/** * DESCRIPTION OF THE FILE * * @author Michal KravĨenko * @date 15.3.19 - */ #include <iostream> #include <cstdio> #include <fstream> #include <vector> #include <utility> #include <algorithm> #include <assert.h> #include "4neuro.h" #include "../LearningMethods/RandomSolution.h" int main(int argc, char** argv) { //TODO NORMALIZACI NEPOUZIVAT KVULI CASOVYM POSUNUM bool normalize_data = false; double prec = 1e-9; double prec_lm = 1e-9; int restart_interval = 500; int max_n_iters_gradient = 10000; int max_n_iters_gradient_lm = 10000; int max_n_iters_swarm = 20; int n_particles_swarm = 200; unsigned long batch_size = 0; int max_number_of_cycles = 1; try { /* PHASE 2 - TRAINING DATA LOADING, SIMPLE SIMULATION */ l4n::CSVReader reader1("../../../data_files/data_BACK_RH_1.csv", ";", true); // File, separator, skip 1st line reader1.read(); // Read from the file /* PHASE 2 - NEURAL NETWORK SPECIFICATION */ /* Create data set for both the first training of the neural network */ /* Specify which columns are inputs or outputs */ std::vector<unsigned int> inputs = { 0 }; // Possible multiple inputs, e.g. {0,3}, column indices starting from 0 std::vector<unsigned int> outputs = { 2 }; // Possible multiple outputs, e.g. {1,2} l4n::DataSet ds1 = reader1.get_data_set(&inputs, &outputs); // Creation of data-set for NN if(normalize_data){ ds1.normalize(); // Normalization of data to prevent numerical problems } /* Numbers of neurons in layers (including input and output layers) */ std::vector<size_t> neuron_numbers_in_layers = { 1, 3, 3, 1 }; /* for each valve (1 in this example) setup the times of change */ std::vector<std::vector<double>> t; t.push_back({0}); /* for each valve (1 in this example) setup the magnitudes of change */ std::vector<std::vector<double>> xi; xi.push_back({ds1.get_data()->at(0).second}); /* The simulator2 object */ l4n::Simulator sim(outputs.size(), neuron_numbers_in_layers, t, xi); /* Error function */ l4n::MSE mse1(&sim, &ds1); // First parameter - neural network, second parameter - data-set /* Particle Swarm method domain*/ std::vector<double> domain_bounds(2 * (sim.get_n_weights() + sim.get_n_biases())); for (size_t i = 0; i < domain_bounds.size() / 2; ++i) { domain_bounds[2 * i] = -0.1; domain_bounds[2 * i + 1] = 0.1; } l4n::RandomSolution rnd; l4n::LevenbergMarquardt leven(max_n_iters_gradient_lm, batch_size, prec_lm ); l4n::LearningSequence learning_sequence( 1e-6, max_number_of_cycles ); learning_sequence.add_learning_method( &rnd ); learning_sequence.add_learning_method( &leven ); /* Weight and bias randomization in the network accordingly to the uniform distribution */ sim.randomize_parameters(); /* Complex Optimization */ learning_sequence.optimize(mse1); // Network training /* Save Neural network parameters to file */ sim.save_text("test_net_Gradient_Descent.4n"); /* PHASE 4 - TESTING DATA */ // /* Output file specification */ std::string filename = "simulator_output.txt"; std::ofstream output_file(filename); if (!output_file.is_open()) { throw std::runtime_error("File '" + filename + "' can't be opened!"); } // // /* Neural network loading */ l4n::NeuralNetwork nn3("test_net_Gradient_Descent.4n"); /* Check of the saved network - write to the file */ output_file << std::endl << "The loaded network info:" << std::endl; nn3.write_stats(&output_file); nn3.write_weights(&output_file); nn3.write_biases(&output_file); // // /* Evaluate network on an arbitrary data-set and save results into the file */ l4n::CSVReader reader3("../../../data_files/data_BACK_RH_1.csv", ";", true); // File, separator, skip 1st line reader3.read(); // Read from the file // // /* Create data set for both the testing of the neural network */ // /* Specify which columns are inputs or outputs */ // l4n::DataSet ds3 = reader3.get_data_set(&inputs, &outputs); // Creation of data-set for NN if(normalize_data){ ds3.normalize(); // Normalization of data to prevent numerical problems } // // output_file << std::endl << "Evaluating network on the dataset: " << std::endl; // ds3.store_data_text(&output_file); // output_file << "Output and the error:" << std::endl; // // /* Error function */ l4n::MSE mse3(&nn3, &ds3); // First parameter - neural network, second parameter - data-set mse3.eval_on_data_set(&ds3, &output_file, nullptr, normalize_data, true); /* Close the output file for writing */ output_file.close(); return 0; } catch (const std::exception& e) { std::cerr << e.what() << std::endl; exit(EXIT_FAILURE); } }