/** * DESCRIPTION OF THE FILE * * @author Michal KravĨenko * @date 13.6.18 - */ #include <iostream> #include <boost/random/mersenne_twister.hpp> #include <boost/random/uniform_real_distribution.hpp> #include "NeuralNetwork.h" NeuralNetwork::NeuralNetwork() { this->neurons = new std::vector<Neuron*>(0); this->neuron_biases = new std::vector<double>(0); this->neuron_potentials = new std::vector<double>(0); this->neuron_bias_indices = new std::vector<int>(0); this->connection_weights =new std::vector<double>(0); this->connection_list = new std::vector<ConnectionFunctionGeneral*>(0); this->inward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0); this->outward_adjacency = new std::vector<std::vector<std::pair<size_t, size_t>>*>(0); this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0); this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0); this->input_neuron_indices = new std::vector<size_t>(0); this->output_neuron_indices = new std::vector<size_t>(0); this->delete_weights = true; this->delete_biases = true; this->layers_analyzed = false; } NeuralNetwork::~NeuralNetwork() { if(this->neurons){ for( auto n: *this->neurons ){ delete n; n = nullptr; } delete this->neurons; this->neurons = nullptr; } if(this->neuron_potentials){ delete this->neuron_potentials; this->neuron_potentials = nullptr; } if(this->neuron_bias_indices){ delete this->neuron_bias_indices; this->neuron_bias_indices = nullptr; } if(this->output_neuron_indices){ delete this->output_neuron_indices; this->output_neuron_indices = nullptr; } if(this->input_neuron_indices){ delete this->input_neuron_indices; this->input_neuron_indices = nullptr; } if(this->connection_weights && this->delete_weights){ delete this->connection_weights; this->connection_weights = nullptr; } if(this->neuron_biases && this->delete_biases){ delete this->neuron_biases; this->neuron_biases = nullptr; } if(this->connection_list){ if(this->delete_weights){ for(auto c: *this->connection_list){ delete c; c = nullptr; } } delete this->connection_list; this->connection_list = nullptr; } if(this->inward_adjacency){ for(auto e: *this->inward_adjacency){ if(e){ delete e; e = nullptr; } } delete this->inward_adjacency; this->inward_adjacency = nullptr; } if(this->outward_adjacency){ for(auto e: *this->outward_adjacency){ if(e){ delete e; e = nullptr; } } delete this->outward_adjacency; this->outward_adjacency = nullptr; } if(this->neuron_layers_feedforward){ for(auto e: *this->neuron_layers_feedforward){ delete e; e = nullptr; } delete this->neuron_layers_feedforward; this->neuron_layers_feedforward = nullptr; } if(this->neuron_layers_feedbackward){ for(auto e: *this->neuron_layers_feedbackward){ delete e; e = nullptr; } delete this->neuron_layers_feedbackward; this->neuron_layers_feedbackward = nullptr; } } NeuralNetwork* NeuralNetwork::get_subnet(std::vector<size_t> &input_neuron_indices, std::vector<size_t> &output_neuron_indices){ NeuralNetwork *output_net = nullptr; // TODO rework due to the changed structure of the class // Neuron * active_neuron, * target_neuron; // // size_t n = this->neurons->size(); // bool *part_of_subnetwork = new bool[n]; // std::fill(part_of_subnetwork, part_of_subnetwork + n, false); // // bool *is_reachable_from_source = new bool[n]; // bool *is_reachable_from_destination = new bool[n]; // std::fill(is_reachable_from_source, is_reachable_from_source + n, false); // std::fill(is_reachable_from_destination, is_reachable_from_destination + n, false); // // bool *visited_neurons = new bool[n]; // std::fill(visited_neurons, visited_neurons + n, false); // // size_t active_set_size[2]; // active_set_size[0] = 0; // active_set_size[1] = 0; // size_t * active_neuron_set = new size_t[2 * n]; // size_t idx1 = 0, idx2 = 1; // // /* MAPPING BETWEEN NEURONS AND THEIR INDICES */ // size_t idx = 0, idx_target; // for(Neuron *v: *this->neurons){ // v->set_idx( idx ); // idx++; // } // // /* INITIAL STATE FOR THE FORWARD PASS */ // for(size_t i: input_neuron_indices ){ // // if( i < 0 || i >= n){ // //invalid index // continue; // } // active_neuron_set[idx1 * n + active_set_size[idx1]] = i; // active_set_size[idx1]++; // // visited_neurons[i] = true; // } // // /* FORWARD