
Radim Vavřík

INTRODUCTION TO
HIGH PERFORMANCE
COMPUTING

PERFORMANCE ANALYSIS BASICS

Performance analysis and optimisation
§ Motivation
§ Hardware aspects
§ Development process
§ Best-practices

Performance tools and methodology
§ Performance metrics
§ CPU/GPU tools
§ Live examples

POP CoE

OUTLINE

Cray-1 supercomputer, source: wikipedia.org

§ All presented tools/examples can be accessed and reproduced at IT4I
clusters anytime

§ Please, setup your preferred GUI access:
1. VNC - server on a Karolina login node + client on laptop

§ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/
§ Recommended client https://www.realvnc.com/en/connect/download/viewer/

2. OOD - Open OnDemand GUI via web browser, IT4I VPN required
§ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/
§ Connection link https://ood-karolina.it4i.cz/

3. X11 - Log in via terminal with X-Window system enabled
§ How to? https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-

system/
§ Usually worse UX for GUI apps due to network latency

§ Most of the presented tools provide a remote profiling, e.g., generate output remotely
from CLI while analysis can be done locally in GUI - not covered today

TECHNICAL NOTES

https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/vnc/
https://www.realvnc.com/en/connect/download/viewer/
https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/ood/
https://ood-karolina.it4i.cz/
https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-system/
https://docs.it4i.cz/general/accessing-the-clusters/graphical-user-interface/x-window-system/

Who has any experience with a performance analysis tool?
§ What was the tool?

Objectives today?
§ Not to become an expert analyst
§ Not to reach an incredible performance improvement of example codes

§ Rather to get idea about the domain and introduce some tools

PERFORMANCE ANALYSIS

What does it mean?
§ To get the most performance out of your hardware
§ The process is called Performance Optimisation

Why should I care about performance?
§ Industry – achieve goals faster and cheaper
§ Academia – do more science

§ The trend in grant competition (resource allocation) is to prove performance, scalability, etc.

EFFICIENT USE OF HPC

Know your application
§ What does it compute? (domain, methods, algorithms)
§ How is it parallelized? (programming models)
§ What final performance is expected? (HW limits)

Know your hardware
§ What are the target machines and how many? (laptop, workstation, cluster)
§ Machine-specific optimisations?

Know your tools
§ Strengths and weaknesses of each tool? (easy-to-use vs detailed information)
§ Learn how to use them (examples with problems/patterns)

Know your process
§ Constant learning

KEY INGREDIENTS

Filesystem
§ I/O operations

Network
§ internode communication

Memory subsystem
§ NUMA effect

CPU cores
§ thread/process affinity, pinning, caches

Vector registers
§ vectorization, vector instructions

Accelerators
§ GPU/MIC utilization, host-device data transfers

HARDWARE ASPECTS OF PERFORMANCE

Connect to login node via GUI
§ VNC / OOD / X11

Submit an interactive job
| salloc --account=DD-23-116 --reservation=dd-23-116_2024-06-
05T09:00:00_2024-06-05T12:30:00_5_qgpu --gpus 1

GET READY

Useful to get familiar with the machine
| lscpu

| cat /proc/cpuinfo
§ processor : 71 -> 72 logical processors per node
§ cpu cores : 18 -> 18 physical cores per socket
§ siblings : 36 -> 36 logical processors per socket
§ -> 2 hyperthreads per core
§ -> 2 sockets per node

| cat /proc/meminfo
§ MemTotal: 196510848 kB -> 187 GB

| ml impi

| cpuinfo # Intel MPI utility

BASIC TOOLS

Use HTOP tool for interactive jobs
| htop –d 5 # delay 0.5s

§ Configurable (e.g. core id, threads, process tree)

BASIC TOOLS

Similar tool for NVIDIA GPUs
| watch -n 1 nvidia-smi

BASIC TOOLS

1. Develop correct functionality (testing helps)
2. Identify bottlenecks (performance limiters) using performance tools
3. Optimise bottlenecks until satisfied

1. Build a hypothesis (ask a question)
2. Explain the behavior (answer the question)
3. Change the code (double-check correct functionality)
4. Verify optimisations using profiling tools

4. Repeat until job done

PERFORMANCE-AWARE DEVELOPMENT
PROCESS

§ Do not optimise your code prematurely!
§ Focus on main computational time-consuming phases (hotspots), omit

preprocessing/postprocessing phases if applicable
§ The 80/20 rule:

§ Programs typically spend 80% of their time in 20% of the code
§ Programmers typically spend 20% of their effort to get 80% of the total speedup possible

for the application

§ Keep track of your optimisation progress over time
§ Always use compute nodes for profiling (not login nodes - shared)
§ Use SW libraries!

