Skip to content
Snippets Groups Projects
stringer.py 23.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • # Stairbuilder - Stringer generation
    #
    # Generates stringer mesh for stair generation.
    #   Stair Type (typ):
    #       - id1 = Freestanding staircase
    #       - id2 = Housed-open staircase
    #       - id3 = Box staircase
    #       - id4 = Circular staircase
    #   Stringer Type (typ_s):
    #       - sId1 = Classic
    #       - sId2 = I-Beam
    #       - sId3 = C-Beam
    # 
    # Paul "BrikBot" Marshall
    # Created: September 19, 2011
    
    # Last Modified: November 20, 2011
    
    # Homepage (blog): http://post.darkarsenic.com/
    #                       //blog.darkarsenic.com/
    #
    # Coded in IDLE, tested in Blender 2.59.
    # Search for "@todo" to quickly find sections that need work.
    #
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  The Blender Rock Creation tool is for rapid generation of mesh rocks in Blender.
    #  Copyright (C) 2011  Paul Marshall
    #
    #  This program is free software: you can redistribute it and/or modify
    #  it under the terms of the GNU General Public License as published by
    #  the Free Software Foundation, either version 3 of the License, or
    #  (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program.  If not, see <http://www.gnu.org/licenses/>.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    from math import atan, cos, tan
    from mathutils import Vector
    from mathutils.geometry import (intersect_line_plane,
                                    intersect_line_line)
    
    class Stringer:
    
        def  __init__(self,G,typ,typ_s,rise,run,w,h,nT,hT,wT,tT,tO,tw,tf,tp,g,nS=1,dis=False,notMulti=True):
    
            self.G = G #General
            self.typ = typ # Stair type
            self.typ_s = typ_s # Stringer type
            self.rise = rise #Stair rise
            self.run = run #Stair run
            if notMulti:
    
                self.w = w / 100 #stringer width
    
                self.w = (wT * (w / 100)) / nS
    
            self.nT = nT #number of treads
            self.hT = hT #tread height
            self.wT = wT #tread width
            self.tT = tT #tread toe
    
            self.tO = tO #Tread overhang
            self.tw = self.w * (tw / 100) #stringer web thickness
            self.tf = tf #stringer flange thickness
            self.tp = 1 - (tp / 100) #stringer flange taper
            self.g = g #does stringer intersect the ground?
    
            self.nS = nS #number of stringers
            self.dis = dis #Use distributed stringers
    
            # Default stringer object (classic / sId1):
            self.faces1=[[0,1,3,2],[1,5,3],[3,5,4],[6,7,9,8],[7,11,9],[9,11,10],
                         [0,2,8,6],[0,1,7,6],[1,5,11,7],[2,3,9,8],[3,4,10,9],[4,5,11,10]]
            # Box stair type stringer:
            self.faces2=[[0,1,7,6],[1,3,9,7],[3,4,10,9],[4,10,11,5],[5,11,8,2],
                         [2,8,6,0],[0,1,2],[1,2,5,3],[3,4,5],[6,7,8],[7,8,11,9],[9,10,11]]
            # I-beam stringer (I-Beam / sId2 / Taper < 100%):
            # @todo: faces are not complete nor are they layed out correctly.  Check verts also.
            self.faces3a=[[0,1,17,16],[1,2,18,17],[2,3,19,18],[3,4,20,19],[4,5,21,20],[5,6,22,21],
                          [6,7,23,22],[7,8,24,23],[8,9,25,24],[9,10,26,25],[10,11,27,26],
                          [11,12,28,27],[12,13,29,28],[13,14,30,29],[14,15,31,30],[15,0,16,31],
                          [0,1,2,15],[2,11,14,15],[11,12,13,14],[2,3,10,11],[3,4,5,6],[3,6,7,10],
                          [7,8,9,10],[16,17,18,31],[18,27,30,31],[27,28,29,30],[18,19,26,27],
                          [19,20,21,22],[19,22,23,26],[23,24,25,26]]
            # I-beam stringer (I-Beam / sId2 / Taper = 100%):
            self.faces3b=[[0,1,9,8],[1,2,10,9],[2,3,11,10],[3,4,12,11],[4,5,13,12],[5,6,14,13],
                          [6,7,15,14],[7,0,8,15],[0,1,6,7],[1,2,5,6],[2,3,4,5],[8,9,14,15],
                          [9,10,13,14],[10,11,12,13]]
            # I-beam stringer for housed-open stringed:
            self.faces3c=[[0,1,2,7],[2,3,6,7],[3,4,5,6],[1,2,23,16],[2,3,22,23],[3,4,21,22],
                          [16,17,18,23],[18,19,22,23],[19,20,21,22],[17,8,15,18],[18,15,14,19],
                          [19,14,13,20],[8,9,10,15],[10,11,14,15],[11,12,13,14],[9,10,53,52],
                          [10,11,54,53],[11,12,55,54],[52,53,61,60],[53,54,62,61],[54,55,63,62],
                          [60,61,34,33],[61,62,35,34],[62,63,36,35],[32,33,34,39],[34,35,38,39],
                          [35,36,37,38],[41,32,39,42],[42,39,38,43],[43,38,37,44],[40,41,42,47],
                          [42,43,46,47],[43,44,45,46],[25,26,47,40],[26,27,46,47],[27,28,45,46],
                          [24,25,26,31],[26,27,30,31],[27,28,29,30],[24,31,57,56],[31,30,58,57],
                          [30,29,59,58],[48,49,57,56],[49,50,58,57],[50,51,59,58],[0,7,49,48],
                          [7,6,50,49],[6,5,51,50],[0,1,16,48],[16,40,56,48],[24,25,40,56],
                          [16,17,41,40],[8,9,52,17],[17,52,60,41],[32,33,60,41],[12,13,20,55],
                          [20,44,63,55],[37,44,63,36],[20,21,45,44],[28,29,51,21],[21,51,59,45],
                          [28,45,59,29],[4,5,51,21]]
            # C-beam stringer (C-Beam / sId3):
            self.faces4=[[]]
            self.Create()
    
