diff --git a/include/4neuro.h b/include/4neuro.h index 21e4e3935b8d16c61d6045e353ea7eea661b1da0..5776cdd38be57fa333ddc27e5cb5bdfbd5c87e2c 100644 --- a/include/4neuro.h +++ b/include/4neuro.h @@ -14,6 +14,7 @@ #include "../src/NetConnection/ConnectionWeight.h" #include "../src/NetConnection/ConnectionWeightIdentity.h" #include "../src/Network/NeuralNetwork.h" +#include "../src/Network/NeuralNetworkSum.h" #include "../src/Neuron/Neuron.h" #include "../src/Neuron/NeuronBinary.h" #include "../src/Neuron/NeuronLinear.h" diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index ebdb120b32889a9c529555f821d23e763cbe91fb..ac3b7371a8962969800e44e6849722ae820dc202 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -13,7 +13,7 @@ add_library(4neuro SHARED NetConnection/ConnectionWeightIdentity.cpp LearningMethods/ParticleSwarm.cpp DataSet/DataSet.cpp - ErrorFunction/ErrorFunctions.cpp) + ErrorFunction/ErrorFunctions.cpp Network/NeuralNetworkSum.cpp Network/NeuralNetworkSum.h) target_link_libraries(4neuro boost_serialization) @@ -37,6 +37,9 @@ target_link_libraries(net_test_2 4neuro) add_executable(net_test_3 net_test_3.cpp) target_link_libraries(net_test_3 4neuro) +add_executable(net_test_ode_1 net_test_ode_1.cpp) +target_link_libraries(net_test_ode_1 4neuro) + ############## # UNIT TESTS # ############## diff --git a/src/DataSet/DataSet.h b/src/DataSet/DataSet.h index 6486f20286713c6f52a9cdbb04d0e8e81680a10c..8fd1d585d8ffb535d3c75c0c6dcae3bfb05416d9 100644 --- a/src/DataSet/DataSet.h +++ b/src/DataSet/DataSet.h @@ -1,6 +1,7 @@ // // Created by martin on 7/13/18. // +//TODO generovani dat #ifndef INC_4NEURO_DATASET_H #define INC_4NEURO_DATASET_H diff --git a/src/ErrorFunction/ErrorFunctions.cpp b/src/ErrorFunction/ErrorFunctions.cpp index 47187ffa41c2adc9de7d9b8391cbcebc089fcafb..a98e0603295b882c81b5f4b2422ca179eec66a0e 100644 --- a/src/ErrorFunction/ErrorFunctions.cpp +++ b/src/ErrorFunction/ErrorFunctions.cpp @@ -53,6 +53,7 @@ double MSE::eval(double *weights) { MSE_SUM::MSE_SUM() { this->summand = nullptr; + this->summand_coefficient = nullptr; this->dimension = 0; } @@ -60,23 +61,31 @@ MSE_SUM::~MSE_SUM(){ if( this->summand ){ delete this->summand; } + if( this->summand_coefficient ){ + delete this->summand_coefficient; + } } double MSE_SUM::eval(double *weights) { double output = 0.0; - for(ErrorFunction *f: *this->summand){ - output += f->eval( weights ); + for( int i = 0; i < this->summand->size(); ++i ){ + output += this->summand->at( i )->eval( weights ) * this->summand_coefficient->at( i ); } return output; } -void MSE_SUM::add_error_function(ErrorFunction *F) { +void MSE_SUM::add_error_function(ErrorFunction *F, double alpha) { if(!this->summand){ this->summand = new std::vector<ErrorFunction*>(0); } - this->summand->push_back(F); + this->summand->push_back( F ); + + if(!this->summand_coefficient){ + this->summand_coefficient = new std::vector<double>(0); + } + this->summand_coefficient->push_back( alpha ); if(F->get_dimension() > this->dimension){ this->dimension = F->get_dimension(); diff --git a/src/ErrorFunction/ErrorFunctions.h b/src/ErrorFunction/ErrorFunctions.h index bb639d587db6db95814cae7a6c514a457fb7aa66..48c0731e64c532111620bb7049ed3d9927a0a5ab 100644 --- a/src/ErrorFunction/ErrorFunctions.h +++ b/src/ErrorFunction/ErrorFunctions.h @@ -78,7 +78,7 @@ public: * * @param F */ - void add_error_function(ErrorFunction *F); + void add_error_function(ErrorFunction *F, double alpha = 1.0); /** * @@ -88,6 +88,7 @@ public: private: std::vector<ErrorFunction*>* summand; + std::vector<double> *summand_coefficient; }; diff --git a/src/LearningMethods/ParticleSwarm.cpp b/src/LearningMethods/ParticleSwarm.cpp index 42004f21069a5e1e198debfd1d942068910c9631..77bdff10562285c8be25c2c2d147bff79c7f4c46 100644 --- a/src/LearningMethods/ParticleSwarm.cpp +++ b/src/LearningMethods/ParticleSwarm.cpp @@ -46,6 +46,7 @@ Particle::Particle(ErrorFunction* ef, double *domain_bounds) { this->optimal_coordinate[i] = this->coordinate[i]; } +// printf("coordinate_dim: %d\n", this->coordinate_dim); this->optimal_value = this->ef->eval(this->coordinate); // this->print_coordinate(); diff --git a/src/NetConnection/Connection.cpp b/src/NetConnection/Connection.cpp index 6087bfba74a3fe0ad05b7df7165c18d7644a05d0..cd6b07918e0900f18d4658e96ab34c82b572746b 100644 --- a/src/NetConnection/Connection.cpp +++ b/src/NetConnection/Connection.cpp @@ -45,7 +45,7 @@ Neuron* Connection::get_neuron_out() { //} void Connection::pass_signal() { -// printf("passing signal between neurons %d -> %d, value: %f * %f\n", this->neuron_in, this->neuron_out, this->neuron_in->get_state(), this->con->eval()); +// printf(" passing signal between neurons %d -> %d, value: %f * %f\n", this->neuron_in, this->neuron_out, this->neuron_in->get_state(), this->con->eval()); this->neuron_out->adjust_potential(this->neuron_in->get_state() * this->con->eval()); } diff --git a/src/Network/NeuralNetwork.cpp b/src/Network/NeuralNetwork.cpp index c3ccd6a109dce494a4ee3385560a9768d56c8655..0cde711c3af3c0e4c862063062d4c30eb71336dd 100644 --- a/src/Network/NeuralNetwork.cpp +++ b/src/Network/NeuralNetwork.cpp @@ -274,21 +274,22 @@ int NeuralNetwork::add_neuron(Neuron *n) { return n->get_idx(); } -void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx) { - add_connection_simple(n1_idx, n2_idx, -1); +size_t NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx) { + return add_connection_simple(n1_idx, n2_idx, -1); } -void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx) { - add_connection_simple(n1_idx, n2_idx, weight_idx, 1); +size_t NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx) { + return add_connection_simple(n1_idx, n2_idx, weight_idx, 1); } -void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx, double weight_value) { +size_t NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx, double weight_value) { // TODO generate weight_value automatically from normal distribution if(weight_idx < 0 || weight_idx >= this->connection_weights->size()){ //this weight is a new one, we add it to the system of weights this->connection_weights->push_back(weight_value); weight_idx = (int)this->connection_weights->size() - 1; + this->n_weights++; } Neuron *neuron_out = this->neurons->at(n1_idx); Neuron *neuron_in = this->neurons->at(n2_idx); @@ -300,10 +301,42 @@ void NeuralNetwork::add_connection_simple(int n1_idx, int n2_idx, size_t weight_ neuron_out->add_connection_out(u1u2); neuron_in->add_connection_in(u1u2); + + return weight_idx; +} + +void NeuralNetwork::add_connection_shared_power1(int n1_idx, int n2_idx, size_t weight_idx) { + std::function<double(double *, size_t*, size_t)> weight_function = [](double * weight_array, size_t * index_array, size_t n_params){ + return weight_array[index_array[0]]; + }; + + size_t* weight_indices = new size_t[1]; + double* weight_values = new double[1]; + + weight_indices[0] = weight_idx; + this->add_connection_general( n1_idx, n2_idx, &weight_function, weight_indices, weight_values, 