size_t add_connection_constant(size_t n1_idx, size_t n2_idx, double weight); /** * Take the existing connection with index 'connection_idx' in 'parent_network' and adds it to the structure of this