// // Created by martin on 7/15/18. // #include <vector> #include "ErrorFunctions.h" namespace lib4neuro { size_t ErrorFunction::get_dimension() { return this->dimension; } MSE::MSE(NeuralNetwork *net, DataSet *ds) { this->net = net; this->ds = ds; this->dimension = net->get_n_weights() + net->get_n_biases(); } double MSE::eval(std::vector<double> *weights) { size_t dim_out = this->ds->get_output_dim(); // unsigned int dim_in = this->ds->get_input_dim(); size_t n_elements = this->ds->get_n_elements(); double error = 0.0, val; std::vector<std::pair<std::vector<double>, std::vector<double>>> *data = this->ds->get_data(); // //TODO instead use something smarter // this->net->copy_weights(weights); std::vector<double> output(dim_out); for (auto el: *data) { // Iterate through every element in the test set this->net->eval_single(el.first, output, weights); // Compute the net output and store it into 'output' variable // printf("errors: "); for (size_t j = 0; j < dim_out; ++j) { // Compute difference for every element of the output vector val = output[j] - el.second[j]; error += val * val; // printf("%f, ", val * val); } // printf("\n"); } // printf("n_elements: %d\n", n_elements); return error / n_elements; } void MSE::calculate_error_gradient(std::vector<double> ¶ms, std::vector<double> &grad, double alpha) { size_t dim_out = this->ds->get_output_dim(); size_t n_elements = this->ds->get_n_elements(); std::vector<std::pair<std::vector<double>, std::vector<double>>> *data = this->ds->get_data(); std::vector<double> error_derivative(dim_out); for (auto el: *data) { // Iterate through every element in the test set this->net->eval_single(el.first, error_derivative, ¶ms); // Compute the net output and store it into 'output' variable for (size_t j = 0; j < dim_out; ++j) { error_derivative[j] = 2.0 * (error_derivative[j] - el.second[j]); //real - expected result } this->net->add_to_gradient_single(el.first, error_derivative, alpha / n_elements, grad); } } std::vector<double> *MSE::get_parameters() { std::vector<double> *output = new std::vector<double>(this->net->get_n_weights() + this->net->get_n_biases()); size_t i = 0; for (auto el: *this->net->get_parameter_ptr_weights()) { output->at(i) = el; ++i; } for (auto el: *this->net->get_parameter_ptr_biases()) { output->at(i) = el; ++i; } return output; } ErrorSum::ErrorSum() { this->summand = nullptr; this->summand_coefficient = nullptr; this->dimension = 0; } ErrorSum::~ErrorSum() { if (this->summand) { delete this->summand; } if (this->summand_coefficient) { delete this->summand_coefficient; } } double ErrorSum::eval(std::vector<double> *weights) { double output = 0.0; ErrorFunction *ef = nullptr; for (unsigned int i = 0; i < this->summand->size(); ++i) { ef = this->summand->at(i); if (ef) { output += ef->eval(weights) * this->summand_coefficient->at(i); } } return output; } void ErrorSum::calculate_error_gradient(std::vector<double> ¶ms, std::vector<double> &grad, double alpha) { ErrorFunction *ef = nullptr; for (size_t i = 0; i < this->summand->size(); ++i) { ef = this->summand->at(i); if (ef) { ef->calculate_error_gradient(params, grad, this->summand_coefficient->at(i) * alpha); } } } void ErrorSum::add_error_function(ErrorFunction *F, double alpha) { if (!this->summand) { this->summand = new std::vector<ErrorFunction *>(0); } this->summand->push_back(F); if (!this->summand_coefficient) { this->summand_coefficient = new std::vector<double>(0); } this->summand_coefficient->push_back(alpha); if (F) { if (F->get_dimension() > this->dimension) { this->dimension = F->get_dimension(); } } } size_t ErrorSum::get_dimension() { // if(!this->dimension) { // size_t max = 0; // for(auto e : *this->summand) { // if(e->get_dimension() > max) { // max = e->get_dimension(); // } // }; // // this->dimension = max; // } return this->dimension; } std::vector<double> *ErrorSum::get_parameters() { return this->summand->at(0)->get_parameters(); } }