1); + + delete [] weight_indices; + delete [] weight_values; +} + +void NeuralNetwork::add_connection_shared_power2(int n1_idx, int n2_idx, size_t weight_idx) { + std::function<double(double *, size_t*, size_t)> weight_function = [](double * weight_array, size_t * index_array, size_t n_params){ + return weight_array[index_array[0]] * weight_array[index_array[0]]; + }; + + size_t* weight_indices = new size_t[1]; + double* weight_values = new double[1]; + + weight_indices[0] = weight_idx; + this->add_connection_general( n1_idx, n2_idx, &weight_function, weight_indices, weight_values, 1); + + delete [] weight_indices; + delete [] weight_values; } -void NeuralNetwork::add_connection_general(int n1_idx, int n2_idx, std::function<double(double *, int*, int)> *f, - int* weight_indices, double* weight_values, size_t n_weights) { +void NeuralNetwork::add_connection_general(int n1_idx, int n2_idx, std::function<double(double *, size_t*, size_t)> *f, + size_t* weight_indices, double* weight_values, size_t n_weights) { ConnectionWeight *con_weight_u1u2 = new ConnectionWeight(n_weights, this->connection_weights); //we analyze weights @@ -328,6 +361,7 @@ void NeuralNetwork::add_connection_general(int n1_idx, int n2_idx, std::function neuron_out->add_connection_out(u1u2); neuron_in->add_connection_in(u1u2); + } void NeuralNetwork::determine_inputs_outputs() { @@ -372,6 +406,8 @@ void NeuralNetwork::set_weight_array(std::vector<double> *weight_ptr) { } this->connection_weights = weight_ptr; this->delete_weights = false; + + this->n_weights = this->connection_weights->size(); } void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output, double * custom_weights) { @@ -448,8 +484,8 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> //we iterate through the active neurons and propagate the signal for(i = 0; i < active_set_size[idx1]; ++i){ active_neuron = this->active_eval_set->at(i + n * idx1); - active_neuron->activate(); -// printf(" active neuron %d, state: %f\n", active_neuron, active_neuron->get_state()); + active_neuron->activate();//computes the activation function on its potential +// printf(" active neuron %d, potential: %f, state: %f\n", active_neuron, active_neuron->get_potential(), active_neuron->get_state()); for(Connection* connection: *(active_neuron->get_connections_out())){ connection->pass_signal(); @@ -463,6 +499,7 @@ void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> } } } +// printf("-----------\n"); idx1 = idx2; idx2 = (idx1 + 1) % 2; @@ -489,20 +526,25 @@ void NeuralNetwork::copy_weights(double *weights) { } } +std::vector<double>* NeuralNetwork::get_weights_ptr(){ + return this->connection_weights; +} + void NeuralNetwork::randomize_weights() { - if( this->neurons->size() <= 0 || !this->in_out_determined ){ + if( this->n_weights <= 0 ){ + return; } boost::random::mt19937 gen; // Init weight guess ("optimal" for logistic activation functions) - double r = 4 * sqrt(6./(this->n_inputs + this->n_outputs)); + double r = 4 * sqrt(6./(this->n_weights)); boost::random::uniform_real_distribution<> dist(-r, r); - for(unsigned int i = 0; i < this->n_weights; i++) { + for(size_t i = 0; i < this->n_weights; i++) { this->connection_weights->at(i) = dist(gen); } } @@ -552,3 +594,18 @@ void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_i this->n_outputs = this->output_neurons->size(); } +void NeuralNetwork::print_weights() { + printf("Connection