PASS */ // while(active_set_size[idx1] > 0){ // // //we iterate through the active neurons and propagate the signal // for(int i = 0; i < active_set_size[idx1]; ++i){ // idx = active_neuron_set[i]; // // is_reachable_from_source[ idx ] = true; // // active_neuron = this->neurons->at( idx ); // // for(Connection* connection: *(active_neuron->get_connections_out())){ // // target_neuron = connection->get_neuron_out( ); // idx_target = target_neuron->get_idx( ); // // if( visited_neurons[idx_target] ){ // //this neuron was already analyzed // continue; // } // // visited_neurons[idx_target] = true; // active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target; // active_set_size[idx2]++; // } // } // idx1 = idx2; // idx2 = (idx1 + 1) % 2; // active_set_size[idx2] = 0; // } // // // /* INITIAL STATE FOR THE FORWARD PASS */ // active_set_size[0] = active_set_size[1] = 0; // std::fill(visited_neurons, visited_neurons + n, false); // // for(size_t i: output_neuron_indices ){ // // if( i < 0 || i >= n){ // //invalid index // continue; // } // active_neuron_set[idx1 * n + active_set_size[idx1]] = i; // active_set_size[idx1]++; // // visited_neurons[i] = true; // } // // /* BACKWARD PASS */ // size_t n_new_neurons = 0; // while(active_set_size[idx1] > 0){ // // //we iterate through the active neurons and propagate the signal // for(int i = 0; i < active_set_size[idx1]; ++i){ // idx = active_neuron_set[i]; // // is_reachable_from_destination[ idx ] = true; // // active_neuron = this->neurons->at( idx ); // // if(is_reachable_from_source[ idx ]){ // n_new_neurons++; // } // // for(Connection* connection: *(active_neuron->get_connections_in())){ // // target_neuron = connection->get_neuron_in( ); // idx_target = target_neuron->get_idx( ); // // if( visited_neurons[idx_target] ){ // //this neuron was already analyzed // continue; // } // // visited_neurons[idx_target] = true; // active_neuron_set[active_set_size[idx2] + n * idx2] = idx_target; // active_set_size[idx2]++; // } // } // idx1 = idx2; // idx2 = (idx1 + 1) % 2; // active_set_size[idx2] = 0; // } // // /* FOR CONSISTENCY REASONS */ // for(size_t in: input_neuron_indices){ // if( !is_reachable_from_destination[in] ){ // n_new_neurons++; // } // is_reachable_from_destination[in] = true; // } // /* FOR CONSISTENCY REASONS */ // for(size_t in: output_neuron_indices){ // if( !is_reachable_from_source[in] ){ // n_new_neurons++; // } // is_reachable_from_source[in] = true; // } // // /* WE FORM THE SET OF NEURONS IN THE OUTPUT NETWORK */ // if(n_new_neurons > 0){ //// printf("Number of new neurons: %d\n", n_new_neurons); // output_net = new NeuralNetwork(); // output_net->set_weight_array( this->connection_weights ); // // std::vector<size_t > local_inputs(0), local_outputs(0); // local_inputs.reserve(input_neuron_indices.size()); // local_outputs.reserve(output_neuron_indices.size()); // // std::vector<Neuron*> local_n_arr(0); // local_n_arr.reserve( n_new_neurons ); // // std::vector<Neuron*> local_local_n_arr(0); // local_local_n_arr.reserve( n_new_neurons ); // // int * neuron_local_mapping = new int[ n ]; // std::fill(neuron_local_mapping, neuron_local_mapping + n, -1); // idx = 0; // for(size_t i = 0; i < n; ++i){ // if(is_reachable_from_source[i] && is_reachable_from_destination[i]){ // neuron_local_mapping[i] = (int)idx; // idx++; // // Neuron *new_neuron = this->neurons->at(i)->get_copy( ); // // output_net->add_neuron( new_neuron ); // local_local_n_arr.push_back( new_neuron ); // local_n_arr.push_back( this->neurons->at(i) ); // } // } // for(size_t in: input_neuron_indices){ // local_inputs.push_back(neuron_local_mapping[in]); // } // for(size_t in: output_neuron_indices){ // local_outputs.push_back(neuron_local_mapping[in]); // } // //// printf("%d\n", local_n_arr.size()); //// printf("inputs: %d, outputs: %d\n", local_inputs.size(), local_outputs.size()); // int local_idx_1, local_idx_2; // for(Neuron* source_neuron: local_n_arr){ // //we also add the relevant edges // local_idx_1 = neuron_local_mapping[source_neuron->get_idx()]; // // for(Connection* connection: *(source_neuron->get_connections_out( ))){ // target_neuron = connection->get_neuron_out(); // // local_idx_2 = neuron_local_mapping[target_neuron->get_idx()]; // if(local_idx_2 >= 0){ // //this edge is part of the subnetwork // Connection* new_connection = connection->get_copy( local_local_n_arr[local_idx_1], local_local_n_arr[local_idx_2] ); // // local_local_n_arr[local_idx_1]->add_connection_out(new_connection); // local_local_n_arr[local_idx_2]->add_connection_in(new_connection); // //// printf("adding a connection between neurons %d, %d\n", local_idx_1, local_idx_2); // } // // } // // } // output_net->specify_input_neurons(local_inputs); // output_net->specify_output_neurons(local_outputs); // // // delete [] neuron_local_mapping; // } // // delete [] is_reachable_from_source; // delete [] is_reachable_from_destination; // delete [] part_of_subnetwork; // delete [] visited_neurons; // delete [] active_neuron_set; // // return output_net; } size_t NeuralNetwork::add_neuron(Neuron* n, BIAS_TYPE bt, size_t bias_idx) { if( bt == BIAS_TYPE::NO_BIAS ){ this->neuron_bias_indices->push_back(-1); } else if( bt == BIAS_TYPE::NEXT_BIAS ){ this->neuron_bias_indices->push_back((int)this->neuron_biases->size()); this->neuron_biases->resize(this->neuron_biases->size() + 1); } else if( bt == BIAS_TYPE::EXISTING_BIAS ){ if( bias_idx >= this->neuron_biases->size()){ std::cerr << "The supplied bias index is too large!\n" << std::endl; } this->neuron_bias_indices->push_back((int)bias_idx); } this->outward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0)); this->inward_adjacency->push_back(new std::vector<std::pair<size_t, size_t>>(0)); this->neurons->push_back(n); this->layers_analyzed = false; return this->neurons->size() - 1; } size_t NeuralNetwork::add_connection_simple( size_t n1_idx, size_t n2_idx, SIMPLE_CONNECTION_TYPE sct, size_t weight_idx ) { ConnectionFunctionIdentity *con_weight_u1u2; if( sct == SIMPLE_CONNECTION_TYPE::UNITARY_WEIGHT ){ con_weight_u1u2 = new ConnectionFunctionIdentity( ); } else{ if( sct == SIMPLE_CONNECTION_TYPE::NEXT_WEIGHT ){ weight_idx = this->connection_weights->size(); this->connection_weights->resize(weight_idx + 1); } else if( sct == SIMPLE_CONNECTION_TYPE::EXISTING_WEIGHT ){ if( weight_idx >= this->connection_weights->size()){ std::cerr << "The supplied connection weight index is too large!\n" << std::endl; } } con_weight_u1u2 = new ConnectionFunctionIdentity( weight_idx ); } size_t conn_idx = this->add_new_connection_to_list(con_weight_u1u2); this->add_outward_connection(n1_idx, n2_idx, conn_idx); this->add_inward_connection(n2_idx, n1_idx, conn_idx); this->layers_analyzed = false; return this->connection_list->size() - 1; } void NeuralNetwork::add_existing_connection(size_t n1_idx, size_t n2_idx, size_t connection_idx, NeuralNetwork &parent_network) { size_t conn_idx = this->add_new_connection_to_list(parent_network.connection_list->at( connection_idx )); this->add_outward_connection(n1_idx, n2_idx, conn_idx); this->add_inward_connection(n2_idx, n1_idx, conn_idx); this->layers_analyzed = false; } void NeuralNetwork::copy_parameter_space(std::vector<double> *parameters) { if(parameters != nullptr){ for(unsigned int i = 0; i < this->connection_weights->size(); ++i){ (*this->connection_weights)[i] = (*parameters)[i]; } for(unsigned int i = 0; i < this->neuron_biases->size(); ++i){ (*this->neuron_biases)[i] = (*parameters)[i + this->connection_weights->size()]; } } } void NeuralNetwork::set_parameter_space_pointers(NeuralNetwork &parent_network) { if(this->connection_weights){ delete connection_weights; } if(this->neuron_biases){ delete this->neuron_biases; } this->connection_weights = parent_network.connection_weights; this->neuron_biases = parent_network.neuron_biases; this->delete_biases = false; this->delete_weights = false; } void NeuralNetwork::eval_single(std::vector<double> &input, std::vector<double> &output, std::vector<double> * custom_weights_and_biases) { if((this->input_neuron_indices->size() * this->output_neuron_indices->size()) <= 0){ std::cerr << "Input and output neurons have not been specified\n" << std::endl; exit(-1); } if(this->input_neuron_indices->size() != input.size()){ std::cerr << "Error, input size != Network input