Newer
Older
///Checks if path exists.
///@return TRUE if path exists
bool help::isPath(std::string path)
{
std::experimental::filesystem::path p = path;
return std::experimental::filesystem::exists(p);
}
///Checks if path belongs to folder.
///@return TRUE if path is folder
bool help::isFolder(std::string path)
{
std::experimental::filesystem::path p = path;
return std::experimental::filesystem::is_directory(p);
}
///Checks if path belongs to file.
///@return TRUE if path is file
bool help::isFile(std::string path)
{
std::experimental::filesystem::path p = path;
if (std::experimental::filesystem::is_directory(p))
return false;
return true;
}
///Strips file name from path.
///@return file path without file name
string help::stripFileNameFromPath(std::string path)
{
return path.substr(0, path.find_last_of("\\/"));
///Trims white space form the left side of the string.
///@param[in] s string
///@param[in] white whitespace characters.
void help::trimLeft(string &s, string const &white)
const size_t startpos = s.find_first_not_of(white);
s.erase(s.begin(), s.begin() + startpos);
///Trims white space form the right side of the string.
///@param[in] s string
///@param[in] white whitespace character
void help::trimRight(string &s, string const &delimiters)
{
const size_t endpos = s.find_last_not_of(delimiters);
s.erase(s.begin() + endpos + 1, s.end());
///Trims white spaces from both sides of the string.
///@param[in] s string
///@param[in] white string containing whitespace characters
void help::trim(string &s, string const &white)
trimLeft(s, white);
trimRight(s, white);
///Splits string by selected delimiters.
///@param[in] s string
///@param[in] delimiters array containing delimiters
vector<string> help::split(string const& s, char const *delimiters)
vector<string> output;
bitset<255> delims;
while (*delimiters)
unsigned char code = *delimiters++;
delims[code] = true;
}
string::const_iterator beg;
bool in_token = false;
for (string::const_iterator it = s.begin(), end = s.end(); it != end; ++it)
{
if (delims[*it])
{
if (in_token)
{
Martin Rusek
committed
//output.emplace_back(beg, it);
output.emplace_back(vector<string>::value_type(beg, it));
in_token = false;
}
}
else if (!in_token)
{
beg = it;
in_token = true;
}
}
Martin Rusek
committed
output.emplace_back(vector<string>::value_type(beg, s.end()));
}
///Checks if string contains BOM characters and if yes then removes them (please use encoding without BOM or UTF-8).
///@param[in] s string
void help::correctBomLine(string &s)
if (s.compare(0, 3, "\xEF\xBB\xBF") == 0) // Is the file marked as UTF-8?
s.erase(0, 3); // Now get rid of the BOM.
}
else if (s.compare(0, 2, "\xFE\xFF") == 0) // Is the file marked as UTF-16 BE?
{
s.erase(0, 2); // Now get rid of the BOM.
}
else if (s.compare(0, 2, "\xFF\xFE") == 0) // Is the file marked as UTF-16 LE
{
s.erase(0, 2); // Now get rid of the BOM.
}
else if (s.compare(0, 4, "\x00\x00\xFE\xFF") == 0) // Is the file marked as UTF-32 BE?
{
s.erase(0, 4); // Now get rid of the BOM.
}
else if (s.compare(0, 4, "\xFF\xFE\x00\x00") == 0) // Is the file marked as UTF-32 LE?
{
s.erase(0, 4); // Now get rid of the BOM.
///@param[in] min minimal generated number
///@param[in] max maximal generated number
///@return random real number
double help::randomReal(int min, int max)
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<double> dis(min, max);
return dis(gen);
}
///Generates random integer number.
///@param[in] min minimal generated number
///@param[in] max maximal generated number
///@return random int number
int help::randomInt(int min, int max)
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dis(min, max);
return dis(gen);
}
///@param[in] len time series length
///@param[in] dims number of dimensions
///@param[in] min minimal value of the time series element
///@param[in] max maximal value of the time series element
///@return random time series
vtr2<double> help::randomSeries(int len, int dims, int min, int max)
vtr2<double> ts(len);
for (size_t i = 0; i < (size_t)len; i++)
for (size_t j = 0; j < (size_t)dims; j++)
point[j] = help::randomReal(min, max);
ts[i] = (point);
}
}
return ts;
}
///@param[in] size length of the vector
///@return 1d vector of specified size
vtr<T> help::vtrInit(size_t size)
return vtr<T>(size);
}
///@param[in] size1 length of the vector
///@param[in] size2 length of the sub vectors
///@return 2d vector of specified sizes
vtr2<T> help::vtrInit(size_t size1, size_t size2)
{
vtr2<T> tmp(size1);
for (size_t i = 0; i < size1; i++)
return tmp;
}
///Initialize 2d vector by custom value.