weights: "); + if(this->connection_weights){ + for( size_t i = 0; i < this->connection_weights->size() - 1; ++i){ + printf("%f, ", this->connection_weights->at(i)); + } + printf("%f", this->connection_weights->at(this->connection_weights->size() - 1)); + } + + printf("\n"); +} + +void NeuralNetwork::print_stats(){ + printf("Number of neurons: %d, number of weights: %d\n", this->neurons->size(), this->n_weights); +} \ No newline at end of file diff --git a/src/Network/NeuralNetwork.h b/src/Network/NeuralNetwork.h index ceaa554e182057163534a7ab68eb4dc5953d1d3e..1bfa39a5c47e8bd1110958e1a0291ac85a42e1fe 100644 --- a/src/Network/NeuralNetwork.h +++ b/src/Network/NeuralNetwork.h @@ -79,11 +79,7 @@ private: */ void determine_inputs_outputs(); - /** - * - * @param weight_ptr - */ - void set_weight_array( std::vector<double>* weight_ptr ); + public: @@ -113,7 +109,7 @@ public: * @param[in] input * @param[in,out] output */ - void eval_single(std::vector<double> &input, std::vector<double> &output, double *custom_weights = nullptr); + virtual void eval_single(std::vector<double> &input, std::vector<double> &output, double *custom_weights = nullptr); @@ -128,25 +124,46 @@ public: * * @param n1_idx * @param n2_idx + * @return + */ + size_t add_connection_simple(int n1_idx, int n2_idx); + + /** + * + * @param n1_idx + * @param n2_idx + * @param weight_idx + * @return + */ + size_t add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx); + + /** + * + * @param n1_idx + * @param n2_idx + * @param weight_idx + * @param weight_value + * @return */ - void add_connection_simple(int n1_idx, int n2_idx); + size_t add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx, double weight_value); /** * * @param n1_idx * @param n2_idx * @param weight_idx + * @param power_degree */ - void add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx); + void add_connection_shared_power1(int n1_idx, int n2_idx, size_t weight_idx); /** * - * @param[in] n1_idx - * @param[in] n2_idx - * @param[in] weight_idx - * @param[in] weight_value + * @param n1_idx + * @param n2_idx + * @param weight_idx + * @param power_degree */ - void add_connection_simple(int n1_idx, int n2_idx, size_t weight_idx, double weight_value); + void add_connection_shared_power2(int n1_idx, int n2_idx, size_t weight_idx); /** * @@ -157,8 +174,14 @@ public: * @param weight_values * @param n_weights */ - void add_connection_general(int n1_idx, int n2_idx, std::function<double(double *, int*, int)> *f, - int* weight_indices, double* weight_values, size_t n_weights); + void add_connection_general(int n1_idx, int n2_idx, std::function<double(double *, size_t*, size_t)> *f, + size_t* weight_indices, double* weight_values, size_t n_weights); + + /** + * + * @param weight_ptr + */ + void set_weight_array( std::vector<double>* weight_ptr ); /** * @@ -166,6 +189,12 @@ public: */ void copy_weights(double *weights); + /** + * + * @return + */ + std::vector<double>* get_weights_ptr(); + /** * */ @@ -187,7 +216,7 @@ public: * * @return */ - size_t get_n_weights(); + virtual size_t get_n_weights(); /** * @@ -201,6 +230,15 @@ public: */ void specify_output_neurons(std::vector<size_t> &output_neurons_indices); + /** + * + */ + void print_weights(); + + /** + * + */ + void print_stats(); }; diff --git a/src/Network/NeuralNetworkSum.cpp b/src/Network/NeuralNetworkSum.cpp new file mode 100644 index 0000000000000000000000000000000000000000..6bc4be452a1b81b238fc01326c45028626f7ccbd --- /dev/null +++ b/src/Network/NeuralNetworkSum.cpp @@ -0,0 +1,57 @@ +/** + * DESCRIPTION OF THE FILE + * + * @author Michal KravÄŤenko + * @date 18.7.18 - + */ + +#include "NeuralNetworkSum.h" + +NeuralNetworkSum::NeuralNetworkSum(){ + this->summand = nullptr; + this->summand_coefficient = nullptr; +} + +NeuralNetworkSum::~NeuralNetworkSum() { + if( this->summand ){ + delete this->summand; + } + if( this->summand_coefficient ){ + delete this->summand_coefficient; + } +} + +void NeuralNetworkSum::add_network(NeuralNetwork *net, double alpha) { + if(!this->summand){ + this->summand = new std::vector<NeuralNetwork*>(0); + } + this->summand->push_back( net ); + + if(!this->summand_coefficient){ + this->summand_coefficient = new std::vector<double>(0); + } + this->summand_coefficient->push_back( alpha ); +} + +void NeuralNetworkSum::eval_single(std::vector<double> &input, std::vector<double> &output, double *custom_weights) { + std::vector<double> mem_output(output.size()); + std::fill(output.begin(), output.end(), 0.0); + + for(int ni = 0; ni < this->summand->size(); ++ni){ + this->summand->at(ni)->eval_single(input, mem_output, custom_weights); + double alpha = this->summand_coefficient->at(ni); + for(int j = 0; j < output.size(); ++j){ + output[j] += mem_output[j] * alpha; + } + } + +} + +size_t NeuralNetworkSum::get_n_weights(){ + //TODO stupid solution, assumes the networks share weights + if(this->summand){ + return this->summand->at(0)->get_n_weights(); + } + + return 0; +} \ No newline at end of file diff --git a/src/Network/NeuralNetworkSum.h b/src/Network/NeuralNetworkSum.h new file mode 100644 index 0000000000000000000000000000000000000000..7c0cba3651a1e87906c1e38948fb9f13c097107b --- /dev/null +++ b/src/Network/NeuralNetworkSum.h @@ -0,0 +1,30 @@ +/** + * DESCRIPTION OF THE FILE + * + * @author Michal KravÄŤenko + * @date 18.7.18 - + */ + +#ifndef INC_4NEURO_NEURALNETWORKSUM_H +#define INC_4NEURO_NEURALNETWORKSUM_H + +#include "NeuralNetwork.h" + +class NeuralNetworkSum : public NeuralNetwork { +private: + std::vector<NeuralNetwork*> * summand; + std::vector<double> * summand_coefficient; + +public: + NeuralNetworkSum(); + virtual ~NeuralNetworkSum(); + + void add_network( NeuralNetwork *net, double alpha = 1.0 ); + + virtual void eval_single(std::vector<double> &input, std::vector<double> &output, double *custom_weights = nullptr) override; + + virtual size_t get_n_weights(); +}; + + +#endif //INC_4NEURO_NEURALNETWORKSUM_H diff --git a/src/Neuron/NeuronLogistic.cpp b/src/Neuron/NeuronLogistic.cpp index 5113ecd7f2fbc22ab6f8f4308a34ddd20f1b9f8b..dabcb04722378f9c281f5348b68f34333158edae 100644 --- a/src/Neuron/NeuronLogistic.cpp +++ b/src/Neuron/NeuronLogistic.cpp @@ -28,8 +28,8 @@ void NeuronLogistic::activate( ) { double b = this->activation_function_parameters[1]; double x = this->potential; - double ex = std::pow(E, a - x); - this->state = std::pow(1.0 + ex, -b); + double ex = std::pow(E, b - x); + this->state = std::pow(1.0 + ex, -a); } @@ -40,9 +40,9 @@ double NeuronLogistic::activation_function_get_partial_derivative(int param_idx double x = this->potential; if(param_idx == 0){ - double ex = std::pow(E, a - x); + double ex = std::pow(E, b - x); - double exa= -std::pow(ex + 1.0, -b); + double exa= -std::pow(ex + 1.0, -a); return exa * std::log(ex + 1.0); } @@ -51,10 +51,10 @@ double NeuronLogistic::activation_function_get_partial_derivative(int param_idx * TODO * Could