Skip to content
Snippets Groups Projects
kdtree.py 13.5 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michel Anders's avatar
    Michel Anders committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  SCA Tree Generator, a Blender addon
    #  (c) 2013 Michel J. Anders (varkenvarken)
    #
    #  This module is: kdtree.py
    #  a pure python implementation of a kdtree
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    from copy import copy, deepcopy
    
    class Hyperrectangle:
    	'''an axis aligned bounding box of arbitrary dimension'''
    
    	def __init__(self, dim, min, max):
    		self.dim = dim
    		self.min = deepcopy(min) # min and max should never point to the same instance
    		self.max = deepcopy(max)
    
    	def extend(self,pos):
    		'''adapt the hyperectangle if necessary so it will contain pos.'''
    		for i in range(self.dim):
    			if pos[i]<self.min[i]: self.min[i]=pos[i]
    			elif pos[i]>self.max[i]: self.max[i]=pos[i]
    		
    	def distance_squared(self,pos):
    		'''return the distance squared to the nearest edge, or zero if pos lies within the hyperrectangle'''
    		result=0.0
    		for i in range(self.dim):
    			if pos[i]<self.min[i]:
    				result+=(pos[i ]-self.min[i ])**2
    			elif pos[i]>self.max[i]:
    				result+=(pos[i ]-self.max[i ])**2
    		return result
    
    	def __str__(self):
    		return "[(%d) %s:%s]"%(int(self.dim),str(self.min),str(self.max))
    
    class Node:
    	"""implements a node in a kd-tree"""
    	
    	def __init__(self, pos, data=None):
    		self.pos = deepcopy(pos)
    		self.data = data
    		self.left = None
    		self.right = None
    		self.dim=len(pos)
    		self.dir = 0
    		self.count=0
    		self.level=0
    		self.rect=Hyperrectangle(self.dim,pos,pos)
    
    	def addleft(self, node):
    		self.left = node
    		self.rect.extend(node.pos)
    		node.level=self.level+1
    		node.dir=(self.dir+1)%self.dim
    		
    	def addright(self, node):
    		self.right = node
    		self.rect.extend(node.pos)
    		node.level=self.level+1
    		node.dir=(self.dir+1)%self.dim
    		
    	def distance_squared(self, pos):
    		d=self.pos-pos
    		return d.dot(d)
    
    	def _str(self,level):
    		s = '  '*level+str(self.dir)+' '+str(self.pos)+' '+str(self.rect)+'\n'
    		return s + ('' if self.left is None else 'L:'+self.left._str(level+1)) + ('' if self.right is None else 'R:'+self.right._str(level+1))
    
    	def __str__(self):
    		return self._str(0)
    
    class Tree:
    	"""implements a kd-tree"""
    	
    	def __init__(self, dim):
    		self.root = None
    		self.nnearest=0 # number of nearest neighbor queries
    		self.count=0  # number of nodes visited
    		self.level=0 # deepest node level 
    	
    	def resetcounters(self):
    		self.nnearest=0 # number of nearest neighbor queries
    		self.count=0  # number of nodes visited
    		
    	def _insert(self, node, pos, data):
    		if pos[node.dir] < node.pos[node.dir]:
    			if node.left is None:
    				node.addleft(Node(pos, data))
    				return node.left
    			else:
    				node.rect.extend(pos)
    				return self._insert(node.left, pos, data)
    		else:
    			if node.right is None:
    				node.addright(Node(pos, data))
    				return node.right
    			else:
    				node.rect.extend(pos)
    				return self._insert(node.right, pos, data)
    
    	def insert(self, pos, data):
    		if self.root is None:
    			self.root = Node(pos,data)
    			self.level = self.root.level
    			return self.root
    		else:
    			node=self._insert(self.root, pos, data)
    			if node.level > self.level : self.level = node.level
    			return node
    
    	def _nearest(self, node, pos, checkempty, level=0):
    		
    		self.count+=1
    		
    		dir = node.dir
    		d = pos[dir] - node.pos[dir]
    		
