Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
docs.it4i.cz
Manage
Activity
Members
Labels
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SCS
docs.it4i.cz
Commits
7691f5c7
Commit
7691f5c7
authored
1 year ago
by
Jan Siwiec
Browse files
Options
Downloads
Patches
Plain Diff
Update 5 files
parent
90b800ac
No related branches found
No related tags found
1 merge request
!443
Update 5 files
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
docs.it4i/cs/guides/amd.md
+0
-0
0 additions, 0 deletions
docs.it4i/cs/guides/amd.md
docs.it4i/cs/guides/arm.md
+0
-0
0 additions, 0 deletions
docs.it4i/cs/guides/arm.md
docs.it4i/cs/guides/xilinx.md
+652
-0
652 additions, 0 deletions
docs.it4i/cs/guides/xilinx.md
mkdocs.yml
+4
-2
4 additions, 2 deletions
mkdocs.yml
with
656 additions
and
2 deletions
docs.it4i/cs/amd.md
→
docs.it4i/cs/
guides/
amd.md
+
0
−
0
View file @
7691f5c7
File moved
This diff is collapsed.
Click to expand it.
docs.it4i/cs/arm.md
→
docs.it4i/cs/
guides/
arm.md
+
0
−
0
View file @
7691f5c7
File moved
This diff is collapsed.
Click to expand it.
docs.it4i/cs/guides/xilinx.md
0 → 100644
+
652
−
0
View file @
7691f5c7
# Xilinx Accelerator Platform
The first step to use Xilinx accelerators is to initialize Vitis (compiler) and XRT (runtime) environments.
```
console
$
.
/tools/Xilinx/Vitis/2023.1/settings64.sh
$
.
/opt/xilinx/xrt/setup.sh
```
## Platform Level Accelerator Management
This should allow to examine current platform using
`xbutil examine`
,
which should output user-level information about XRT platform and list available devices
```
$ xbutil examine
System Configuration
OS Name : Linux
Release : 4.18.0-477.27.1.el8_8.x86_64
Version : #1 SMP Thu Aug 31 10:29:22 EDT 2023
Machine : x86_64
CPU Cores : 64
Memory : 257145 MB
Distribution : Red Hat Enterprise Linux 8.8 (Ootpa)
GLIBC : 2.28
Model : ProLiant XL675d Gen10 Plus
XRT
Version : 2.16.0
Branch : master
Hash : f2524a2fcbbabd969db19abf4d835c24379e390d
Hash Date : 2023-10-11 14:01:19
XOCL : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d
XCLMGMT : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d
Devices present
BDF : Shell Logic UUID Device ID Device Ready*
-------------------------------------------------------------------------------------------------------------------------
[0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=132) Yes
[0000:8c:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=133) Yes
* Devices that are not ready will have reduced functionality when using XRT tools
```
Here two Xilinx Alveo u280 accelerators (
`0000:88:00.1`
and
`0000:8c:00.1`
) are available.
The
`xbutil`
can be also used to query additional information about specific device using its BDF address
```
console
$
xbutil examine
-d
"0000:88:00.1"
-------------------------------------------------
[0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1
-------------------------------------------------
Platform
XSA Name : xilinx_u280_gen3x16_xdma_base_1
Logic UUID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7
FPGA Name :
JTAG ID Code : 0x14b7d093
DDR Size : 0 Bytes
DDR Count : 0
Mig Calibrated : true
P2P Status : disabled
Performance Mode : not supported
P2P IO space required : 64 GB
Clocks
DATA_CLK (Data) : 300 MHz
KERNEL_CLK (Kernel) : 500 MHz
hbm_aclk (System) : 450 MHz
Mac Addresses : 00:0A:35:0E:20:B0
: 00:0A:35:0E:20:B1
Device Status: HEALTHY
Hardware Context ID: 0
Xclbin UUID: 6306D6AE-1D66-AEA7-B15D-446D4ECC53BD
PL Compute Units
Index Name Base Address Usage Status
-------------------------------------------------
0 vadd:vadd_1 0x800000 1 (IDLE)
```
Basic functionality of the device can be checked using
`xbutil validate -d <BDF>`
as
```
console
$
xbutil validate
-d
"0000:88:00.1"
Validate Device : [0000:88:00.1]
Platform : xilinx_u280_gen3x16_xdma_base_1
SC Version : 4.3.27
Platform ID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7
-------------------------------------------------------------------------------
Test 1 [0000:88:00.1] : aux-connection
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 2 [0000:88:00.1] : pcie-link
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 3 [0000:88:00.1] : sc-version
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 4 [0000:88:00.1] : verify
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 5 [0000:88:00.1] : dma
Details : Buffer size - '16 MB' Memory Tag - 'HBM[0]'
Host ->
PCIe -> FPGA write bandwidth
=
11988.9 MB/s
Host <- PCIe <- FPGA read bandwidth = 12571.2 MB/s
...