be write as activation_function_get_derivative() * -1 */ - double ex = std::pow(E, a - x); - double ex2 = std::pow(ex + 1.0, -b - 1.0); + double ex = std::pow(E, b - x); + double ex2 = std::pow(ex + 1.0, -a - 1.0); - return -b * ex * ex2; + return -a * ex * ex2; } return 0.0; @@ -67,9 +67,9 @@ double NeuronLogistic::activation_function_get_derivative( ) { double b = this->activation_function_parameters[1]; double x = this->potential; - double ex = std::pow(E, a - x); - double ex2 = std::pow(ex + 1.0, -b - 1.0); + double ex = std::pow(E, b - x); + double ex2 = std::pow(ex + 1.0, -a - 1.0); - return b * ex * ex2; + return a * ex * ex2; } \ No newline at end of file diff --git a/src/net_test_ode_1.cpp b/src/net_test_ode_1.cpp new file mode 100644 index 0000000000000000000000000000000000000000..70e07407e430c8d0278b1790a2b2cf41c6f901d7 --- /dev/null +++ b/src/net_test_ode_1.cpp @@ -0,0 +1,194 @@ +/** + * Example solving the following ODE: + * + * g(t) = (d^2/d^t)y(t) + 4 (d/dt)y(t) + 4y(t) = 0, for t in [0, 4] + * y(0) = 1 + * (d/dt)y(0) = 1 + * + * @author Michal KravÄŤenko + * @date 17.7.18 - + */ + +#include <vector> +#include <utility> + +#include "../include/4neuro.h" + +int main() { + + int n_inner_neurons = 4; + + std::vector<double> inp, out; + + double d1_s = 0.0, d1_e = 4.0, frac, alpha; + + /* TRAIN DATA FOR g(t) */ + std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_g; + unsigned int train_size = 100; + + /* ISOTROPIC TRAIN SET */ + frac = (d1_e - d1_s) / (train_size - 1); + for(unsigned int i = 0; i < train_size; ++i){ + inp = {frac * i}; + out = {0.0}; + data_vec_g.emplace_back(std::make_pair(inp, out)); + } + + /* CHEBYSCHEV TRAIN SET */ +// alpha = PI / (train_size - 1); +// frac = 0.5 * (d1_e - d1_s); +// for(unsigned int i = 0; i < train_size; ++i){ +// inp = {(std::cos(alpha * i) + 1.0) * frac + d1_s}; +// out = {0.0}; +// data_vec_g.emplace_back(std::make_pair(inp, out)); +// } + DataSet ds_g(&data_vec_g); + + /* TRAIN DATA FOR DIRICHLET BC */ + std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_y; + inp = {0.0}; + out = {1.0}; + data_vec_y.emplace_back(std::make_pair(inp, out)); + DataSet ds_y(&data_vec_y); + + /* TRAIN DATA FOR NEUMANN BC */ + std::vector<std::pair<std::vector<double>, std::vector<double>>> data_vec_dy; + inp = {0.0}; + out = {1.0}; + data_vec_dy.emplace_back(std::make_pair(inp, out)); + DataSet ds_dy(&data_vec_dy); + + /* DEFINITION OF NNs REPRESENTING y(t) and its derivatives */ + NeuralNetwork y; + NeuralNetwork dy; + NeuralNetwork ddy; + + /* Input neurons*/ + NeuronLinear *i_y = new NeuronLinear(0.0, 1.0); //f(x) = x + NeuronLinear *i_dy = new NeuronLinear(0.0, 1.0); //f(x) = x + NeuronLinear *i_ddy = new NeuronLinear(0.0, 1.0); //f(x) = x + + /* Output neurons*/ + NeuronLinear *o_y = new NeuronLinear(0.0, 1.0); //f(x) = x + NeuronLinear *o_dy = new NeuronLinear(0.0, 1.0); //f(x) = x + NeuronLinear *o_ddy = new NeuronLinear(0.0, 1.0); //f(x) = x + + int idxi = y.add_neuron(i_y); + int idxo = y.add_neuron(o_y); + int idxinn, idxinn2; + + dy.add_neuron(i_dy); + dy.add_neuron(o_dy); + ddy.add_neuron(i_ddy); + ddy.add_neuron(o_ddy); + + std::vector<double> *weight_ptr; + + weight_ptr = y.get_weights_ptr( ); + + dy.set_weight_array( weight_ptr ); + ddy.set_weight_array( weight_ptr ); + + size_t conn_1_idx, conn_2_idx; + for( int i = 0; i < n_inner_neurons; ++i ){ + /* Inner neurons and connections of y(t) */ + NeuronLogistic *inn_i = new NeuronLogistic(1.0, 