# Using Xilinx Accelerator Platform The first step to use Xilinx accelerators is to initialize Vitis (compiler) and XRT (runtime) environments. ```console $ . /tools/Xilinx/Vitis/2023.1/settings64.sh $ . /opt/xilinx/xrt/setup.sh ``` ## Platform Level Accelerator Management This should allow to examine current platform using `xbutil examine`, which should output user-level information about XRT platform and list available devices ``` $ xbutil examine System Configuration OS Name : Linux Release : 4.18.0-477.27.1.el8_8.x86_64 Version : #1 SMP Thu Aug 31 10:29:22 EDT 2023 Machine : x86_64 CPU Cores : 64 Memory : 257145 MB Distribution : Red Hat Enterprise Linux 8.8 (Ootpa) GLIBC : 2.28 Model : ProLiant XL675d Gen10 Plus XRT Version : 2.16.0 Branch : master Hash : f2524a2fcbbabd969db19abf4d835c24379e390d Hash Date : 2023-10-11 14:01:19 XOCL : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d XCLMGMT : 2.16.0, f2524a2fcbbabd969db19abf4d835c24379e390d Devices present BDF : Shell Logic UUID Device ID Device Ready* ------------------------------------------------------------------------------------------------------------------------- [0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=132) Yes [0000:8c:00.1] : xilinx_u280_gen3x16_xdma_base_1 283BAB8F-654D-8674-968F-4DA57F7FA5D7 user(inst=133) Yes * Devices that are not ready will have reduced functionality when using XRT tools ``` Here two Xilinx Alveo u280 accelerators (`0000:88:00.1` and `0000:8c:00.1`) are available. The `xbutil` can be also used to query additional information about specific device using its BDF address ```console $ xbutil examine -d "0000:88:00.1" ------------------------------------------------- [0000:88:00.1] : xilinx_u280_gen3x16_xdma_base_1 ------------------------------------------------- Platform XSA Name : xilinx_u280_gen3x16_xdma_base_1 Logic UUID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7 FPGA Name : JTAG ID Code : 0x14b7d093 DDR Size : 0 Bytes DDR Count : 0 Mig Calibrated : true P2P Status : disabled Performance Mode : not supported P2P IO space required : 64 GB Clocks DATA_CLK (Data) : 300 MHz KERNEL_CLK (Kernel) : 500 MHz hbm_aclk (System) : 450 MHz Mac Addresses : 00:0A:35:0E:20:B0 : 00:0A:35:0E:20:B1 Device Status: HEALTHY Hardware Context ID: 0 Xclbin UUID: 6306D6AE-1D66-AEA7-B15D-446D4ECC53BD PL Compute Units Index Name Base Address Usage Status ------------------------------------------------- 0 vadd:vadd_1 0x800000 1 (IDLE) ``` Basic functionality of the device can be checked using `xbutil validate -d <BDF>` as ```console $ xbutil validate -d "0000:88:00.1" Validate Device : [0000:88:00.1] Platform : xilinx_u280_gen3x16_xdma_base_1 SC Version : 4.3.27 Platform ID : 283BAB8F-654D-8674-968F-4DA57F7FA5D7 ------------------------------------------------------------------------------- Test 1 [0000:88:00.1] : aux-connection Test Status : [PASSED] ------------------------------------------------------------------------------- Test 2 [0000:88:00.1] : pcie-link Test Status : [PASSED] ------------------------------------------------------------------------------- Test 3 [0000:88:00.1] : sc-version Test Status : [PASSED] ------------------------------------------------------------------------------- Test 4 [0000:88:00.1] : verify Test Status : [PASSED] ------------------------------------------------------------------------------- Test 5 [0000:88:00.1] : dma Details : Buffer size - '16 MB' Memory Tag - 'HBM[0]' Host -> PCIe -> FPGA write bandwidth = 11988.9 MB/s Host <- PCIe <- FPGA read bandwidth = 12571.2 MB/s ... Test Status : [PASSED] ------------------------------------------------------------------------------- Test 6 [0000:88:00.1] : iops Details : IOPS: 387240(verify) Test Status : [PASSED] ------------------------------------------------------------------------------- Test 7 [0000:88:00.1] : mem-bw Details : Throughput (Type: DDR) (Bank count: 2) : 33932.9MB/s Throughput of Memory Tag: DDR[0] is 16974.1MB/s Throughput of Memory Tag: DDR[1] is 16974.2MB/s Throughput (Type: HBM) (Bank count: 1) : 12383.7MB/s Test Status : [PASSED] ------------------------------------------------------------------------------- Test 8 [0000:88:00.1] : p2p Test 9 [0000:88:00.1] : vcu Test 10 [0000:88:00.1] : aie Test 11 [0000:88:00.1] : ps-aie Test 12 [0000:88:00.1] : ps-pl-verify Test 13 [0000:88:00.1] : ps-verify Test 14 [0000:88:00.1] : ps-iops ``` Finally, the device can be reinitialized using `xbutil reset -d <BDF>` as ```console $ xbutil reset -d "0000:88:00.1" Performing 'HOT Reset' on '0000:88:00.1' Are you sure you wish to proceed? [Y/n]: Y Successfully reset Device[0000:88:00.1] ``` This can be useful to recover the device from states such as `HANGING`, reported by `xbutil examine -d <BDF>`. ## OpenCL Platform Level The `clinfo` utility can be used to verify that the accelerator is visible to OpenCL ```console $ clinfo Number of platforms: 2 Platform Profile: FULL_PROFILE Platform Version: OpenCL 2.1 AMD-APP (3590.0) Platform Name: AMD Accelerated Parallel Processing Platform Vendor: Advanced Micro Devices, Inc. Platform Extensions: cl_khr_icd cl_amd_event_callback Platform Profile: EMBEDDED_PROFILE Platform Version: OpenCL 1.0 Platform Name: Xilinx Platform Vendor: Xilinx Platform Extensions: cl_khr_icd <...> Platform Name: Xilinx Number of devices: 2 Device Type: CL_DEVICE_TYPE_ACCRLERATOR Vendor ID: 0h Max compute units: 0 Max work items dimensions: 3 Max work items[0]: 4294967295 Max work items[1]: 4294967295 Max work items[2]: 4294967295 Max work group size: 4294967295 Preferred vector width char: 1 Preferred vector width short: 1 Preferred vector width int: 1 Preferred vector width long: 1 Preferred vector width float: 1 Preferred vector width double: 0 Max clock frequency: 0Mhz Address bits: 64 Max memory allocation: 4294967296 Image support: Yes Max number of images read arguments: 128 Max number of images write arguments: 8 Max image 2D width: 8192 Max image 2D height: 8192 Max image 3D width: 2048 Max image 3D height: 2048 Max image 3D depth: 2048 Max samplers within kernel: 0 Max size of kernel argument: 2048 Alignment (bits) of base address: 32768 Minimum alignment (bytes) for any datatype: 128 Single precision floating point capability Denorms: No Quiet NaNs: Yes Round to nearest even: Yes Round to zero: No Round to +ve and infinity: No IEEE754-2008 fused multiply-add: No Cache type: None Cache line size: 64 Cache size: 0 Global memory size: 0 Constant buffer size: 4194304 Max number of constant args: 8 Local memory type: Scratchpad Local memory size: 16384 Error correction support: 1 Profiling timer resolution: 1 Device endianess: Little Available: No Compiler available: No Execution capabilities: Execute OpenCL kernels: Yes Execute native function: No Queue on Host properties: Out-of-Order: Yes Profiling: Yes Platform ID: 0x16fbae8 Name: xilinx_u280_gen3x16_xdma_base_1 Vendor: Xilinx Driver version: 1.0 Profile: EMBEDDED_PROFILE Version: OpenCL 1.0 <...> ``` which shows that both `Xilinx` platform and accelerator devices are present. ## Building Applications To simplify the build process we define two environment variables `IT4I_PLATFORM` and `IT4I_BUILD_MODE`. The first `IT4I_PLATFORM` denotes specific accelerator hardware such as `Alveo u250` or `Alveo u280` and its configuration stored in (`*.xpfm` files). The list of available platforms can be obtained using `platforminfo` utility: ```console $ platforminfo -l { "platforms": [ { "baseName": "xilinx_u280_gen3x16_xdma_1_202211_1", "version": "202211.1", "type": "sdaccel", "dataCenter": "true", "embedded": "false", "externalHost": "true", "serverManaged": "true", "platformState": "impl", "usesPR": "true", "platformFile": "\/opt\/xilinx\/platforms\/xilinx_u280_gen3x16_xdma_1_202211_1\/xilinx_u280_gen3x16_xdma_1_202211_1.xpfm" }, { "baseName": "xilinx_u250_gen3x16_xdma_4_1_202210_1", "version": "202210.1", "type": "sdaccel", "dataCenter": "true", "embedded": "false", "externalHost": "true", "serverManaged": "true", "platformState": "impl", "usesPR": "true", "platformFile": "\/opt\/xilinx\/platforms\/xilinx_u250_gen3x16_xdma_4_1_202210_1\/xilinx_u250_gen3x16_xdma_4_1_202210_1.xpfm" } ] } ``` Here, `baseName` and potentially `platformFile` are of interest and either can be specified as value of `IT4I_PLATFORM`. In this case we have platform files `xilinx_u280_gen3x16_xdma_1_202211_1` (Alveo u280) and `xilinx_u250_gen3x16_xdma_4_1_202210_1` (Alveo u250). The `IT4I_BUILD_MODE` is used to specify build type (`hw`, `hw_emu` and `sw_emu`): - `hw` performs full synthesis for the accelerator - `hw_emu` allows to run both synthesis and emulation for debugging - `sw_emu` compiles kernels only for emulation (doesn't require accelerator and allows much faster build) For example to configure build for `Alveo u280` we set: ```console $ export IT4I_PLATFORM=xilinx_u280_gen3x16_xdma_1_202211_1 ``` ### Software Emulation Mode The software emulation mode is preferable for development as HLS synthesis is very time consuming. To build following applications in this mode we set: ```console $ export IT4I_BUILD_MODE=sw_emu ``` and run each application with `XCL_EMULATION_MODE` set to `sw_emu`: ``` $ XCL_EMULATION_MODE=sw_emu <application> ``` ### Hardware Synthesis Mode !!! note The HLS of these simple applications **can take up to 2 hours** to finish. To allow the application to utilize real hardware we have to synthetize FPGA design for the accelerator. This can be done by repeating same steps used to build kernels in emulation mode, but with `IT4I_BUILD_MODE` set to `hw` like so: ```console $ export IT4I_BUILD_MODE=hw ``` the host application binary can be reused, but it has to be run without `XCL_EMULATION_MODE`: ```console $ <application> ``` ## Sample Applications The first two samples illustrate two main approaches to building FPGA accelerated applications using Xilinx platform - **XRT** and **OpenCL**. The final example combines **HIP** with **XRT** to show basics necessary to build application, which utilizes both GPU and FPGA accelerators. ### Using HLS and XRT The applications are typically separated into host and accelerator/kernel side. The following host-side code should be saved as `host.cpp` ```c++ /* # Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved. # SPDX-License-Identifier: X11 */ #include <iostream> #include <cstring> // XRT includes #include "xrt/xrt_bo.h" #include <experimental/xrt_xclbin.h> #include "xrt/xrt_device.h" #include "xrt/xrt_kernel.h" #define DATA_SIZE 4096 int main(int argc, char** argv) { if(argc != 2) { std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl; return EXIT_FAILURE; } // Read settings std::string binaryFile = argv[1]; int device_index = 0; std::cout << "Open the device" << device_index << std::endl; auto device = xrt::device(device_index); std::cout << "Load the xclbin " << binaryFile << std::endl; auto uuid = device.load_xclbin("./vadd.xclbin"); size_t vector_size_bytes = sizeof(int) * DATA_SIZE; //auto krnl = xrt::kernel(device, uuid, "vadd"); auto krnl = xrt::kernel(device, uuid, "vadd", xrt::kernel::cu_access_mode::exclusive); std::cout << "Allocate Buffer in Global Memory\n"; auto boIn1 = xrt::bo(device, vector_size_bytes, krnl.group_id(0)); //Match kernel arguments to RTL kernel auto boIn2 = xrt::bo(device, vector_size_bytes, krnl.group_id(1)); auto