// // Created by martin on 7/13/18. // #ifndef INC_4NEURO_DATASET_H #define INC_4NEURO_DATASET_H #include "../settings.h" #include <iostream> #include <fstream> #include <utility> #include <vector> #include <exception> #include <string> #include <functional> #include <boost/serialization/base_object.hpp> #include <boost/range/size_type.hpp> #include <boost/serialization/vector.hpp> #include <boost/serialization/utility.hpp> #include <boost/archive/text_oarchive.hpp> #include <boost/archive/text_iarchive.hpp> /** * Class representing an error caused by an incorrect * input/output dimension specification */ class InvalidDimension: public std::runtime_error { public: /** * Constructor with the general error message */ LIB4NEURO_API InvalidDimension(); /** * Constructor with specific error message * @param msg Specific error message */ LIB4NEURO_API explicit InvalidDimension(std::string msg); }; /** * Class representing data, which can be used for training * and testing purposes. */ class DataSet { friend class boost::serialization::access; private: /** * Number of elements in the data set */ size_t n_elements; /** * Dimension of the input */ size_t input_dim = 0; /** * Dimension of the output */ size_t output_dim = 0; /** * Stored data in the format of pairs of corresponding * input and output vectors */ std::vector<std::pair<std::vector<double>, std::vector<double>>> data; template <class T> std::vector<std::vector<T>> cartesian_product(const std::vector<std::vector<T>>* v); protected: /** * Serialization function * @tparam Archive Boost library template * @param ar Boost parameter - filled automatically during serialization! * @param version Boost parameter - filled automatically during serialization! */ template<class Archive> void serialize(Archive & ar, const unsigned int version){ ar & this->n_elements; ar & this->input_dim; ar & this->output_dim; ar & this->data; }; public: /** * Constructor reading data from the file * @param file_path Path to the file with stored data set */ LIB4NEURO_API DataSet(std::string file_path); /** * Constructor accepting data vector * @param data_ptr Pointer to the vector containing data */ LIB4NEURO_API DataSet(std::vector<std::pair<std::vector<double>, std::vector<double>>>* data_ptr); /** * Creates a new data set with input values equidistantly positioned * over the certain interval and the output value * being constant * * Both input and output are 1-dimensional * * @todo add bounds as vectors for multi-dimensional data-sets * * @param lower_bound Lower bound of the input data interval * @param upper_bound Upper bound of the input data interval * @param size Number of input-output pairs generated * @param output Constant output value */ LIB4NEURO_API DataSet(double lower_bound, double upper_bound, unsigned int size, double output); /** * * @param bounds * @param no_elems_in_one_dim * @param output_func * @param output_dim */ LIB4NEURO_API DataSet(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&), unsigned int output_dim); /** * Getter for number of elements * @return Number of elements in the data set */ LIB4NEURO_API size_t get_n_elements(); /** * Returns the input dimension * @return Input dimension */ LIB4NEURO_API size_t get_input_dim(); /** * Return the output dimension * @return Output dimension */ LIB4NEURO_API size_t get_output_dim(); /** * Getter for the data structure * @return Vector of data */ LIB4NEURO_API std::vector<std::pair<std::vector<double>, std::vector<double>>>* get_data(); /** * Adds a new pair of data to the data set * @param inputs Vector of input data * @param outputs Vector of output data corresponding to the input data */ LIB4NEURO_API void add_data_pair(std::vector<double> &inputs, std::vector<double> &outputs); //TODO expand method to generate multiple data types - chebyshev etc. /** * Adds a new data with input values equidistantly positioned * over the certain interval and the output value * being constant * * Both input and output are 1-dimensional * * @param lower_bound Lower bound of the input data interval * @param upper_bound Upper bound of the input data interval * @param size Number of input-output pairs generated * @param output Constant output value */ LIB4NEURO_API void add_isotropic_data(double lower_bound, double upper_bound, unsigned int size, double output); /** * Adds a new data with input values equidistantly positioned * over the certain interval and the output value * being constant * * Input can have arbitrary many dimensions, * output can be an arbitrary function * * @param bounds Odd values are lower bounds and even values are corresponding upper bounds * @param size Number of input-output pairs generated * @param output_func Function determining output value */ LIB4NEURO_API void add_isotropic_data(std::vector<double> &bounds, unsigned int no_elems_in_one_dim, std::vector<double> (*output_func)(std::vector<double>&)); //TODO Chebyshev - ch. interpolation points, i-th point = cos(i*alpha) from 0 to pi /** * Prints the data set */ LIB4NEURO_API void print_data(); /** * Stores the DataSet object to the binary file */ LIB4NEURO_API void store_text(std::string &file_path); }; #endif //INC_4NEURO_DATASET_H