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 6 [0000:88:00.1] : iops
Details : IOPS: 387240(verify)
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 7 [0000:88:00.1] : mem-bw
Details : Throughput (Type: DDR) (Bank count: 2) : 33932.9MB/s
Throughput of Memory Tag: DDR[0] is 16974.1MB/s
Throughput of Memory Tag: DDR[1] is 16974.2MB/s
Throughput (Type: HBM) (Bank count: 1) : 12383.7MB/s
Test Status : [PASSED]
-------------------------------------------------------------------------------
Test 8 [0000:88:00.1] : p2p
Test 9 [0000:88:00.1] : vcu
Test 10 [0000:88:00.1] : aie
Test 11 [0000:88:00.1] : ps-aie
Test 12 [0000:88:00.1] : ps-pl-verify
Test 13 [0000:88:00.1] : ps-verify
Test 14 [0000:88:00.1] : ps-iops
```
Finally, the device can be reinitialized using
`xbutil reset -d <BDF>`
as
```
console
$
xbutil reset
-d
"0000:88:00.1"
Performing 'HOT Reset' on '0000:88:00.1'
Are you sure you wish to proceed? [Y/n]: Y
Successfully reset Device[0000:88:00.1]
```
This can be useful to recover the device from states such as
`HANGING`
, reported by
`xbutil examine -d <BDF>`
.
## OpenCL Platform Level
The
`clinfo`
utility can be used to verify that the accelerator is visible to OpenCL
```
console
$
clinfo
Number of platforms: 2
Platform Profile: FULL_PROFILE
Platform Version: OpenCL 2.1 AMD-APP (3590.0)
Platform Name: AMD Accelerated Parallel Processing
Platform Vendor: Advanced Micro Devices, Inc.
Platform Extensions: cl_khr_icd cl_amd_event_callback
Platform Profile: EMBEDDED_PROFILE
Platform Version: OpenCL 1.0
Platform Name: Xilinx
Platform Vendor: Xilinx
Platform Extensions: cl_khr_icd
<...>
Platform Name: Xilinx
Number of devices: 2
Device Type: CL_DEVICE_TYPE_ACCRLERATOR
Vendor ID: 0h
Max compute units: 0
Max work items dimensions: 3
Max work items[0]: 4294967295
Max work items[1]: 4294967295
Max work items[2]: 4294967295
Max work group size: 4294967295
Preferred vector width char: 1
Preferred vector width short: 1
Preferred vector width int: 1
Preferred vector width long: 1
Preferred vector width float: 1
Preferred vector width double: 0
Max clock frequency: 0Mhz
Address bits: 64
Max memory allocation: 4294967296
Image support: Yes
Max number of images read arguments: 128
Max number of images write arguments: 8
Max image 2D width: 8192
Max image 2D height: 8192
Max image 3D width: 2048
Max image 3D height: 2048
Max image 3D depth: 2048
Max samplers within kernel: 0
Max size of kernel argument: 2048
Alignment (bits) of base address: 32768
Minimum alignment (bytes) for any datatype: 128
Single precision floating point capability
Denorms: No
Quiet NaNs: Yes
Round to nearest even: Yes
Round to zero: No
Round to +ve and infinity: No
IEEE754-2008 fused multiply-add: No
Cache type: None
Cache line size: 64
Cache size: 0
Global memory size: 0
Constant buffer size: 4194304
Max number of constant args: 8
Local memory type: Scratchpad
Local memory size: 16384
Error correction support: 1
Profiling timer resolution: 1
Device endianess: Little
Available: No
Compiler available: No
Execution capabilities:
Execute OpenCL kernels: Yes
Execute native function: No
Queue on Host properties:
Out-of-Order: Yes
Profiling: Yes
Platform ID: 0x16fbae8
Name: xilinx_u280_gen3x16_xdma_base_1
Vendor: Xilinx
Driver version: 1.0
Profile: EMBEDDED_PROFILE
Version: OpenCL 1.0
<...>
```
which shows that both
`Xilinx`
platform and accelerator devices are present.