boOut = xrt::bo(device, vector_size_bytes, krnl.group_id(2)); // Map the contents of the buffer object into host memory auto bo0_map = boIn1.map<int*>(); auto bo1_map = boIn2.map<int*>(); auto bo2_map = boOut.map<int*>(); std::fill(bo0_map, bo0_map + DATA_SIZE, 0); std::fill(bo1_map, bo1_map + DATA_SIZE, 0); std::fill(bo2_map, bo2_map + DATA_SIZE, 0); // Create the test data int bufReference[DATA_SIZE]; for (int i = 0; i < DATA_SIZE; ++i) { bo0_map[i] = i; bo1_map[i] = i; bufReference[i] = bo0_map[i] + bo1_map[i]; //Generate check data for validation } // Synchronize buffer content with device side std::cout << "synchronize input buffer data to device global memory\n"; boIn1.sync(XCL_BO_SYNC_BO_TO_DEVICE); boIn2.sync(XCL_BO_SYNC_BO_TO_DEVICE); std::cout << "Execution of the kernel\n"; auto run = krnl(boIn1, boIn2, boOut, DATA_SIZE); //DATA_SIZE=size run.wait(); // Get the output; std::cout << "Get the output data from the device" << std::endl; boOut.sync(XCL_BO_SYNC_BO_FROM_DEVICE); // Validate results if (std::memcmp(bo2_map, bufReference, vector_size_bytes)) throw std::runtime_error("Value read back does not match reference"); std::cout << "TEST PASSED\n"; return 0; } ``` The host-side code can now be compiled using GCC toolchain as: ```console $ g++ host.cpp -I$XILINX_XRT/include -I$XILINX_VIVADO/include -L$XILINX_XRT/lib -lxrt_coreutil -o host ``` The accelerator side (simple vector-add kernel) should be saved as `vadd.cpp`. ```c++ /* # Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved. # SPDX-License-Identifier: X11 */ extern "C" { void vadd( const unsigned int *in1, // Read-Only Vector 1 const unsigned int *in2, // Read-Only Vector 2 unsigned int *out, // Output Result int size // Size in integer ) { #pragma HLS INTERFACE m_axi port=in1 bundle=aximm1 #pragma HLS INTERFACE m_axi port=in2 bundle=aximm2 #pragma HLS INTERFACE m_axi port=out bundle=aximm1 for(int i = 0; i < size; ++i) { out[i] = in1[i] + in2[i]; } } } ``` The accelerator-side code is build using Vitis `v++`. This is two-step process, which either builds emulation binary or performs full HLS (depending on the value of `-t` argument). The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS). ```console $ v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k vadd vadd.cpp -o vadd.xo $ v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM vadd.xo -o vadd.xclbin ``` This process should result in `vadd.xclbin`, which can be loaded by host-side application. ### Running the Application With both host application and kernel binary at hand the application (in emulation mode) can be launched as ```console $ XCL_EMULATION_MODE=sw_emu ./host vadd.xclbin ``` or with real hardware (having compiled kernels with `IT4I_BUILD_MODE=hw`) ```console ./host vadd.xclbin ``` ## Using HLS and OpenCL The host-side application code should be saved as `host.cpp`. This application attempts to find `Xilinx` OpenCL platform in the system and selects first device in that platform. The device is then configured with provided kernel binary. Other than that the only difference to typical vector-add in OpenCL is use of `enqueueTask(...)` to launch the kernel (compared to typical `enqueueNDRangeKernel`). ```c++ #include <iostream> #include <fstream> #include <iterator> #include <vector> #define CL_HPP_TARGET_OPENCL_VERSION 120 #define CL_HPP_MINIMUM_OPENCL_VERSION 120 #define CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY 1 #define CL_USE_DEPRECATED_OPENCL_1_2_APIS #include <CL/cl2.hpp> #include <CL/cl_ext_xilinx.h> std::vector<unsigned char> read_binary_file(const std::string &filename) { std::cout << "INFO: Reading " << filename << std::endl; std::ifstream file(filename, std::ios::binary); file.unsetf(std::ios::skipws); std::streampos