///@param[in] m 2d matrix to be initialized
///@param[in] size1 length of the vector
///@param[in] size2 length of the sub vectors
///@param[in] value initialization value
///@return 2d vector of specified sizes and value
void help::vtrInit(vtr2<T> &m, size_t size1, size_t size2, T value)
{
m.reserve(size1);
for (size_t i = 0; i < size1; i++)
m[i] = vtr<T>(size2);
std::fill(m[i].begin(), m[i].end(), value);
template void help::vtrInit<float>(vtr2<float> &m, size_t size1, size_t size2, float value);
///@param[in] size1 length of the vector
///@param[in] size2 length of the sub vectors
///@param[in] size3 length of the sub sub vectors
///@return 3d vector of specified sizes
vtr3<T> help::vtrInit(size_t size1, size_t size2, size_t size3)
{
vtr3<T> tmp(size1);
for (size_t i = 0; i < size1; i++)
tmp[i] = help::vtrInit<T>(size2, size3);
template vtr3<int> help::vtrInit<int>(size_t size1, size_t size2, size_t size3);
template vtr3<double> help::vtrInit<double>(size_t size1, size_t size2, size_t size3);
///Initializes two dimensions of 3d vector.
///@param[in] size1 length of the vector
///@param[in] size2 length of the sub vectors
///@return 3d vector with initialized first 2 dimensions
vtr3<T> help::vtrInitPartial(size_t size1, size_t size2)
for (size_t i = 0; i < size1; i++)
template vtr3<double> help::vtrInitPartial<double>(size_t size1, size_t size2);
///Separates time series dimensions into separate time series.
///@param[in] input input time series
///@return set of separated time series
vtr3<double> help::separateSequences(vtr2<double> const &input)
vtr3<double> output;
const size_t dims = input[0].size();
for (size_t i = 0; i < dims; i++)
{
vtr2<double> sequence;
sequence.reserve(input.size());
for (size_t j = 0; j < input.size(); j++)
{
vector<double> el(1);
el[0] = input[j][i];
Martin Rusek
committed
sequence.emplace_back(el);
Martin Rusek
committed
output.emplace_back(sequence);
///Converts array pointer to vector.
///@param[in] series time series in array
///@param[in] len time series length
///@return time series
vtr2<double> help::convertArrd(double* const &series, unsigned len)
vtr2<double> out(len);
for (size_t i = 0; i < len; i++)
{
vtr<double> point(1);
point[0] = series[i];
///Converts 2d array pointer to vector.
///@param[in] series time series in array
///@param[in] len time series length
///@param[in] dims number of dimensions
///@return n dimensional time series
vtr2<double> help::convertArr2d(double* const &series, unsigned len, unsigned dims)
vtr2<double> out(len);
for (size_t i = 0; i < len; i++)
{
vtr<double> point(&series[0] + (i * dims), &series[0] + ((i + 1) * dims));
out[i] = point;
}
///Sorts vector and secondary vector follows sorting of the first vector
///@param[in] lead sorted vector
///@param[in] follow vector which follows sorting of the first vector
///@param[in] reversed if true: sorting direction will be reversed
void help::sortFollow(vtr<double> &lead, vtr<int> &follow, bool reversed)
{
for (size_t i = 0; i < lead.size() - 1; i++)
{
for (size_t j = 0; j < follow.size() - 1; j++)
{
if (reversed ? lead[j + 1] > lead[j] : lead[j + 1] < lead[j])
{
double tmp = lead[j];
lead[j] = lead[j + 1];
lead[j + 1] = tmp;
int fTmp = follow[j];
follow[j] = follow[j + 1];
follow[j + 1] = fTmp;
}
}
}
}
///Alters 3d matrix from [i][j][k] to [k][i][j] for easier manipulation with other dimension in some situations (used in operation 2).
///@param[in] matrix 3d vector for dimension reordering
///@return altered 3d matrix
template<typename T>
vtr3<T> help::alterStructure(vtr3<T> const &matrix)
{
vtr3<T> m = help::vtrInit<T>(matrix[0][0].size(), matrix.size(), matrix[0].size());
for (size_t i = 0; i < matrix.size(); i++)
{
for (size_t j = 0; j < matrix[0].size(); j++)
{
for (size_t k = 0; k < matrix[0][0].size(); k++)
{
m[k][i][j] = matrix[i][j][k];
}
}
return m;
}
template vtr3<double> help::alterStructure(vtr3<double> const &matrix);
template vtr3<int> help::alterStructure(vtr3<int> const &matrix);