0.0); //f(x) = 1.0 / (1.0 + e^(-x)) + idxinn = y.add_neuron( inn_i ); + + conn_1_idx = y.add_connection_simple(idxi, idxinn); + conn_2_idx = y.add_connection_simple(idxinn, idxo); + + + //TODO INCORRECT neurons, must be derivatives of Logistic function + /* Inner neurons and connections of dy(t), SHARING WEIGHTS */ + NeuronLogistic *inn_i_dy = new NeuronLogistic(1.0, 0.0); //f(x) = 1.0 / (1.0 + e^(-x)) + idxinn = dy.add_neuron( inn_i_dy ); + dy.add_connection_simple(idxi, idxinn, conn_1_idx); + NeuronLinear *identity_dy = new NeuronLinear(0.0, 1.0); //f(x) = x + idxinn2 = dy.add_neuron( identity_dy ); + dy.add_connection_simple(idxinn, idxinn2, conn_2_idx); + dy.add_connection_shared_power1(idxinn2, idxo, conn_1_idx); + + /* Inner neurons and connections of ddy(t), SHARING WEIGHTS */ + NeuronLogistic *inn_i_ddy = new NeuronLogistic(1.0, 0.0); //f(x) = 1.0 / (1.0 + e^(-x)) + idxinn = ddy.add_neuron( inn_i_ddy ); + ddy.add_connection_simple(idxi, idxinn, conn_1_idx); + NeuronLinear *identity_ddy = new NeuronLinear(0.0, 1.0); //f(x) = x + idxinn2 = ddy.add_neuron( identity_ddy ); + ddy.add_connection_simple(idxinn, idxinn2, conn_2_idx); + ddy.add_connection_shared_power2(idxinn2, idxo, conn_1_idx); + } + + y.randomize_weights(); + + /* SPECIFICATION OF INPUTS */ + std::vector<size_t> net_input_neurons_indices(1); + std::vector<size_t> net_output_neurons_indices(1); + net_input_neurons_indices[0] = idxi; + net_output_neurons_indices[0] = idxo; + y.specify_input_neurons(net_input_neurons_indices); + y.specify_output_neurons(net_output_neurons_indices); + + dy.specify_input_neurons(net_input_neurons_indices); + dy.specify_output_neurons(net_output_neurons_indices); + + ddy.specify_input_neurons(net_input_neurons_indices); + ddy.specify_output_neurons(net_output_neurons_indices); + + +// y.print_weights(); +// dy.print_weights(); +// ddy.print_weights(); + +// y.print_stats(); +// dy.print_stats(); +// ddy.print_stats(); + + /* DEFINITION OF NN SUM */ + NeuralNetworkSum g; + g.add_network(&y, 4.0); + g.add_network(&dy, 4.0); + g.add_network(&ddy, 1.0); + + /* DEFINITION OF THE PARTIAL ERROR FUNCTIONS */ + MSE error_y( &y, &ds_y ); + MSE error_dy( &dy, &ds_dy ); + MSE error_test_ddy(&ddy, &ds_g); + MSE error_g( &g, &ds_g ); + + /* DEFINITION OF THE GLOBAL ERROR FUNCTION */ + MSE_SUM mse_sum; + mse_sum.add_error_function( &error_y ); + mse_sum.add_error_function( &error_dy ); + mse_sum.add_error_function( &error_g ); + +// double weights[2] = {1.0, 1.0}; +// error_y.eval(weights); + + /* TRAINING METHOD SETUP */ + unsigned int max_iters = 500; + + + //must encapsulate each of the partial error functions + double *domain_bounds = new double[4 * n_inner_neurons]; + for(int i = 0; i < 2 * n_inner_neurons; ++i){ + domain_bounds[2 * i] = -800.0; + domain_bounds[2 * i + 1] = 800.0; + } + + double c1 = 0.5, c2 = 1.5, w = 0.8; + + unsigned int n_particles = 10; + + ParticleSwarm swarm_01(&mse_sum, domain_bounds, c1, c2, w, n_particles, max_iters); +// ParticleSwarm swarm_01(&error_y, domain_bounds, c1, c2, w, n_particles, max_iters); +// ParticleSwarm swarm_01(&error_dy, domain_bounds, c1, c2, w, n_particles, max_iters); +// ParticleSwarm swarm_01(&error_test_ddy, domain_bounds, c1, c2, w, n_particles, max_iters); +// ParticleSwarm swarm_01(&error_g, domain_bounds, c1, c2, w, n_particles, max_iters); + + swarm_01.optimize(0.5, 0.02, 0.9); + + + delete [] domain_bounds; + return 0; +} \ No newline at end of file