## Building Applications for Emulation
The two main approaches to building FPGA accelerated applications using Xilinx platform and HLS are
**XRT**
and
**OpenCL**
.
The XRT uses dedicated host interface and dialect of C for accelerated kernels,
while OpenCL allows to share most of the host interface with other accelerators.
To simplify the build process we define two environment variables
`IT4I_PLATFORM`
and
`IT4I_BUILD_MODE`
.
The first
`IT4I_PLATFORM`
denotes specific accelerator hardware such as
`Alveo u250`
or
`Alveo u280`
and its configuration stored in (
`*.xpfm`
files).
The list of available platforms can be obtained using
`platforminfo`
utility:
```
console
$
platforminfo
-l
{
"platforms": [
{
"baseName": "xilinx_u280_gen3x16_xdma_1_202211_1",
"version": "202211.1",
"type": "sdaccel",
"dataCenter": "true",
"embedded": "false",
"externalHost": "true",
"serverManaged": "true",
"platformState": "impl",
"usesPR": "true",
"platformFile": "\/opt\/xilinx\/platforms\/xilinx_u280_gen3x16_xdma_1_202211_1\/xilinx_u280_gen3x16_xdma_1_202211_1.xpfm"
},
{
"baseName": "xilinx_u250_gen3x16_xdma_4_1_202210_1",
"version": "202210.1",
"type": "sdaccel",
"dataCenter": "true",
"embedded": "false",
"externalHost": "true",
"serverManaged": "true",
"platformState": "impl",
"usesPR": "true",
"platformFile": "\/opt\/xilinx\/platforms\/xilinx_u250_gen3x16_xdma_4_1_202210_1\/xilinx_u250_gen3x16_xdma_4_1_202210_1.xpfm"
}
]
}
```
Here,
`baseName`
and potentially
`platformFile`
are of interest and either can be specified as value of
`IT4I_PLATFORM`
.
In this case we have platform files
`xilinx_u280_gen3x16_xdma_1_202211_1`
(Alveo u280) and
`xilinx_u250_gen3x16_xdma_4_1_202210_1`
(Alveo u250).
The
`IT4I_BUILD_MODE`
is used to specify build type (
`hw`
,
`hw_emu`
and
`sw_emu`
):
-
`hw`
performs full synthesis for the accelerator
-
`hw_emu`
allows to run both synthesis and emulation for debugging
-
`sw_emu`
compiles kernels only for emulation (doesn't require accelerator and allows much faster build)
For example, to configure software emulation mode build for
`Alveo u280`
we set:
```
console
$
export
IT4I_PLATFORM
=
xilinx_u280_gen3x16_xdma_1_202211_1
$
export
IT4I_BUILD_MODE
=
sw_emu
```
### Using HLS and XRT
The applications are typically separated into host and accelerator/kernel side.