size\n" << std::endl; exit(-1); } if(this->output_neuron_indices->size() != output.size()){ std::cerr << "Error, output size != Network output size\n" << std::endl; exit(-1); } double potential, bias; int bias_idx; this->copy_parameter_space( custom_weights_and_biases ); this->analyze_layer_structure(); /* reset of the output and the neuron potentials */ std::fill(output.begin(), output.end(), 0.0); std::fill(this->neuron_potentials->begin(), this->neuron_potentials->end(), 0.0); /* set the potentials of the input neurons */ for(size_t i = 0; i < this->input_neuron_indices->size(); ++i){ this->neuron_potentials->at( this->input_neuron_indices->at(i) ) = input[ i ]; } /* we iterate through all the feed-forward layers and transfer the signals */ for( auto layer: *this->neuron_layers_feedforward){ /* we iterate through all neurons in this layer and propagate the signal to the neighboring neurons */ for( auto si: *layer ){ bias = 0.0; bias_idx = this->neuron_bias_indices->at( si ); if( bias_idx >= 0 ){ bias = this->neuron_biases->at( bias_idx ); } potential = this->neurons->at(si)->activate(this->neuron_potentials->at( si ), bias); for(auto c: *this->outward_adjacency->at( si )){ size_t ti = c.first; size_t ci = c.second; this->neuron_potentials->at( ti ) += this->connection_list->at( ci )->eval( *this->connection_weights ) * potential; } } } unsigned int i = 0; for(auto oi: *this->output_neuron_indices){ bias = 0.0; bias_idx = this->neuron_bias_indices->at( oi ); if( bias_idx >= 0 ){ bias = this->neuron_biases->at( bias_idx ); } output[i] = this->neurons->at( oi )->activate( this->neuron_potentials->at( oi ), bias ); ++i; } } void NeuralNetwork::randomize_weights( ) { boost::random::mt19937 gen; // Init weight guess ("optimal" for logistic activation functions) double r = 4 * sqrt(6./(this->connection_weights->size())); boost::random::uniform_real_distribution<> dist(-r, r); for(size_t i = 0; i < this->connection_weights->size(); i++) { this->connection_weights->at(i) = dist(gen); } } void NeuralNetwork::randomize_biases( ) { boost::random::mt19937 gen; // Init weight guess ("optimal" for logistic activation functions) boost::random::uniform_real_distribution<> dist(-1, 1); for(size_t i = 0; i < this->neuron_biases->size(); i++) { this->neuron_biases->at(i) = dist(gen); } } size_t NeuralNetwork::get_n_inputs() { return this->input_neuron_indices->size(); } size_t NeuralNetwork::get_n_outputs() { return this->output_neuron_indices->size(); } size_t NeuralNetwork::get_n_weights() { return this->connection_weights->size(); } size_t NeuralNetwork::get_n_biases() { return this->neuron_biases->size(); } int NeuralNetwork::get_neuron_bias_index(size_t neuron_idx) { return this->neuron_bias_indices->at( neuron_idx ); } size_t NeuralNetwork::get_n_neurons() { return this->neurons->size(); } void NeuralNetwork::specify_input_neurons(std::vector<size_t> &input_neurons_indices) { if( !this->input_neuron_indices ){ this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices); } else{ delete this->input_neuron_indices; this->input_neuron_indices = new std::vector<size_t>(input_neurons_indices); } } void NeuralNetwork::specify_output_neurons(std::vector<size_t> &output_neurons_indices) { if( !this->output_neuron_indices ){ this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices); } else{ delete this->output_neuron_indices; this->output_neuron_indices = new std::vector<size_t>(output_neurons_indices); } } void NeuralNetwork::print_weights() { printf("Connection weights: "); if(this->connection_weights){ for( size_t i = 0; i < this->connection_weights->size() - 1; ++i){ printf("%f, ", this->connection_weights->at(i)); } printf("%f", this->connection_weights->at(this->connection_weights->size() - 1)); } printf("\n"); } void NeuralNetwork::print_stats(){ printf("Number of neurons: %d, number of active weights: %d, number of active biases: %d\n", (int)this->neurons->size(), (int)this->connection_weights->size(), (int)this->neuron_biases->size()); } std::vector<double>* NeuralNetwork::get_parameter_ptr_biases() { return this->neuron_biases; } std::vector<double>* NeuralNetwork::get_parameter_ptr_weights() { return this->connection_weights; } size_t