    		result = node
    		distsq = None
    		if checkempty and (node.data is None):
    			result = None
    		else:
    			distsq = node.distance_squared(pos)
    
    		if d <= 0:
    			neartree = node.left
    			fartree = node.right
    		else:
    			neartree = node.right
    			fartree = node.left
    
    		if neartree is not None:
    			nearnode, neardistsq = self._nearest(neartree,pos,checkempty,level+1)
    			if (result is None) or (neardistsq is not None and neardistsq < distsq):
    				result, distsq = nearnode, neardistsq
    		
    		if fartree is not None:
    			if (result is None) or (fartree.rect.distance_squared(pos) < distsq):
    				farnode, fardistsq = self._nearest(fartree,pos,checkempty,level+1)
    				if (result is None) or (fardistsq is not None and fardistsq < distsq):
    					result, distsq = farnode, fardistsq
    			
    		return result, distsq
    
    	def nearest(self, pos, checkempty=False):
    		self.nnearest+=1
    		if self.root is None:
    			return None, None
    		self.root.count=0
    		node, distsq = self._nearest(self.root, pos, checkempty)
    		self.count+=self.root.count
    		return node,distsq
    		
    	def __str__(self):
    		return str(self.root)
    
    if __name__ == "__main__":
    
    	class vector(list):
    
    		def __init__(self, *args):
    			super().__init__([float(a) for a in args])
    			
    		def __str__(self):
    		  return "<%.1f %.1f %.1f>"%tuple(self[0:3])
    
    		def __sub__(self,other):
    		  return vector(self[0]-other[0], self[1]-other[1], self[2]-other[2])
    
    		def __add__(self,other):
    		  return vector(self[0]+other[0], self[1]+other[1], self[2]+other[2])
    
    		def __mul__(self,other):
    		  s=sum(self[i]*other[i] for i in (0,1,2))
    		  #print("ds",s,self,other,[self[i]*other[i] for i in (0,1,2)])
    		  return s
    
    		def dot(self,other):
    		  return sum(self[k]*other[k] for k in (0,1,2))
    
    	from random import random,seed, shuffle
    	from time import time
    	import unittest
    
    	class TestVector(unittest.TestCase):
    		def test_ops(self):
    			v1=vector(1,0,0)
    			v2=vector(2,1,0)
    			self.assertAlmostEqual(v1*v2,2.0)
    			self.assertAlmostEqual(v1.dot(v2),2.0)
    			v3=vector(-1,-1,0)
    			self.assertListEqual(v1-v2,v3)
    			v4=vector(3,1,0)
    			self.assertListEqual(v1+v2,v4)
    			
    	class TestHyperRectangle(unittest.TestCase):
    
    		def setUp(self):
    			self.left=vector(0,0,0)
    			self.right=vector(1,1,1)
    			self.left1=vector(-1,0,0)
    			self.left2=vector(0,-1,0)
    			self.left3=vector(0,0,-1)
    			self.right1=vector(2,0,0)
    			self.right2=vector(0,2,0)
    			self.right3=vector(0,0,2)
    
    		def test_constructor(self):
    			hr=Hyperrectangle(3,self.left,self.right)
    			self.assertListEqual(hr.min,self.left)
    			self.assertListEqual(hr.max,self.right)
    
    		def test_extend(self):
    			hr=Hyperrectangle(3,self.left,self.right)
    			hr.extend(self.left1)
    			self.assertListEqual(hr.min,[-1,0,0])
    			self.assertListEqual(hr.max,[1,1,1])
    			hr.extend(self.left2)
    			self.assertListEqual(hr.min,[-1,-1,0])
    			self.assertListEqual(hr.max,[1,1,1])
    			hr.extend(self.left3)
    			self.assertListEqual(hr.min,[-1,-1,-1])
    			self.assertListEqual(hr.max,[1,1,1])
    			hr.extend(self.right1)
    			self.assertListEqual(hr.min,[-1,-1,-1])
    			self.assertListEqual(hr.max,[2,1,1])
    			hr.extend(self.right2)
    			self.assertListEqual(hr.min,[-1,-1,-1])
    			self.assertListEqual(hr.max,[2,2,1])
    			hr.extend(self.right3)
    			self.assertListEqual(hr.min,[-1,-1,-1])
    			self.assertListEqual(hr.max,[2,2,2])
    