The following host-side code should be saved as
`host.cpp`
```
c++
/*
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: X11
*/
#include
<iostream>
#include
<cstring>
// XRT includes
#include
"xrt/xrt_bo.h"
#include
<experimental/xrt_xclbin.h>
#include
"xrt/xrt_device.h"
#include
"xrt/xrt_kernel.h"
#define DATA_SIZE 4096
int
main
(
int
argc
,
char
**
argv
)
{
if
(
argc
!=
2
)
{
std
::
cout
<<
"Usage: "
<<
argv
[
0
]
<<
" <XCLBIN File>"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
// Read settings
std
::
string
binaryFile
=
argv
[
1
];
int
device_index
=
0
;
std
::
cout
<<
"Open the device"
<<
device_index
<<
std
::
endl
;
auto
device
=
xrt
::
device
(
device_index
);
std
::
cout
<<
"Load the xclbin "
<<
binaryFile
<<
std
::
endl
;
auto
uuid
=
device
.
load_xclbin
(
"./vadd.xclbin"
);
size_t
vector_size_bytes
=
sizeof
(
int
)
*
DATA_SIZE
;
//auto krnl = xrt::kernel(device, uuid, "vadd");
auto
krnl
=
xrt
::
kernel
(
device
,
uuid
,
"vadd"
,
xrt
::
kernel
::
cu_access_mode
::
exclusive
);
std
::
cout
<<
"Allocate Buffer in Global Memory
\n
"
;
auto
boIn1
=
xrt
::
bo
(
device
,
vector_size_bytes
,
krnl
.
group_id
(
0
));
//Match kernel arguments to RTL kernel
auto
boIn2
=
xrt
::
bo
(
device
,
vector_size_bytes
,
krnl
.
group_id
(
1
));
auto
boOut
=
xrt
::
bo
(
device
,
vector_size_bytes
,
krnl
.
group_id
(
2
));
// Map the contents of the buffer object into host memory
auto
bo0_map
=
boIn1
.
map
<
int
*>
();
auto
bo1_map
=
boIn2
.
map
<
int
*>
();
auto
bo2_map
=
boOut
.
map
<
int
*>
();
std
::
fill
(
bo0_map
,
bo0_map
+
DATA_SIZE
,
0
);
std
::
fill
(
bo1_map
,
bo1_map
+
DATA_SIZE
,
0
);
std
::
fill
(
bo2_map
,
bo2_map
+
DATA_SIZE
,
0
);
// Create the test data
int
bufReference
[
DATA_SIZE
];
for
(
int
i
=
0
;
i
<
DATA_SIZE
;
++
i
)
{
bo0_map
[
i
]
=
i
;
bo1_map
[
i
]
=
i
;
bufReference
[
i
]
=
bo0_map
[
i
]
+
bo1_map
[
i
];
//Generate check data for validation
}
// Synchronize buffer content with device side
std
::
cout
<<
"synchronize input buffer data to device global memory
\n
"
;
boIn1
.
sync
(
XCL_BO_SYNC_BO_TO_DEVICE
);
boIn2
.
sync
(
XCL_BO_SYNC_BO_TO_DEVICE
);
std
::
cout
<<
"Execution of the kernel
\n
"
;
auto
run
=
krnl
(
boIn1
,
boIn2
,
boOut
,
DATA_SIZE
);
//DATA_SIZE=size
run
.
wait
();
// Get the output;
std
::
cout
<<
"Get the output data from the device"
<<
std
::
endl
;
boOut
.
sync
(
XCL_BO_SYNC_BO_FROM_DEVICE
);
// Validate results
if
(
std
::
memcmp
(
bo2_map
,
bufReference
,
vector_size_bytes
))
throw
std
::
runtime_error
(
"Value read back does not match reference"
);
std
::
cout
<<
"TEST PASSED
\n
"
;
return
0
;
}
```
The host-side code can now be compiled using GCC toolchain as:
```
console
$
g++ host.cpp
-I
$XILINX_XRT
/include
-I
$XILINX_VIVADO
/include
-L
$XILINX_XRT
/lib
-lxrt_coreutil
-o
host
```
The accelerator side (simple vector-add kernel) should be saved as
`vadd.cpp`
.