file_size; file.seekg(0, std::ios::end); file_size = file.tellg(); file.seekg(0, std::ios::beg); std::vector<unsigned char> data; data.reserve(file_size); data.insert(data.begin(), std::istream_iterator<unsigned char>(file), std::istream_iterator<unsigned char>()); return data; } cl::Device select_device() { std::vector<cl::Platform> platforms; cl::Platform::get(&platforms); cl::Platform platform; for(cl::Platform &p: platforms) { const std::string name = p.getInfo<CL_PLATFORM_NAME>(); std::cout << "PLATFORM: " << name << std::endl; if(name == "Xilinx") { platform = p; break; } } if(platform == cl::Platform()) { std::cout << "Xilinx platform not found!" << std::endl; exit(EXIT_FAILURE); } std::vector<cl::Device> devices; platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR, &devices); return devices[0]; } static const int DATA_SIZE = 1024; int main(int argc, char *argv[]) { if(argc != 2) { std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl; return EXIT_FAILURE; } std::string binary_file = argv[1]; std::vector<int> source_a(DATA_SIZE, 10); std::vector<int> source_b(DATA_SIZE, 32); auto program_binary = read_binary_file(binary_file); cl::Program::Binaries bins{{program_binary.data(), program_binary.size()}}; cl::Device device = select_device(); cl::Context context(device, nullptr, nullptr, nullptr); cl::CommandQueue q(context, device, CL_QUEUE_PROFILING_ENABLE); cl::Program program(context, {device}, bins, nullptr); cl::Kernel vadd_kernel = cl::Kernel(program, "vector_add"); cl::Buffer buffer_a(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, source_a.size() * sizeof(int), source_a.data()); cl::Buffer buffer_b(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, source_b.size() * sizeof(int), source_b.data()); cl::Buffer buffer_res(context, CL_MEM_READ_WRITE, source_a.size() * sizeof(int)); int narg = 0; vadd_kernel.setArg(narg++, buffer_res); vadd_kernel.setArg(narg++, buffer_a); vadd_kernel.setArg(narg++, buffer_b); vadd_kernel.setArg(narg++, DATA_SIZE); q.enqueueTask(vadd_kernel); std::vector<int> result(DATA_SIZE, 0); q.enqueueReadBuffer(buffer_res, CL_TRUE, 0, result.size() * sizeof(int), result.data()); int mismatch_count = 0; for(size_t i = 0; i < DATA_SIZE; ++i) { int host_result = source_a[i] + source_b[i]; if(result[i] != host_result) { mismatch_count++; std::cout << "ERROR: " << result[i] << " != " << host_result << std::endl; break; } } std::cout << "RESULT: " << (mismatch_count == 0 ? "PASSED" : "FAILED") << std::endl; return 0; } ``` The host-side code can now be compiled using GCC toolchain as: ```console $ g++ host.cpp -I$XILINX_XRT/include -I$XILINX_VIVADO/include -lOpenCL -o host ``` The accelerator side (simple vector-add kernel) should be saved as `vadd.cl`. ```c++ #define BUFFER_SIZE 256 #define DATA_SIZE 1024 // TRIPCOUNT indentifier __constant uint c_len = DATA_SIZE / BUFFER_SIZE; __constant uint c_size = BUFFER_SIZE; __attribute__((reqd_work_group_size(1, 1, 1))) __kernel void vector_add(__global int* c, __global const int* a, __global const int* b, const int n_elements) { int arrayA[BUFFER_SIZE]; int arrayB[BUFFER_SIZE]; __attribute__((xcl_loop_tripcount(c_len, c_len))) for (int i = 0; i < n_elements; i += BUFFER_SIZE) { int size = BUFFER_SIZE; if(i + size > n_elements) size = n_elements - i; __attribute__((xcl_loop_tripcount(c_size, c_size))) __attribute__((xcl_pipeline_loop(1))) readA: for(int j = 0; j < size; j++) arrayA[j] = a[i + j]; __attribute__((xcl_loop_tripcount(c_size, c_size))) __attribute__((xcl_pipeline_loop(1))) readB: for(int j = 0; j < size; j++) arrayB[j] = b[i + j]; __attribute__((xcl_loop_tripcount(c_size, c_size))) __attribute__((xcl_pipeline_loop(1))) vadd_writeC: for(int j = 0; j < size; j++) c[i + j] = arrayA[j] + arrayB[j]; } } ``` The