diff --git a/docs.it4i/cs/guides/grace.md b/docs.it4i/cs/guides/grace.md
new file mode 100644
index 0000000000000000000000000000000000000000..d51729b31a5de109b932a8423d6959cfdea1414f
--- /dev/null
+++ b/docs.it4i/cs/guides/grace.md
@@ -0,0 +1,282 @@
+# Using NVIDIA Grace Partition
+
+For testing your application on the IBM Power partition,
+you need to prepare a job script for that partition or use the interactive job:
+
+```console
+salloc -N 1 -c 144 -A PROJECT-ID -p p11-grace --time=08:00:00
+```
+
+where:
+
+- `-N 1` means allocation single node,
+- `-c 144` means allocation 144 cores,
+- `-p p11-grace` is NVIDIA Grace partition,
+- `--time=08:00:00` means allocation for 8 hours.
+
+## Available Toolchains
+
+The platform offers three toolchains:
+- Standard GCC (as a module `ml GCC`)
+- [NVHPC](https://developer.nvidia.com/hpc-sdk) (as a module `ml NVHPC`)
+- [Clang for NVIDIA Grace](https://developer.nvidia.com/grace/clang) (installed in `/opt/nvidia/clang`)
+
+!!! note
+    The NVHPC toolchain showed strong results with minimal amount of tunning necessary in our initial evaluation.
+
+### GCC Toolchain
+
+The GCC compiler seems to struggle with vectorization of short (constant length) loops, which tend to get completely unrolled/eliminated instead of being vectorized. For example simple nested loop such as
+
+```cpp
+for(int i = 0; i < 1000000; ++i) {
+    // Iterations dependent in "i"
+    // ...
+    for(int j = 0; j < 8; ++j) {
+        // but independent in "j"
+        // ...
+    }
+}
+```
+may emit scalar code for the inner loop leading to no vectorization being used at all.
+
+### Clang (for Grace) Toolchain
+
+The Clang/LLVM tends to behave similarly, but can be guided to properly vectorize the inner loop with either flags `-O3 -ffast-math -march=native -fno-unroll-loops -mllvm -force-vector-width=8` or pragmas such as `#pragma clang loop vectorize_width(8)` and `#pragma clang loop unroll(disable)`.
+
+```cpp
+for(int i = 0; i < 1000000; ++i) {
+    // Iterations dependent in "i"
+    // ...
+    #pragma clang loop unroll(disable) vectorize_width(8)
+    for(int j = 0; j < 8; ++j) {
+        // but independent in "j"
+        // ...
+    }
+}
+```
+
+!!! note
+    Our basic experiments show that fixed width vectorization (NEON) tends to perform better in the case of short (register-length) loops than SVE. In cases (like above), where specified `vectorize_width` is larger than avaliable vector unit width, Clang will emit multiple NEON instructions (eg. 4 instructions will be emitted to process 8 64-bit operations in 128-bit units of Grace).
+
+### NVHPC Toolchain
+
+The NVHPC toolchain handled aforementioned case without any additional tunning. Simple `-O3 -march=native -fast` should be therefore sufficient.
+
+## Basic Math Libraries
+
+The basic libraries (BLAS and LAPACK) are included in NVHPC toolchain and can be used simply as `-lblas` and `-llapack` for BLAS and LAPACK respectively (`lp64` and `ilp64` versions are also included).
+
+!!! note
+    The Grace platform doesn't include CUDA-capable GPU, therefore `nvcc` will fail with an error. This means that `nvc`, `nvc++` and `nvfortran` should be used instead.
+
+### NVIDIA Performance Libraries
+
+The [NVPL](https://developer.nvidia.com/nvpl) package includes more extensive set of libraries in both sequential and multi-threaded versions:
+- BLACS: `-lnvpl_blacs_{lp64,ilp64}_{mpich,openmpi3,openmpi4,openmpi5}`
+- BLAS: `-lnvpl_blas_{lp64,ilp64}_{seq,gomp}`
+- FFTW: `-lnvpl_fftw`
+- LAPACK: `-lnvpl_lapack_{lp64,ilp64}_{seq,gomp}`
+- ScaLAPACK: `-lnvpl_scalapack_{lp64,ilp64}`
+- RAND: `-lnvpl_rand` or `-lnvpl_rand_mt`
+- SPARSE: `-lnvpl_sparse`
+
+This package should be compatible with all avaliable toolchains and includes CMake module files for easy integration into CMake-based projects. For further documentation see also [NVPL](https://docs.nvidia.com/nvpl).
+
+## Basic Communication Libraries
+
+The OpenMPI 4 implementation is included with NVHPC toolchain and is exposed as a module (`ml OpenMPI`). The following example
+
+```cpp
+#include <mpi.h>
+#include <sched.h>
+#include <omp.h>
+
+int main(int argc, char **argv)
+{
+        int rank;
+        MPI_Init(&argc, &argv);
+        MPI_Comm_rank(MPI_COMM_WORLD, &rank);
+        #pragma omp parallel
+        {
+                printf("Hello on rank %d, thread %d on CPU %d\n", rank, omp_get_thread_num(), sched_getcpu());
+        }
+        MPI_Finalize();
+}
+```
+
+can be compiled and run as follows
+
+```console
+ml OpenMPI
+mpic++ -fast -fopenmp hello.cpp -o hello
+OMP_PROC_BIND=close OMP_NUM_THREADS=4 mpirun -np 4 --map-by slot:pe=36 ./hello
+```
+In this configuration we run 4 ranks bound to one quarter of cores each with 4 OpenMP threads.
+
+## Simple BLAS Application
+
+The `hello world` example application (written in `C++` and `Fortran`) uses simple stationary probability vector estimation to illustrate use of GEMM (BLAS 3 routine).