```
c++
/*
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: X11
*/
extern
"C"
{
void
vadd
(
const
unsigned
int
*
in1
,
// Read-Only Vector 1
const
unsigned
int
*
in2
,
// Read-Only Vector 2
unsigned
int
*
out
,
// Output Result
int
size
// Size in integer
)
{
#pragma HLS INTERFACE m_axi port=in1 bundle=aximm1
#pragma HLS INTERFACE m_axi port=in2 bundle=aximm2
#pragma HLS INTERFACE m_axi port=out bundle=aximm1
for
(
int
i
=
0
;
i
<
size
;
++
i
)
{
out
[
i
]
=
in1
[
i
]
+
in2
[
i
];
}
}
}
```
The accelerator-side code is build using Vitis
`v++`
.
This is two-step process, which either builds emulation binary or performs full HLS (depending on the value of
`-t`
argument).
The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS).
```
console
$
v++
-c
-t
$IT4I_BUILD_MODE
--platform
$IT4I_PLATFORM
-k
vadd vadd.cpp
-o
vadd.xo
$
v++
-l
-t
$IT4I_BUILD_MODE
--platform
$IT4I_PLATFORM
vadd.xo
-o
vadd.xclbin
```
This process should result in
`vadd.xclbin`
, which can be loaded by host-side application.
### Running in Emulation Mode
With both host application and kernel binary at hand the application (in emulation mode) can be launched as
```
console
$
XCL_EMULATION_MODE
=
sw_emu ./host vadd.xclbin
```
## Using HLS and OpenCL
The host-side application code should be saved as
`host.cpp`
.
This application attempts to find
`Xilinx`
OpenCL platform in the system and selects first device in that platform.
The device is then configured with provided kernel binary.
Other than that the only difference to typical vector-add in OpenCL is use of
`enqueueTask(...)`
to launch the kernel
(compared to typical
`enqueueNDRangeKernel`
).
```
c++
#include
<iostream>
#include
<fstream>
#include
<iterator>
#include
<vector>
#define CL_HPP_TARGET_OPENCL_VERSION 120
#define CL_HPP_MINIMUM_OPENCL_VERSION 120
#define CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY 1
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
#include
<CL/cl2.hpp>
#include
<CL/cl_ext_xilinx.h>
std
::
vector
<
unsigned
char
>
read_binary_file
(
const
std
::
string
&
filename
)
{
std
::
cout
<<
"INFO: Reading "
<<
filename
<<
std
::
endl
;
std
::
ifstream
file
(
filename
,
std
::
ios
::
binary
);
file
.
unsetf
(
std
::
ios
::
skipws
);
std
::
streampos
file_size
;
file
.
seekg
(
0
,
std
::
ios
::
end
);
file_size
=
file
.
tellg
();
file
.
seekg
(
0
,
std
::
ios
::
beg
);
std
::
vector
<
unsigned
char
>
data
;
data
.
reserve
(
file_size
);
data
.
insert
(
data
.
begin
(),
std
::
istream_iterator
<
unsigned
char
>
(
file
),
std
::
istream_iterator
<
unsigned
char
>
());
return
data
;
}
cl
::
Device
select_device
()
{
std
::
vector
<
cl
::
Platform
>
platforms
;
cl
::
Platform
::
get
(
&
platforms
);
cl
::
Platform
platform
;
for
(
cl
::
Platform
&
p
:
platforms
)
{
const
std
::
string
name
=
p
.
getInfo
<
CL_PLATFORM_NAME
>
();
std
::
cout
<<
"PLATFORM: "
<<
name
<<
std
::
endl
;
if
(
name
==
"Xilinx"
)
{
platform
=
p
;
break
;
}
}
if
(
platform
==
cl
::
Platform
())
{
std
::
cout
<<
"Xilinx platform not found!"