accelerator-side code is build using Vitis `v++`. This is three-step process, which either builds emulation binary or performs full HLS (depending on the value of `-t` argument). The platform (specific accelerator) has to be also specified at this step (both for emulation and full HLS). ```console $ v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k vector_add -o vadd.xo vadd.cl $ v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -o vadd.link.xclbin vadd.xo $ v++ -p vadd.link.xclbin -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -o vadd.xclbin ``` This process should result in `vadd.xclbin`, which can be loaded by host-side application. ### Running the Application With both host application and kernel binary at hand the application (in emulation mode) can be launched as ```console $ XCL_EMULATION_MODE=sw_emu ./host vadd.xclbin ``` or with real hardware (having compiled kernels with `IT4I_BUILD_MODE=hw`) ```console ./host vadd.xclbin ``` ## Hybrid GPU and FPGA Application (HIP+XRT) This simple 8-bit quantized dot product (`R = sum(X[i]*Y[i])`) example illustrates basic approach to utilize both GPU and FPGA accelerators in a single application. The application takes the simplest approach, where both synchronization and data transfers are handled explicitly by the host. The HIP toolchain is used to compile the single source host/GPU code as usual, but it is also linked with XRT runtime, which allows host to control the FPGA accelerator. The FPGA kernels are built separately as in previous examples. The host/GPU HIP code should be saved as `main.hip` ```c++ #include <iostream> #include <vector> #include "xrt/xrt_bo.h" #include "experimental/xrt_xclbin.h" #include "xrt/xrt_device.h" #include "xrt/xrt_kernel.h" #include "hip/hip_runtime.h" const size_t DATA_SIZE = 1024; float compute_reference(const float *srcX, const float *srcY, size_t count); __global__ void quantize(int8_t *out, const float *in, size_t count) { size_t idx = blockIdx.x * blockDim.x + threadIdx.x; for(size_t i = idx; i < count; i += blockDim.x * gridDim.x) out[i] = int8_t(in[i] * 127); } __global__ void dequantize(float *out, const int16_t *in, size_t count) { size_t idx = blockIdx.x * blockDim.x + threadIdx.x; for(size_t i = idx; i < count; i += blockDim.x * gridDim.x) out[i] = float(in[i] / float(127*127)); } int main(int argc, char *argv[]) { if(argc != 2) { std::cout << "Usage: " << argv[0] << " <XCLBIN File>" << std::endl; return EXIT_FAILURE; } // Prepare experiment data std::vector<float> srcX(DATA_SIZE); std::vector<float> srcY(DATA_SIZE); float outR = 0.0f; for(size_t i = 0; i < DATA_SIZE; ++i) { srcX[i] = float(rand()) / float(RAND_MAX); srcY[i] = float(rand()) / float(RAND_MAX); outR += srcX[i] * srcY[i]; } float outR_quant = compute_reference(srcX.data(), srcY.data(), DATA_SIZE); std::cout << "REFERENCE: " << outR_quant << " (" << outR << ")" << std::endl; // Initialize XRT (FPGA device), load kernels binary and create kernel object xrt::device device(0); std::cout << "Loading xclbin file " << argv[1] << std::endl; xrt::uuid xclbinId = device.load_xclbin(argv[1]); xrt::kernel mulKernel(device, xclbinId, "multiply", xrt::kernel::cu_access_mode::exclusive); // Allocate GPU buffers float *srcX_gpu, *srcY_gpu, *res_gpu; int8_t *srcX_gpu_quant, *srcY_gpu_quant; int16_t *res_gpu_quant; hipMalloc(&srcX_gpu, DATA_SIZE * sizeof(float)); hipMalloc(&srcY_gpu, DATA_SIZE * sizeof(float)); hipMalloc(&res_gpu, DATA_SIZE * sizeof(float)); hipMalloc(&srcX_gpu_quant, DATA_SIZE * sizeof(int8_t)); hipMalloc(&srcY_gpu_quant, DATA_SIZE * sizeof(int8_t)); hipMalloc(&res_gpu_quant, DATA_SIZE * sizeof(int16_t)); // Allocate FPGA buffers xrt::bo srcX_fpga_quant(device, DATA_SIZE * sizeof(int8_t), mulKernel.group_id(0)); xrt::bo srcY_fpga_quant(device, DATA_SIZE * sizeof(int8_t), mulKernel.group_id(1)); xrt::bo res_fpga_quant(device, DATA_SIZE * sizeof(int16_t), mulKernel.group_id(2)); // Copy experiment data from HOST to GPU hipMemcpy(srcX_gpu, srcX.data(), DATA_SIZE * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(srcY_gpu, srcY.data(), DATA_SIZE * sizeof(float), hipMemcpyHostToDevice); // Execute quantization kernels on both input vectors quantize<<<16, 256>>>(srcX_gpu_quant, srcX_gpu, DATA_SIZE); quantize<<<16, 256>>>(srcY_gpu_quant, srcY_gpu, DATA_SIZE); // Map FPGA buffers into HOST memory, copy data from GPU to these mapped buffers and synchronize them into FPGA memory hipMemcpy(srcX_fpga_quant.map<int8_t *>(), srcX_gpu_quant, DATA_SIZE * sizeof(int8_t), hipMemcpyDeviceToHost); srcX_fpga_quant.sync(XCL_BO_SYNC_BO_TO_DEVICE); hipMemcpy(srcY_fpga_quant.map<int8_t *>(), srcY_gpu_quant, DATA_SIZE * sizeof(int8_t), hipMemcpyDeviceToHost); srcY_fpga_quant.sync(XCL_BO_SYNC_BO_TO_DEVICE); // Execute FPGA kernel (8-bit integer multiplication) auto kernelRun = mulKernel(res_fpga_quant, srcX_fpga_quant, srcY_fpga_quant, DATA_SIZE); kernelRun.wait(); // Synchronize output FPGA buffer back to HOST and copy its contents to GPU buffer for dequantization res_fpga_quant.sync(XCL_BO_SYNC_BO_FROM_DEVICE); hipMemcpy(res_gpu_quant, res_fpga_quant.map<int16_t *>(), DATA_SIZE * sizeof(int16_t), hipMemcpyDeviceToHost); // Dequantize multiplication result on GPU dequantize<<<16, 256>>>(res_gpu, res_gpu_quant, DATA_SIZE); // Copy dequantized results from GPU to HOST std::vector<float> res(DATA_SIZE); hipMemcpy(res.data(), res_gpu, DATA_SIZE * sizeof(float), hipMemcpyDeviceToHost); // Perform simple sum on CPU float out = 0.0; for(size_t i = 0; i < DATA_SIZE; ++i) out += res[i]; std::cout << "RESULT: " << out << std::endl; hipFree(srcX_gpu); hipFree(srcY_gpu); hipFree(res_gpu); hipFree(srcX_gpu_quant); hipFree(srcY_gpu_quant); hipFree(res_gpu_quant); return 0; } float compute_reference(const float *srcX, const float *srcY, size_t count) { float out = 0.0f; for(size_t i = 0; i < count; ++i) { int16_t quantX(srcX[i] * 127); int16_t quantY(srcY[i] * 127); out += float(int16_t(quantX * quantY) / float(127*127)); } return out; } ``` The host/GPU application can be built using HIPCC as: ```console $ hipcc -I$XILINX_XRT/include -I$XILINX_VIVADO/include -L$XILINX_XRT/lib -lxrt_coreutil main.hip -o host ``` The accelerator side (simple vector-multiply kernel) should be saved as `kernels.cpp`. ```c++ extern "C" { void multiply( short *out, const char *inX, const char *inY, int size) { #pragma HLS INTERFACE m_axi port=inX bundle=aximm1 #pragma HLS INTERFACE m_axi port=inY bundle=aximm2 #pragma HLS INTERFACE m_axi port=out bundle=aximm1 for(int i = 0; i < size; ++i) out[i] = short(inX[i]) * short(inY[i]); } } ``` Once again the HLS kernel is build using Vitis `v++` in two steps: ```console v++ -c -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM -k multiply kernels.cpp -o kernels.xo v++ -l -t $IT4I_BUILD_MODE --platform $IT4I_PLATFORM kernels.xo -o kernels.xclbin ``` ### Running the Application In emulation mode (FPGA emulation, GPU HW is required) the application can be launched as: ```console $ XCL_EMULATION_MODE=sw_emu ./host kernels.xclbin REFERENCE: 256.554 (260.714) Loading xclbin file ./kernels.xclbin RESULT: 256.554 ``` or, having compiled kernels with `IT4I_BUILD_MODE=hw` set, using real hardware (both FPGA and GPU HW is required) ```console $ ./host kernels.xclbin REFERENCE: 256.554 (260.714) Loading xclbin file ./kernels.xclbin RESULT: 256.554 ``` ## Additional Resources - [https://xilinx.github.io/Vitis-Tutorials/][1] - [http://xilinx.github.io/Vitis_Accel_Examples/][2] [1]: https://xilinx.github.io/Vitis-Tutorials/ [2]: http://xilinx.github.io/Vitis_Accel_Examples/