+
+Stationary probability vector estimation in `C++`:
+
+```cpp
+#include <iostream>
+#include <vector>
+#include <chrono>
+#include "cblas.h"
+
+const size_t ITERATIONS  = 32;
+const size_t MATRIX_SIZE = 1024;
+
+int main(int argc, char *argv[])
+{
+    const size_t matrixElements = MATRIX_SIZE*MATRIX_SIZE;
+
+    std::vector<float> a(matrixElements, 1.0f / float(MATRIX_SIZE));
+
+    for(size_t i = 0; i < MATRIX_SIZE; ++i)
+        a[i] = 0.5f / (float(MATRIX_SIZE) - 1.0f);
+    a[0] = 0.5f;
+
+    std::vector<float> w1(matrixElements, 0.0f);
+    std::vector<float> w2(matrixElements, 0.0f);
+
+    std::copy(a.begin(), a.end(), w1.begin());
+
+    std::vector<float> *t1, *t2;
+    t1 = &w1;
+    t2 = &w2;
+
+    auto c1 = std::chrono::steady_clock::now();
+
+    for(size_t i = 0; i < ITERATIONS; ++i)
+    {
+        std::fill(t2->begin(), t2->end(), 0.0f);
+
+        cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, MATRIX_SIZE, MATRIX_SIZE, MATRIX_SIZE,
+                    1.0f, t1->data(), MATRIX_SIZE,
+                    a.data(), MATRIX_SIZE,
+                    1.0f, t2->data(), MATRIX_SIZE);
+
+        std::swap(t1, t2);
+    }
+
+    auto c2 = std::chrono::steady_clock::now();
+
+    for(size_t i = 0; i < MATRIX_SIZE; ++i)
+    {
+        std::cout << (*t1)[i*MATRIX_SIZE + i] << " ";
+    }
+
+    std::cout << std::endl;
+
+    std::cout << "Elapsed Time: " << std::chrono::duration<double>(c2 - c1).count() << std::endl;
+
+    return 0;
+}
+```
+
+Stationary probability vector estimation in `Fortran`:
+
+```fortran
+program main
+    implicit none
+
+    integer :: matrix_size, iterations
+    integer :: i
+    real, allocatable, target :: a(:,:), w1(:,:), w2(:,:)
+    real, dimension(:,:), contiguous, pointer :: t1, t2, tmp
+    real, pointer :: out_data(:), out_diag(:)
+    integer :: cr, cm, c1, c2
+
+    iterations  = 32
+    matrix_size = 1024
+
+    call system_clock(count_rate=cr)
+    call system_clock(count_max=cm)
+
+    allocate(a(matrix_size, matrix_size))
+    allocate(w1(matrix_size, matrix_size))
+    allocate(w2(matrix_size, matrix_size))
+
+    a(:,:) = 1.0 / real(matrix_size)
+    a(:,1) = 0.5 / real(matrix_size - 1)
+    a(1,1) = 0.5
+
+    w1 = a
+    w2(:,:) = 0.0
+
+    t1 => w1
+    t2 => w2
+
+    call system_clock(c1)
+
+    do i = 0, iterations
+        t2(:,:) = 0.0
+
+        call sgemm('N', 'N', matrix_size, matrix_size, matrix_size, 1.0, t1, matrix_size, a, matrix_size, 1.0, t2, matrix_size)
+
+        tmp => t1
+        t1  => t2
+        t2  => tmp
+    end do
+
+    call system_clock(c2)
+
+    out_data(1:size(t1)) => t1
+    out_diag => out_data(1::matrix_size+1)
+
+    print *, out_diag
+    print *, "Elapsed Time: ", (c2 - c1) / real(cr)
+
+    deallocate(a)
+    deallocate(w1)
+    deallocate(w2)
+end program main
+```
+
+### Using NVHPC Toolchain
+
+The C++ version of the example can be compiled with NVHPC and ran as folows
+
+```console
+ml NVHPC
+nvc++ -O3 -march=native -fast -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lblas main.cpp -o main
+OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
+```
+
+The Fortran version is just as simple:
+
+```console
+ml NVHPC
+nvfortran -O3 -march=native -fast -lblas main.f90 -o main.x
+OMP_NUM_THREADS=144 OMP_PROC_BIND=spread ./main
+```
+
+!!! note
+    It may be advantageous to use NVPL libraries instead NVHPC ones. For example DGEMM BLAS 3 routine from NVPL is almost 30% faster than NVHPC one.
+
+### Using Clang (for Grace) Toolchain
+
+Similarly Clang for Grace toolchain with NVPL BLAS can be used to compile C++ version of the example.
+
+```console
+ml NVHPC
+/opt/nvidia/clang/17.23.11/bin/clang++ -O3 -march=native -ffast-math -I$NVHPC/Linux_aarch64/$EBVERSIONNVHPC/compilers/include/lp64 -lnvpl_blas_lp64_gomp main.cpp -o main
+```
+
+!!! note
+    NVHPC module is used just for the `cblas.h` include in this case. This can be avoided by changing the code to use `nvpl_blas.h` instead.
+
+## Additional Resources
+
+- [https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/][1]
+- [https://developer.nvidia.com/hpc-sdk][2]
+- [https://developer.nvidia.com/grace/clang][3]
+- [https://docs.nvidia.com/nvpl][4]
+
+[1]: https://www.nvidia.com/en-us/data-center/grace-cpu-superchip/
+[2]: https://developer.nvidia.com/hpc-sdk
+[3]: https://developer.nvidia.com/grace/clang
+[4]: https://docs.nvidia.com/nvpl
\ No newline at end of file