BEST PRACTICES

General-purpose math libraries
§ BLAS (MKL, OpenBLAS, ATLAS, cuBLAS, ...)
§ LAPACK (MKL, OpenBLAS, ATLAS, cuSolver, ...)
§ FFT (MKL, cuFFT, ...)
§ ...

Domain-specific libraries
§ Chemistry, Bio, Geo, Physics, CAE, Big data, ML/DL

HW-specific libraries
§ GPU/MIC, Intel/AMD/IBM

Optimized implementation
§ Usually much better performance than a custom code
§ Do NOT reinvent a wheel!
§ (But avoid overkill)

SOFTWARE LIBRARIES

Execution time (time, time.h, ...)
§ real 0m10.245s (elapsed real time)
§ user 0m19.890s (user CPU time using OMP_NUM_THREADS=2)
§ sys 0m0.285s (system CPU time)

Processor speed (flop/s) and Memory throughput (GB/s)
§ Calculated operations per time (e.g. c = a + b + c -> 2 operations)
§ Transferred bytes per time (e.g. c = a + b + c -> 3 RD + 1 WR * 8 bytes)

Speedup and Efficiency
§ SP = T1 / TP

§ EP = SP / P

Scalability
§ Strong/weak scaling

Others: portability, programming ability, etc.

PERFORMANCE METRICS

§ The theoretical HW limits, e.g. AMD EPYC 7H12 (Rome)
Processor speed:

§ Number of compute nodes (Karolina-size machine) 720
§ Number of sockets (CPUs) per node 2
§ Frequency 2.6 GHz
§ Number of cores per socket 64
§ FMA instructions (a * b + c) 2
§ FMA units per core 2
§ SIMD (AVX2 256b) = 4x double precision 4

3 833 856 Gflop/s
3.8 Pflop/s

(2.6 Tflop/s per socket)

PEAK PERFORMANCE EXAMPLE

Memory bandwidth:
§ Number of compute nodes (Karolina-size machine) 720
§ Number of sockets (CPUs) per node 2
§ # channels per socket 8
§ DDR4 bus width 8 B
§ Frequency 3200 MT/s

294 912 000 MB/s
294 TB/s

(204 GB/s per socket)

PEAK PERFORMANCE EXAMPLE

§ Shows the performance of an algorithm (application) with respect to the
HW limits of the architecture

§ Identify if an algorithm is compute bound or memory bound
§ Based on Operational intensity - a ratio of FLOPS (arithmetic operations)

performed with required amount of data (operands)

ROOFLINE MODEL

§ Speedup – a ratio of a serial execution time to a parallel execution time

§ Linear speedup
§ Sub-linear speedup

§ Communication
§ Load imbalance
§ Decomposition overhead

§ Super-linear speedup
§ Cache
§ Algorithm

SPEEDUP

𝑆𝑁 =
𝑇1
𝑇𝑁

- execution time on 1 processor

- execution time on N processors
speedup on N processors -

𝑆𝑁 = 𝑁

𝑆𝑁 > 𝑁

𝑆𝑁 < 𝑁

N = # of processors [-]

Speedup [-]

§ Scalability - the ability to maintain performance gain when system and
problem size increase

SCALABILITY

X% (parallel) Y% (ser.)

𝑆𝑀𝐴𝑋 =
1
𝑌
100

§ Amdahl's law – maximum achievable
speedup is limited by the serial portion
of the code

§ Strong scaling - how the processing time varies with the number of
processors for a fixed total problem size

SCALABILITY

Wp

W1

WpWp WpWp

W1W1W1W1

1 2 3 4 5

Number of Processors (p)

Amount
of

Work

Tp

T1

Tp Tp Tp

T1
T1

Tp

T1 T1

1 2 3 4 5

Number of Processors (p)

Elapsed
Time

§ Weak scaling - how the processing time varies with the number of
processors for a fixed problem size per processing unit

SCALABILITY

Wp

W1Wp
Wp

Wp
Wp

W1

W1

W1

W1

1 2 3 4 5
Number of Processors (p)

Amount
of

Work

Tp

T1
Tp Tp Tp

T1 T1
Tp

T1 T1

1 2 3 4 5
Number of Processors (p)

Elapsed
Time

§ There are many tools that can be classified by the implemented approach
Data collecting mechanism

§ Sampling - automatically collect data per time unit
§ Instrumentation - manually/automatically add instructions to the source code to

collect data - intrusive

Form of data presentation
§ Reports - general overview of the whole application
§ Profiling - accumulated characteristics of metrics
§ Tracing - details about selected events - intrusive

Analysis of the collected data
§ Online - during the execution - rare
§ Post mortem - after the execution

Modeling - simulate state, ideal network, HW failure, etc.

