From cef2f6b166ba1af4b7fc826641ba410e38508e76 Mon Sep 17 00:00:00 2001 From: Martin Beseda <martin.beseda@vsb.cz> Date: Wed, 9 Jan 2019 16:32:50 +0100 Subject: [PATCH] ENH: added output to the file for more function in simulator.cpp --- src/examples/simulator.cpp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/examples/simulator.cpp b/src/examples/simulator.cpp index 1789b568..684e2ef3 100644 --- a/src/examples/simulator.cpp +++ b/src/examples/simulator.cpp @@ -53,7 +53,7 @@ int main(int argc, char** argv){ // Creation of fully connected feed-forward network with linear activation functions for input and output // layers and the specified a.f. for the hidden ones std::vector<l4n::NEURON_TYPE> hidden_type_v = {l4n::NEURON_TYPE::LOGISTIC, l4n::NEURON_TYPE::LINEAR}; - l4n::FullyConnectedFFN nn(&neuron_numbers_in_layers, &hidden_type_v); + l4n::FullyConnectedFFN nn(&neuron_numbers_in_layers, &hidden_type_v, &output_file); /* Error function */ l4n::MSE mse(&nn, &ds); // First parameter - neural network, second parameter - data-set @@ -91,7 +91,7 @@ int main(int argc, char** argv){ // 1) Threshold for the successful ending of the optimization - deviation from minima // 2) Number of iterations to reset step size to tolerance/10.0 // 3) Maximal number of iterations - optimization will stop after that, even if not converged - l4n::GradientDescent gs(1e-3, 100, 200); + l4n::GradientDescent gs(1e-3, 100, 10); // Weight and bias randomization in the network according to the uniform distribution // Calling methods nn.randomize_weights() and nn.randomize_biases() @@ -115,13 +115,13 @@ int main(int argc, char** argv){ nn.save_text("test_net.4n"); /* Check of the saved network - print to STDOUT */ - std::cout << std::endl << "The original network info:" << std::endl; + std::cout << std::flush << std::endl << "The original network info:" << std::endl; nn.write_stats(); nn.write_weights(); nn.write_biases(); l4n::NeuralNetwork nn_loaded("test_net.4n"); - std::cout << std::endl << "The loaded network info:" << std::endl; + std::cout << std::flush << std::endl << "The loaded network info:" << std::endl; nn_loaded.write_stats(); nn.write_weights(); nn.write_biases(); -- GitLab