    		def test_distance_squared(self):
    			hr=Hyperrectangle(3,self.left,self.right)
    			self.assertAlmostEqual(hr.distance_squared(vector(0.5,0.5,0.5)),0.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(0,0,0)),0.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(-1,0,0)),1.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(2,0,0)),1.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(2,2,2)),3.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(0.5,2,2)),2.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(0.5,-1,-1)),2.0)
    			self.assertAlmostEqual(hr.distance_squared(vector(0.5,0.5,2)),1.0)
    
    	class TestTree(unittest.TestCase):
    
    		def setUp(self):
    			seed(42)
    			r=(-1,0,1)
    			self.points=[vector(k,l,m) for k in r for l in r for m in r]
    			d=(-0.1,0,0.1)
    			self.d=[vector(k,l,m) for k in d for l in d for m in d if (k*l*m) != 0]
    			self.repeats=4
    			
    		def test_simple(self):
    			tree=Tree(3)
    			p1=vector(0,0,0)
    			p2=vector(-1,0,0)
    			p3=vector(-1,1,0)
    			d=vector(0.1,0.1,0.1)
    			
    			tree.insert(p1,p1)
    			node, distsq = tree.nearest(p1)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p1+d)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.03)
    			
    			tree.insert(p2,p2)
    			node, distsq = tree.nearest(p1)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p1+d)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.03)
    			
    			node, distsq = tree.nearest(p2)
    			self.assertListEqual(node.pos,p2)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p2+d)
    			self.assertListEqual(node.pos,p2)
    			self.assertAlmostEqual(distsq,0.03)
    			
    			tree.insert(p3,p3)
    			node, distsq = tree.nearest(p1)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p1+d)
    			self.assertListEqual(node.pos,p1)
    			self.assertAlmostEqual(distsq,0.03)
    			
    			node, distsq = tree.nearest(p2)
    			self.assertListEqual(node.pos,p2)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p2+d)
    			self.assertListEqual(node.pos,p2)
    			self.assertAlmostEqual(distsq,0.03)
    			
    			node, distsq = tree.nearest(p3)
    			self.assertListEqual(node.pos,p3)
    			self.assertAlmostEqual(distsq,0.0)
    			node, distsq = tree.nearest(p3+d)
    			self.assertListEqual(node.pos,p3)
    			self.assertAlmostEqual(distsq,0.03)
    			
    		def test_nearest(self):
    			for n in range(self.repeats):
    				tree=Tree(3)
    				shuffle(self.points)
    				for p in self.points:
    					tree.insert(p,p) # data equal to position
    				
    				for p in self.points:
    					for d in self.d:
    						node, distsq = tree.nearest(p+d)
    						s="%s %s %s %s\n%s"%(str(p+d), str(p), str(d), str(node.pos),str(tree.root))
    						self.assertListEqual(node.pos,p,msg=s)
    						self.assertListEqual(node.data,p)
    						self.assertAlmostEqual(distsq,d.dot(d),msg=s)
    				
    				for p in self.points:
    					node, distsq = tree.nearest(p)
    					self.assertListEqual(node.pos,p)
    					self.assertListEqual(node.data,p)
    					self.assertAlmostEqual(distsq,0.0)
    				
    		def test_nearest_empty(self):
    			for n in range(self.repeats):
    				tree=Tree(3)
    				shuffle(self.points)
    				for p in self.points:
    					tree.insert(p,p) # data equal to position
    				
    				for p in self.points:
    					for d in self.d:
    						node, distsq = tree.nearest(p+d)
    						s="%s %s %s %s\n%s"%(str(p+d), str(p), str(d), str(node.pos),str(tree.root))
    						self.assertListEqual(node.pos,p,msg=s)
    						self.assertListEqual(node.data,p)
    						self.assertAlmostEqual(distsq,d.dot(d),msg=s)
    				
    				for p in self.points:
    					node, distsq = tree.nearest(p)
    					self.assertListEqual(node.pos,p)
    					self.assertListEqual(node.data,p)
    					self.assertAlmostEqual(distsq,0.0)
    
    				# zeroing out a node should not affect retrieving any other node ...
    				node , _ = tree.nearest(self.points[-1]) # last point
    				node.data=None
    				for p in self.points[:-1]: # all but last
    					for d in self.d:
    						node, distsq = tree.nearest(p+d)
    						s="%s %s %s %s\n%s"%(str(p+d), str(p), str(d), str(node.pos),str(tree.root))
    						self.assertListEqual(node.pos,p,msg=s)
    						self.assertListEqual(node.data,p)
    						self.assertAlmostEqual(distsq,d.dot(d),msg=s)
    				
    				for p in self.points[:-1]: # all but last
    					node, distsq = tree.nearest(p)
    					self.assertListEqual(node.pos,p)
    					self.assertListEqual(node.data,p)
    					self.assertAlmostEqual(distsq,0.0)
    				
    				# ... also, we should be able to retrieve the node anyway ...
    				node, distsq = tree.nearest(self.points[-1])
    				self.assertListEqual(node.pos,self.points[-1])
    				self.assertIsNone(node.data)
    				self.assertAlmostEqual(distsq,0.0)
    				
    				# ... even for points nearby ...
    				for d in self.d:
    					node, distsq = tree.nearest(self.points[-1]+d)
    					self.assertEqual(node.pos,self.points[-1])
    					self.assertIsNone(node.data)
    					self.assertAlmostEqual(distsq,d.dot(d))
    				
    				# ... unless we set checkempty
    				node, distsq = tree.nearest(self.points[-1],checkempty=True)
    				self.assertNotEqual(node.pos,self.points[-1])
    				self.assertIsNotNone(node.data)
    				self.assertAlmostEqual(distsq,1.0) # on a perpendicular grid nearest neighbor is at most 1 away
    				
    		def test_performance(self):
    			tree=Tree(3)
    			tsize=1000
    			qsize=1000
    			emptyq=3
    			
    			print("<performance test, may take several seconds>")
    			qpos=[vector(random(),random(),random()) for p in range(qsize)]
    			for p in range(tsize):
    				pos=vector(random(),random(),random())
    				tree.insert(pos,pos)
    			s=time()
    			for p in qpos:
    				node, distsq = tree.nearest(p)
    			e=time()-s
    			print("queries|tree size|tree height|empties|query load|query time") 
    			print("{0:7d}|{2:9d}|{1.level:11d}|      0|{3:10.2f}|{4:10.1f}".format(qsize,tree,tsize,float(tree.count)/qsize,e))
    			
    			tree.resetcounters()
    			empty=[]
    			for p in range(tsize*9):
    				pos=vector(random(),random(),random())
    				tree.insert(pos,pos)
    				if (p % emptyq ) == 1 :
    					empty.append(pos)
    			s=time()
    			for p in qpos:
    				node, distsq = tree.nearest(p)
    			e2=time()-s
    			print("{0:7d}|{2:9d}|{1.level:11d}|      0|{3:10.2f}|{4:10.1f}".format(qsize,tree,tsize*10,float(tree.count)/qsize,e2))
    			
    			self.assertLess(e2,3*e,msg="a 10x bigger tree shouldn't take more than 3x the time to query")
    
    			for p in empty:
    				node, distsq = tree.nearest(p)
    				node.data = None
    			tree.resetcounters()
    			s=time()
    			for p in qpos:
    				node, distsq = tree.nearest(p,checkempty=True)
    			e3=time()-s
    			print("{0:7d}|{2:9d}|{1.level:11d}|{5:7d}|{3:10.2f}|{4:10.1f}".format(qsize,tree,tsize*10,float(tree.count)/qsize,e3,tsize*10//emptyq))
    			
    	unittest.main()