CLASSIFICATION OF PERFORMANCE TOOLS

Example of a trace, source: tools.bsc.es

https://tools.bsc.es/paraver

§ Single-node/parallel, architecture, language, programming model, focus
(instrumentation, correctness checking, etc.)

Proprietary tools – licenses usually available on clusters
§ Linaro (ARM (Allinea)) Performance Report
§ Linaro (ARM (Allinea)) MAP
§ Intel Application Performance Snapshot
§ Intel Vtune
§ AMD µProf
§ Vampir

Open-source tools (VI-HPS)
§ BSC tools (Extrae/Paraver)
§ JSC tools (Score-P/Scalasca/Cube)
§ MAQAO
§ https://www.vi-hps.org/tools/tools.html (guide)

PERFORMANCE TOOLS - CPU

https://www.vi-hps.org/tools/tools.html

GUI tools
§ NVIDIA Nsight Systems – system-level profiling
§ NVIDIA Nsight Compute – CUDA kernel-level profiling
§ NVIDIA Visual Profiler - deprecated

Command-line tools - for no GUI access
(e.g. in batch jobs)

§ NVIDIA nsys
§ NVIDIA ncu
§ AMD ROC-profiler
- analogous to nsys
- Chrome for visualization

§ NVIDIA nvprof
- deprecated

GPU PROFILING – TOOLS

Nsight tools, source: nvidia.com

§ Global high-level overview of the application
§ No source code or recompilation required
§ Run: perf-report srun -n <#procs> <app>
§ Auto-generated text and HTML output
§ Report summary (Compute, MPI, Input/Output)
§ CPU, MPI, I/O, OpenMP, Memory, Energy,

Accelerator breakdown sections
§ Advanced configuration through command line

flags possible

ARM PERFORMANCE REPORTS

| ml Forge/23.1.2 OpenMPI/4.1.6-GCC-12.2.0-CUDA-12.4.0

| ml show Forge

| cp -r /apps/all/Forge/23.1.2/examples ~/forge_examples

| cd ~/forge_examples

| make

| srun -n 16 ./wave_c 10

| mkdir perf_reports && cd perf_reports

| perf-report srun -n 16 ../wave_c 10

| firefox wave_c_16p_1n_YYYY-MM-DD_hh-mm.html & # on login node
| OMP_NUM_THREADS=8 perf-report srun -n 2 -c 8 ../wave_openmp 10

| firefox wave_openmp_2p_1n_8t_YYYY-MM-DD_hh-mm.html &

ARM PERFORMANCE REPORTS - EXAMPLE

§ Low overhead sampling profiler for localisation of bottlenecks
§ No recompilation required, only debugging symbols are useful (-g)
1. Metrics view (CPU, MPI, I/O, memory, vectorization)
2. Source code viewer
3. Selected lines view
4. Output, files, callpaths
5. Sparkline charts

| map

| map srun -n <#procs> <app> [args]
| map --profile srun -n <#procs> …
| map <profile.map>

| perf-report <profile.map>

ARM MAP

§ All charts are timelines
§ Horizontal axis time

§ Vertical axis are processes
§ Useful code is green
§ MPI is blue
§ breakout recalculated
when zooming
§ Multiple presets available

§ CPU
§ MPI
§ I/O
§ memory
§ …

ARM MAP

| ml Forge/23.1.2 OpenMPI/4.1.6-GCC-
12.2.0-CUDA-12.4.0

| mkdir ~/forge_examples/map && cd
~/forge_examples/map

| OMP_NUM_THREADS=8 map srun -n 2 -c 8
../wave_openmp 10

§ Optionally limit duration
§ Optionally adapt metrics
§ Click Run
§ Use the User guide!

ARM MAP - EXAMPLE

• A large section of blue means all the processes in MPI calls - try to
reduce these. Triangular shape indicates load imbalance.

• A large section of dark green means all the processes in single-
threaded computations - try to avoid.

• A large sections of light green - OpenMP regions being effectively
used across all processes simultaneously.