<<
std
::
endl
;
exit
(
EXIT_FAILURE
);
}
std
::
vector
<
cl
::
Device
>
devices
;
platform
.
getDevices
(
CL_DEVICE_TYPE_ACCELERATOR
,
&
devices
);
return
devices
[
0
];
}
static
const
int
DATA_SIZE
=
1024
;
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
!=
2
)
{
std
::
cout
<<
"Usage: "
<<
argv
[
0
]
<<
" <XCLBIN File>"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
string
binary_file
=
argv
[
1
];
std
::
vector
<
int
>
source_a
(
DATA_SIZE
,
10
);
std
::
vector
<
int
>
source_b
(
DATA_SIZE
,
32
);
auto
program_binary
=
read_binary_file
(
binary_file
);
cl
::
Program
::
Binaries
bins
{{
program_binary
.
data
(),
program_binary
.
size
()}};
cl
::
Device
device
=
select_device
();
cl
::
Context
context
(
device
,
nullptr
,
nullptr
,
nullptr
);
cl
::
CommandQueue
q
(
context
,
device
,
CL_QUEUE_PROFILING_ENABLE
);
cl
::
Program
program
(
context
,
{
device
},
bins
,
nullptr
);
cl
::
Kernel
vadd_kernel
=
cl
::
Kernel
(
program
,
"vector_add"
);
cl
::
Buffer
buffer_a
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_USE_HOST_PTR
,
source_a
.
size
()
*
sizeof
(
int
),
source_a
.
data
());
cl
::
Buffer
buffer_b
(
context
,
CL_MEM_READ_ONLY
|
CL_MEM_USE_HOST_PTR
,
source_b
.
size
()
*
sizeof
(
int
),
source_b
.
data
());
cl
::
Buffer
buffer_res
(
context
,
CL_MEM_READ_WRITE
,
source_a
.
size
()
*
sizeof
(
int
));
int
narg
=
0
;
vadd_kernel
.
setArg
(
narg
++
,
buffer_res
);
vadd_kernel
.
setArg
(
narg
++
,
buffer_a
);
vadd_kernel
.
setArg
(
narg
++
,
buffer_b
);
vadd_kernel
.
setArg
(
narg
++
,
DATA_SIZE
);
q
.
enqueueTask
(
vadd_kernel
);
std
::
vector
<
int
>
result
(
DATA_SIZE
,
0
);
q
.
enqueueReadBuffer
(
buffer_res
,
CL_TRUE
,
0
,
result
.
size
()
*
sizeof
(
int
),
result
.
data
());
int
mismatch_count
=
0
;
for
(
size_t
i
=
0
;
i
<
DATA_SIZE
;
++
i
)
{
int
host_result
=
source_a
[
i
]
+
source_b
[
i
];
if
(
result
[
i
]
!=
host_result
)
{
mismatch_count
++
;
std
::
cout
<<
"ERROR: "
<<
result
[
i
]
<<
" != "
<<
host_result
<<
std
::
endl
;
break
;
}
}
std
::
cout
<<
"RESULT: "
<<
(
mismatch_count
==
0
?
"PASSED"
:
"FAILED"
)
<<
std
::
endl
;
return
0
;
}
```
The host-side code can now be compiled using GCC toolchain as:
```
console
$
g++ host.cpp
-I
$XILINX_XRT
/include
-I
$XILINX_VIVADO
/include
-lOpenCL
-o
host
```
The accelerator side (simple vector-add kernel) should be saved as
`vadd.cl`
.