NeuralNetwork::add_new_connection_to_list(ConnectionFunctionGeneral *con) { this->connection_list->push_back(con); return this->connection_list->size() - 1; } void NeuralNetwork::add_inward_connection(size_t s, size_t t, size_t con_idx) { if(!this->inward_adjacency->at(s)){ this->inward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0); } this->inward_adjacency->at(s)->push_back(std::pair(t, con_idx)); } void NeuralNetwork::add_outward_connection(size_t s, size_t t, size_t con_idx) { if(!this->outward_adjacency->at(s)){ this->outward_adjacency->at(s) = new std::vector<std::pair<size_t, size_t>>(0); } this->outward_adjacency->at(s)->push_back(std::pair(t, con_idx)); } void NeuralNetwork::analyze_layer_structure() { if(this->layers_analyzed){ //nothing to do return; } /* buffer preparation */ this->neuron_potentials->resize(this->get_n_neurons()); /* space allocation */ if(this->neuron_layers_feedforward){ for(auto e: *this->neuron_layers_feedforward){ delete e; e = nullptr; } delete this->neuron_layers_feedforward; this->neuron_layers_feedforward = nullptr; } if(this->neuron_layers_feedbackward){ for(auto e: *this->neuron_layers_feedbackward){ delete e; e = nullptr; } delete this->neuron_layers_feedbackward; this->neuron_layers_feedbackward = nullptr; } this->neuron_layers_feedforward = new std::vector<std::vector<size_t>*>(0); this->neuron_layers_feedbackward = new std::vector<std::vector<size_t>*>(0); auto n = this->neurons->size(); /* helpful counters */ std::vector<size_t> inward_saturation(n); std::vector<size_t> outward_saturation(n); std::fill(inward_saturation.begin(), inward_saturation.end(), 0); std::fill(outward_saturation.begin(), outward_saturation.end(), 0); for(unsigned int i = 0; i < n; ++i){ if(this->inward_adjacency->at(i)){ inward_saturation[i] = this->inward_adjacency->at(i)->size(); } if(this->outward_adjacency->at(i)){ outward_saturation[i] = this->outward_adjacency->at(i)->size(); } } std::vector<size_t> active_eval_set(2 * n); size_t active_set_size[2]; /* feedforward analysis */ active_set_size[0] = 0; active_set_size[1] = 0; size_t idx1 = 0, idx2 = 1; active_set_size[0] = this->get_n_inputs(); size_t i = 0; for(i = 0; i < this->get_n_inputs(); ++i){ active_eval_set[i] = this->input_neuron_indices->at(i); } size_t active_ni; while(active_set_size[idx1] > 0){ /* we add the current active set as the new outward layer */ std::vector<size_t> *new_feedforward_layer = new std::vector<size_t>(active_set_size[idx1]); this->neuron_layers_feedforward->push_back( new_feedforward_layer ); //we iterate through the active neurons and propagate the signal for(i = 0; i < active_set_size[idx1]; ++i){ active_ni = active_eval_set[i + n * idx1]; new_feedforward_layer->at( i ) = active_ni; if(!this->outward_adjacency->at(active_ni)){ continue; } for(auto ni: *(this->outward_adjacency->at(active_ni))){ inward_saturation[ni.first]--; if(inward_saturation[ni.first] == 0){ active_eval_set[active_set_size[idx2] + n * idx2] = ni.first; active_set_size[idx2]++; } } } idx1 = idx2; idx2 = (idx1 + 1) % 2; active_set_size[idx2] = 0; } /* feed backward analysis */ active_set_size[0] = 0; active_set_size[1] = 0; idx1 = 0; idx2 = 1; active_set_size[0] = this->get_n_outputs(); for(i = 0; i < this->get_n_outputs(); ++i){ active_eval_set[i] = this->output_neuron_indices->at(i); } while(active_set_size[idx1] > 0){ /* we add the current active set as the new outward layer */ std::vector<size_t> *new_feedbackward_layer = new std::vector<size_t>(active_set_size[idx1]); this->neuron_layers_feedbackward->push_back( new_feedbackward_layer ); //we iterate through the active neurons and propagate the signal backward for(i = 0; i < active_set_size[idx1]; ++i){ active_ni = active_eval_set[i + n * idx1]; new_feedbackward_layer->at( i ) = active_ni; if(!this->inward_adjacency->at(active_ni)){ continue; } for(auto ni: *(this->inward_adjacency->at(active_ni))){ outward_saturation[ni.first]--; if(outward_saturation[ni.first] == 0){ active_eval_set[active_set_size[idx2] + n * idx2] = ni.first; active_set_size[idx2]++; } } } idx1 = idx2; idx2 = (idx1 + 1) % 2; active_set_size[idx2] = 0; } this->layers_analyzed = true; }