ARM MAP - EXAMPLE

Scalable system-wide performance analysis tool
§ Low-overhead multi-node, multi-GPU profiling
§ Visualize millions of events on a very fast GUI timeline
§ Assess on timeline to narrow down frames/areas of the app to focus
§ Locate optimization opportunities, CPU/GPU bottlenecks
§ or gaps of unused CPU and GPU time - idle
§ Balance your workload across multiple CPUs and GPUs
§ Expert system GPU utilization analysis
§ Detailed information, documentation, free download

https://developer.nvidia.com/nsight-systems

NVIDIA NSIGHT SYSTEMS

https://developer.nvidia.com/nsight-systems

Multi-level information
§ CPU cores utilization
§ MPI calls
§ OpenMP, Pthreas
§ OS runtime calls
§ NVTX
§ CUDA API calls
§ HtD / DtH data transfers
§ CUDA kernels / streams
§ OpenACC
§ CUDA libraries (cuBLAS, …), GPU HW metrics, UCX, NIC, …

NVIDIA NSIGHT SYSTEMS

NVIDIA NSIGHT SYSTEMS

GUI profiling and analysis
| ml CUDA/12.4.0 Qt5

| nsys-ui # On the allocated GPU compute node
§ File -> New Project
§ Select target for profiling… -> acnXX.karolina.it4i.cz (allocated GPU node)
§ Enter binary (absolute path with arguments if necessary)
§ Select tracing modules (CPU, OS, CUDA, GPU, NVTX,…)
§ Start

Cmd line profiling + GUI analysis
| nsys profile -t cuda,osrt --stats=true --gpu-metrics-device=0
-o profile_name ./program

| nsys-ui # On login node
§ File -> Open -> Select profile_name.nsys-rep

PROFILING WITH NSIGHT SYSTEMS

| git clone https://code.it4i.cz/training/intro2hpc.git

| ml CUDA/12.4.0

| cd hpcintro24/intro2hpc/5_gpu_accelerators/handson

| vim vector_add.solution.cu # int count = 123456789;

| nvcc -g -02 -gencode arch=compute_80,code=sm_80
vector_add.solution.cu -o vector_add

| ./vector_add

§ Perform profiling of vector_add example:
| nsys profile -t cuda,osrt --stats=true --gpu-metrics-
device=0 -o vector_add ./vector_add

§ An extra CUDA examples:
| git clone https://github.com/NVIDIA/cuda-samples.git

NVIDIA NSIGHT SYSTEMS - EXAMPLE

Barbora sm_70
Karolina sm_80

https://github.com/NVIDIA/cuda-samples.git

§ An EuroHPC Centre of Excellence (CoE)
§ On Performance Optimisation and Productivity
§ Promoting best practices in parallel programming

§ Providing FREE Services for EU academic AND industrial codes
in all domains!

§ Performance Assessment: initial analysis to identify performance issues
and recommend approaches to address them

§ Proof-of-concept: explore the potential benefit of proposed
optimisations by applying them to selected regions of the applications

§ Correctness-check: evaluate the correctness of hybrid MPI + OpenMP
applications

§ Energy-efficiency study: investigate improvements of energy
consumption or efficiency

§ Advisory study: ongoing consultancy for customers that choose to
implement proposed optimisations on their own

POP COE

www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

VI-HPS – Association of institutions developing tools and providing training
§ Overview of the tools with a description: https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf

Nvidia tools for GPUs: Nsight Systems and Nsight Compute
Intel performance tools: VTune and Advisor
Database of code patterns and best practices developed in POP: co-design
Docs + further reading:

§ https://docs.linaroforge.com/23.1.2/html/forge/performance_reports/index.html
§ https://docs.linaroforge.com/23.1.2/html/forge/map/index.html
§ https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html

USEFUL LINKS

https://www.vi-hps.org/
https://www.vi-hps.org/cms/upload/material/general/ToolsGuide.pdf
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://co-design.pop-coe.eu/
https://docs.linaroforge.com/23.1.2/html/forge/performance_reports/index.html
https://docs.linaroforge.com/23.1.2/html/forge/map/index.html
https://software.intel.com/content/www/us/en/develop/articles/intel-advisor-roofline.html

Radim Vavřík
radim.vavrik@vsb.cz

IT4Innovations National Supercomputing Center
VSB – Technical University of Ostrava
Studentská 6231/1B
708 00 Ostrava-Poruba, Czech Republic
www.it4i.cz

http://www.it4i.cz/

ANALYSIS WITH NSIGHT SYSTEMS
Only small portion of application accelerated (for real-world apps)

GPU idle/low utilization of detailed zoom (because of Pthread creation)

ANALYSIS WITH NSIGHT SYSTEMS

Fusion opportunities: CPU launch cost + small GPU work size -> GPU idle

ANALYSIS WITH NSIGHT SYSTEMS

cudaMemcpyAsync behaving synchronously – DtH pageable memory ->
Mitigate with pinned memory

ANALYSIS WITH NSIGHT SYSTEMS

GPU idle caused by stream synchronization

ANALYSIS WITH NSIGHT SYSTEMS

