/** * DESCRIPTION OF THE FILE * * @author Michal KravĨenko * @date 15.3.19 - */ #include <iostream> #include <cstdio> #include <fstream> #include <vector> #include <utility> #include <algorithm> #include <assert.h> #include "4neuro.h" #include "../LearningMethods/RandomSolution.h" int main(int argc, char** argv) { //POZOR, NORMALIZACE JE NUTNA A JE TREBA MIT NA PAMETI, ZE MA VLIV NA CASOVE POSUNY bool normalize_data = false; double prec = 1e-9; double prec_lm = 1e-9; int restart_interval = 500; int max_n_iters_gradient = 10000; int max_n_iters_gradient_lm = 10; int max_n_iters_swarm = 5; int n_particles_swarm = 200; unsigned long batch_size = 0; int max_number_of_cycles = 1; try { puts("*********************** 1"); /* PHASE 2 - TRAINING DATA LOADING, SIMPLE SIMULATION */ l4n::CSVReader reader1("/home/martin/Desktop/ANN_MV_process_Data.csv", ";", true); // File, separator, skip 1st line reader1.read(); // Read from the file puts("*********************** 2"); /* PHASE 2 - NEURAL NETWORK SPECIFICATION */ /* Create data set for both the first training of the neural network */ /* Specify which columns are inputs or outputs */ std::vector<unsigned int> inputs = { 0 }; // Possible multiple inputs, e.g. {0,3}, column indices starting from 0 std::vector<unsigned int> outputs = { 2 }; // Possible multiple outputs, e.g. {1,2} std::shared_ptr<l4n::DataSet> ds1 = reader1.get_data_set(&inputs, &outputs); // Creation of data-set for NN if(normalize_data){ ds1.get()->normalize(); // Normalization of data to prevent numerical problems } puts("*********************** 3"); /* Numbers of neurons in layers (including input and output layers) */ std::vector<size_t> neuron_numbers_in_layers = { 1, 4, 4, 1 }; /* for each valve (1 in this example) setup the times of change */ std::vector<std::vector<double>> t; t.push_back({ds1.get()->get_normalized_value(0), ds1.get()->get_normalized_value(100)}); /* for each valve (1 in this example) setup the magnitudes of change */ std::vector<std::vector<double>> xi; // xi.push_back({ds1.get_data()->at(0).second}); xi.push_back({1.0, 5.0}); /* The simulator2 object */ l4n::Simulator sim(outputs.size(), neuron_numbers_in_layers, t, xi); puts("*********************** 4"); /* Error function */ l4n::MSE mse1(&sim, ds1.get()); // First parameter - neural network, second parameter - data-set /* Particle Swarm method domain*/ std::vector<double> domain_bounds(2 * (sim.get_n_weights() + sim.get_n_biases())); for (size_t i = 0; i < domain_bounds.size() / 2; ++i) { domain_bounds[2 * i] = -0.1; domain_bounds[2 * i + 1] = 0.1; } l4n::LearningSequence learning_sequence( 1e-6, max_number_of_cycles ); std::shared_ptr<l4n::LearningMethod> new_learning_method; new_learning_method.reset( new l4n::RandomSolution()); learning_sequence.add_learning_method( new_learning_method ); std::shared_ptr<l4n::LearningMethod> new_learning_method2; new_learning_method2.reset( new l4n::ParticleSwarm(&domain_bounds, 1.711897, 1.711897, 0.711897, 0.5, 0.3, 0.7, n_particles_swarm, max_n_iters_swarm) ); // learning_sequence.add_learning_method( new_learning_method2 ); std::shared_ptr<l4n::LearningMethod> new_learning_method3; new_learning_method3.reset( new l4n::LevenbergMarquardt(max_n_iters_gradient_lm, batch_size, prec_lm ) ); learning_sequence.add_learning_method( new_learning_method3 ); puts("*********************** 5"); /* Complex Optimization */ learning_sequence.optimize(mse1); // Network training puts("*********************** 6"); /* Save Neural network parameters to file */ sim.save_text("test_net_Gradient_Descent.4n"); // /* PHASE 4 - TESTING DATA */ // // /* Output file specification */ // std::string filename = "simulator_output.txt"; // std::ofstream output_file(filename); // if (!output_file.is_open()) { // throw std::runtime_error("File '" + filename + "' can't be opened!"); // } // // /* Neural network loading */ // l4n::NeuralNetwork nn3("test_net_Gradient_Descent.4n"); // // /* Check of the saved network - write to the file */ // output_file << std::endl << "The loaded network info:" << std::endl; // nn3.write_stats(&output_file); // nn3.write_weights(&output_file); // nn3.write_biases(&output_file); //// //// /* Evaluate network on an arbitrary data-set and save results into the file */ // l4n::CSVReader reader3("/home/martin/Desktop/ANN_MV_process_Data.csv", ";", true); // File, separator, skip 1st line // reader3.read(); // Read from the file //// //// /* Create data set for both the testing of the neural network */ //// /* Specify which columns are inputs or outputs */ //// // std::shared_ptr<l4n::DataSet> ds3 = reader3.get_data_set(&inputs, &outputs); // Creation of data-set for NN // if(normalize_data){ // ds3.get()->normalize(); // Normalization of data to prevent numerical problems // } //// //// output_file << std::endl << "Evaluating network on the dataset: " << std::endl; //// ds3.store_data_text(&output_file); //// // output_file << "Output and the error:" << std::endl; //// //// /* Error function */ // l4n::MSE mse3(&nn3, ds3.get()); // First parameter - neural network, second parameter - data-set // // mse3.eval_on_data_set(ds3.get(), &output_file, nullptr, normalize_data, true); // // /* Close the output file for writing */ // output_file.close(); return 0; } catch (const std::exception& e) { std::cerr << e.what() << std::endl; exit(EXIT_FAILURE); } }