```
c++
#define BUFFER_SIZE 256
#define DATA_SIZE 1024
// TRIPCOUNT indentifier
__constant
uint
c_len
=
DATA_SIZE
/
BUFFER_SIZE
;
__constant
uint
c_size
=
BUFFER_SIZE
;
__attribute__
((
reqd_work_group_size
(
1
,
1
,
1
)))
__kernel
void
vector_add
(
__global
int
*
c
,
__global
const
int
*
a
,
__global
const
int
*
b
,
const
int
n_elements
)
{
int
arrayA
[
BUFFER_SIZE
];
int
arrayB
[
BUFFER_SIZE
];
__attribute__
((
xcl_loop_tripcount
(
c_len
,
c_len
)))
for
(
int
i
=
0
;
i
<
n_elements
;
i
+=
BUFFER_SIZE
)
{
int
size
=
BUFFER_SIZE
;
if
(
i
+
size
>
n_elements
)
size
=
n_elements
-
i
;
__attribute__
((
xcl_loop_tripcount
(
c_size
,
c_size
)))
__attribute__
((
xcl_pipeline_loop
(
1
)))
readA
:
for
(
int
j
=
0
;
j
<
size
;
j
++
)
arrayA
[
j
]
=
a
[
i
+
j
];
__attribute__
((
xcl_loop_tripcount
(
c_size
,
c_size
)))
__attribute__
((
xcl_pipeline_loop
(
1
)))
readB
:
for
(
int
j
=
0
;
j
<
size
;
j
++
)
arrayB
[
j
]
=
b
[
i
+
j
];
__attribute__
((
xcl_loop_tripcount
(
c_size
,
c_size
)))
__attribute__
((
xcl_pipeline_loop
(
1
)))
vadd_writeC
:
for
(
int
j
=
0
;
j
<
size
;
j
++
)
c
[
i
+
j
]
=
arrayA
[
j
]
+
arrayB
[
j
];
}
}
```
The accelerator-side code is build using Vitis
`v++`
.
This is three-step process, which either builds emulation binary or performs full HLS (depending on the value of
`-t`
argument).
The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS).
```
console
$
v++
-c
-t
$IT4I_BUILD_MODE
--platform
$IT4I_PLATFORM
-k
vector_add
-o
vadd.xo vadd.cl
$
v++
-l
-t
$IT4I_BUILD_MODE
--platform
$IT4I_PLATFORM
-o
vadd.link.xclbin vadd.xo
$
v++
-p
vadd.link.xclbin
-t
$IT4I_BUILD_MODE
--platform
$IT4I_PLATFORM
-o
vadd.xclbin
```
This process should result in
`vadd.xclbin`
, which can be loaded by host-side application.
### Running in Emulation Mode
With both host application and kernel binary at hand the application (in emulation mode) can be launched as
```
console
$
XCL_EMULATION_MODE
=
sw_emu ./host vadd.xclbin
```
## Building Application for Real HW
So far we have assumed software emulation (
`sw_emu`
), however the same steps can be used to build application for real hardware.
To do so we have to rebuild our kernel binaries in
`hw`
mode by setting
```
console
$
export
IT4I_BUILD_MODE
=
hw
```
and the application can be run without setting
`XCL_EMULATION_MODE`
:
```
console
$
./host vadd.xclbin
```
!!! note
The HLS of these simple applications
**can take up to 2 hours**
to finish.
## Additional Resources
-
[
https://xilinx.github.io/Vitis-Tutorials/
][
1
]
-
[
http://xilinx.github.io/Vitis_Accel_Examples/
][
2
]
[
1
]:
https://xilinx.github.io/Vitis-Tutorials/
[
2
]:
http://xilinx.github.io/Vitis_Accel_Examples/
\ No newline at end of file
This diff is collapsed.
Click to expand it.
mkdocs.yml
+
4
−
2
View file @
7691f5c7
...
...
@@ -155,8 +155,10 @@ nav:
-
Accessing CS
:
cs/accessing.md
-
Specification
:
cs/specifications.md
-
Complementary System Job Scheduling
:
cs/job-scheduling.md
-
Using AMD Partition
:
cs/amd.md
-
Using ARM Partition
:
cs/arm.md
-
Guides
:
-
Using AMD Partition
:
cs/guides/amd.md
-
Using ARM Partition
:
cs/guides/arm.md
-
Xilinx Accelerator Platform
:
cs/guides/xilinx.md
-
Archive
:
-
Introduction
:
archive/archive-intro.md
-
Anselm
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment