Newer
Older
#include "calcul.h"
#include <ctime>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <algorithm>
double calcul::distancesMany_dtw(vtr2<double> const &points)
{
double sum = 0;
for (size_t i = 0; i < points.size(); i++)
{
for (size_t j = i + 1; j < points.size(); j++)
{
sum += distance_dtw(points[i], points[j]);
double calcul::distance_dtw(vtr<double> const &u, vtr<double> const &v)
{
double sum = 0;
for (size_t i = 0; i < u.size(); i++)
{
sum += pow(u[i] - v[i], 2);
//sum += abs(u[i] - v[i]);
//su = u[i] - v[i];
//sum += (su + (su >> 31)) ^ (su >> 31);
//su = u[i] - v[i];
//sum += (su > 0) ? su : checked(-su);
}
//return (int)Math.Sqrt(sum);
return sum;
}
inline double calcul::fastPow(const double a, const double b)
{
union {
double d;
int x[2];
} u = { a };
u.x[1] = (int)(b * (u.x[1] - 1072632447) + 1072632447);
u.x[0] = 0;
return static_cast<int>(u.d);
}
double calcul::distance_lcss(vtr<double> const &u, vtr<double> const &v, int idx)
{
if (u.size() == 0 || v.size() == 0)
return 0;
double sum = abs(u[idx] - v[idx]);
return sum;
}
double calcul::scorePair_dtw_s2(double ratioRaw, size_t pathLength)
return sqrt(ratioRaw) / static_cast<double>(pathLength);
double calcul::scorePair_dtw_s3(size_t lenA, size_t lenB, size_t lenPath)
return 1 - (lenA / static_cast<double>(lenPath) + lenB / static_cast<double>(lenPath)) / 2;
}
double calcul::scorePair_dtw_s4(double ratioRaw, double ratioRawMax)
{
return /*1 -*/ (sqrt(ratioRaw) / sqrt(ratioRawMax));
}
double calcul::scorePair_dtw_s5(double ratioRaw, double ratioRawMax, double coeficient)
{
return (/*1 -*/ sqrt(ratioRaw) / sqrt(ratioRawMax)) * coeficient;
double calcul::scorePair_dtw_max(vtr2<double> const &A, vtr2<double> const &B, coords start, coords end)
double min = numeric_limits<double>::max();
double max = numeric_limits<double>::min();
size_t sA = 0;
size_t eA = (int)A.size();
size_t sB = 0;
size_t eB = (int)B.size();
if (A.size() < B.size()) {
sB = start.col;
eB = end.col;
}
if (B.size() < A.size()) {
sA = start.row;
eA = end.row;
}
for (size_t i = sA; i < eA; i++)
for (size_t j = 0; j < A[i].size(); j++)
{
sum += A[i][j];
}
if (min > sum)
min = sum;
if (max < sum) //added
max = sum;
{
double sum = 0;
for (size_t j = 0; j < B[i].size(); j++)
{
sum += B[i][j];
}
if (min > sum) //added
min = sum;
if (max < sum)
max = sum;
return pow(max - min, 2) * std::max(eA - sA, eB - sB);
}
double calcul::coeficient_auto(size_t lenA, size_t lenB)
{
if (lenA < lenB)
return (double)lenA / lenB;
else if (lenB < lenA)
return (double)lenB / lenA;
else
return 1;
}
double calcul::coeficient(size_t dividend, size_t divisor)
{
return dividend / (double)divisor;
double calcul::scorePair_lcss_s1(double ratioRaw, size_t pathLength)
return 1 - ratioRaw / static_cast<double>(pathLength);
double calcul::scorePair_lcss_s2(double ratioRaw, size_t maxABLen)
{
return 1 - ratioRaw / maxABLen;
}
double calcul::scorePair_lcss_s3(double ratioRaw)
{
return ratioRaw;
}
//double calcul::getPairRatio_lcss(int lenIN, int rawscore)
//{
// return rawscore / (lenIN / 2.0);
//}
double calcul::scoreMulti_dtw(vtr3<double> const &input, vtr3<double> const &output)
size_t sumA = 0;
for (auto s : input)
sumA += s.size();
size_t sumB = 0;
for (auto s : output)
sumB += s.size();
return sumA / static_cast<double>(sumB);
//double calcul::GetMRRratio(vtr2<int> const &orderMatrix, map<int, int> &clusters)
//{
// double mapRatio = 0;
// for (size_t i = 0; i < orderMatrix.size(); i++) //query (ref sequence) //column
// {
// double pr = 0;
// double coverIdx = 0;
// for (size_t j = 1; j < orderMatrix.size(); j++) // row / rank
// {
// if (clusters[orderMatrix[j][i]] == clusters[i + 1])
// //pr += 1.0 / j;
// pr += ++coverIdx / j;
// }
// mapRatio += pr / coverIdx;
// cout << setw(5) << pr / coverIdx << " ";
// }
// cout << endl;
//
// return (orderMatrix.size() - 1);
//}
double calcul::scoreAverageRank(int ref, vtr<int> const &queryAnswer, clusters const &clusters)
const int clusterId = clusters.strIDcID.at(ref).idCluster;
const int clusterSize = clusters.size.at(clusterId);
int counter = 0;
double averageRank = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
if (clusters.strIDcID.at(queryAnswer[i]).idCluster == clusterId)
averageRank += (int)i+1;
counter++;
if (counter == clusterSize - 1)
break;
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
averageRank = averageRank / (clusterSize - 1);
return averageRank;
}
double calcul::scoreAveragePrecision(int ref, vtr<int> const &queryAnswer, clusters const &clusters)
{
double pr = 0;
const int clusterId = clusters.strIDcID.at(ref).idCluster;
const int clusterSize = clusters.size.at(clusterId);
int counter = 0;
for (size_t i = 0; i < queryAnswer.size(); i++) //query (ref sequence) //column
{
if (clusters.strIDcID.at(queryAnswer[i]).idCluster == clusterId)
{
pr += ++counter / (double)(i + 1);
if (counter == clusterSize - 1)
break;
}
}
double ap = pr / (clusterSize - 1);
return ap;
}
double calcul::scoreMap(vtr<double> const &averagePrecisions)
{
//vtr<double> ratios;
//double mapRatio = 0;
//for (size_t i = 0; i < orderMatrix.size(); i++) //query (ref sequence) //column
//{
// double pr = 0;
// double coverIdx = 0;
// for (size_t j = 1; j < orderMatrix.size(); j++) // row / rank
// {
// if (clusters.strIDcID.at(orderMatrix[j][i]).idCluster == clusters.strIDcID.at((int)i + 1).idCluster)
// pr += ++coverIdx / j;
// }
// double tmpPrecision = 0;
// if (pr == 0 && coverIdx == 0)
// tmpPrecision = 0;
// else
// tmpPrecision += pr / coverIdx;
// mapRatio += tmpPrecision;
//
// ratios.push_back(tmpPrecision);
//}
//ratios.push_back(mapRatio / (orderMatrix.size()));
return accumulate(averagePrecisions.begin(), averagePrecisions.end(), 0.0) / averagePrecisions.size();
}
double calcul::scorePrecision(int ref, vtr<int> const &top, clusters const &clusters)
{
int cluster = clusters.strIDcID.at(ref).idCluster;
int refClusterSize = clusters.size.at(cluster);
int truePositives = 0;
int falsePositives = 0;
//int range = min(topThreshold, (int)top.size());
for (int i = 0; i < refClusterSize - 1; i++)
{
if (clusters.strIDcID.at(top[i]).idCluster == cluster)
truePositives++;
else
falsePositives++;
}
double precision = (double)truePositives / (truePositives + falsePositives);
return precision;
}
double calcul::scoreRecall(int ref, vtr<int> const &top, clusters const &clusters)
{
int cluster = clusters.strIDcID.at(ref).idCluster;
int refClusterSize = clusters.size.at(cluster);
int truePositives = 0;
for (int i = 0; i < refClusterSize - 1; i++)
{
if (clusters.strIDcID.at(top[i]).idCluster == cluster)
truePositives++;
}
double recall = (double)truePositives / (refClusterSize - 1);
return recall;
}
bool calcul::isInWindow(int row, int col, float ratio, int percent)
{
if (ratio < 1)
{
float r = 1 / ratio;
float tmp = ceil(col * r - row);
if (tmp >= -(percent - 1) * r && tmp < (r * percent))
return true;
}
else
{
float tmp = ceil(row * ratio - col);
if (tmp >= -(percent - 1) * ratio && tmp < (ratio * percent))
return true;
}
return false;
}
double calcul::mean_ts(vtr2<double> const &ts)
{
double mean = 0;
for (size_t i = 0; i < ts.size(); i++) //lenght of sequence
{
mean += ts[i][0];
}
//double calcul::std_ts(tseries const &ts)
//{
//
//}
//
//double GetMultiRatiolcss(Vtr<string, 3> input, vector<int> raws)
//{
// size_t sumA = 0;
// for (auto s: input)
// sumA += s.size();
//
// int sumB = 0;
// for (auto s: raws)
// sumB += s;
//
// return sumA / (double)sumB;
//}
//double calcul::GetLowerBoundKim(vtr2<double> const &, vtr2<double> const &)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//{
// double output;
//
// return output;
//}
//float calcul::GetManyDistances(Vtr<string, 2> const &S)
//{
// float sum = 0;
// size_t a = S.size();
//
// for (int i = 0; i < a; i++)
// {
// for (int j = i + 1; j < a; j++)
// {
// sum += GetDistance(S[i], S[j]);
// }
// }
//
// return sum;
//}
//float calcul::GetDistance(string* const &u, string* const &v)
//{
// int uL = sizeof(u) / sizeof(u);
// int vL = sizeof(v) / sizeof(v);
// double sum = 0;
// int shorterDim = (uL < vL) ? uL : vL;
//
// //if (u == null || v == null)
// // return 0;
// //else
// for (int i = 0; i < shorterDim; i++)
// {
// //sum += SubstitutionMatrixManager.GetDistance(u[i].ToString() + v[i].ToString());
// }
//
// return (float)sum;
//}