        def Create(self):
            if self.typ == "id1":
                if self.typ_s == "sId1":
    
                    if self.dis or self.nS == 1:
                        offset = (self.wT / (self.nS + 1)) - (self.w / 2)
                    else:
                        offset = 0
    
                    for i in range(self.nS):
                        for j in range(self.nT):
                            coords = []
                            coords.append(Vector([0, offset, -self.rise]))
                            coords.append(Vector([self.run, offset, -self.rise]))
                            coords.append(Vector([0, offset, -self.hT]))
                            coords.append(Vector([self.run, offset, -self.hT]))
                            coords.append(Vector([self.run, offset, 0]))
                            coords.append(Vector([self.run * 2, offset, 0]))
                            for k in range(6):
                                coords.append(coords[k]+Vector([0, self.w, 0]))
                            for k in coords:
                                k += j*Vector([self.run, 0, self.rise])
                            self.G.Make_mesh(coords,self.faces1,'stringer')
    
                        if self.dis or self.nS == 1:
                            offset += self.wT / (self.nS + 1)
                        else:
                            offset += (self.wT - self.w) / (self.nS - 1)
    
            elif self.typ == "id2":
                if self.typ_s == "sId1":
                    coords = []
                    coords.append(Vector([-self.tT, -self.w, -self.rise]))
                    coords.append(Vector([self.hT / self.G.slope, -self.w, -self.rise]))
                    coords.append(Vector([-self.tT, -self.w, 0]))
                    coords.append(Vector([self.nT * self.run, -self.w,
                                          ((self.nT - 1) * self.rise) - self.hT]))
                    coords.append(Vector([self.nT * self.run, -self.w, self.nT * self.rise]))
                    coords.append(Vector([(self.nT * self.run) - self.tT, -self.w,
                                          self.nT * self.rise]))
                    for i in range(6):
                        coords.append(coords[i] + Vector([0, self.w, 0]))
                    self.G.Make_mesh(coords, self.faces2, 'stringer')
                    for i in coords:
                        i += Vector([0, self.w + self.wT, 0])
                    self.G.Make_mesh(coords, self.faces2, 'stringer')
                elif self.typ_s == "sId2":
    
                    self.housed_I_beam()
                elif self.typ_s == "sId3":
                    self.housed_C_beam()
    
            elif self.typ == "id3":
                h = (self.rise - self.hT) - self.rise #height of top section
                for i in range(self.nT):
                    coords = []
                    coords.append(Vector([i * self.run,0,-self.rise]))
                    coords.append(Vector([(i + 1) * self.run,0,-self.rise]))
                    coords.append(Vector([i * self.run,0,h + (i * self.rise)]))
                    coords.append(Vector([(i + 1) * self.run,0,h + (i * self.rise)]))
                    for j in range(4):
                        coords.append(coords[j] + Vector([0,self.wT,0]))
                    self.G.Make_mesh(coords, self.G.faces, 'stringer')
    
    
            return {'FINISHED'}
    
    
        def I_beam(self):
    
            mid = self.w / 2
            web = self.tw / 2
            # Bottom of the stringer:
            baseZ = -self.rise - self.hT - self.h
            # Top of the strigner:
            topZ = -self.rise - self.hT
            # Vertical taper amount:
            taper = self.tf * self.tp
    
    
            if self.dis or self.nS == 1:
                offset = (self.wT / (self.nS + 1)) - mid
            else:
                offset = 0
    
    
            # taper < 100%:
            if self.tp > 0:
                for i in range(self.nS):
                    coords = []
                    coords.append(Vector([0, offset,                baseZ]))
                    coords.append(Vector([0, offset,                baseZ + taper]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + (mid - web),  topZ - self.tf]))
                    coords.append(Vector([0, offset,                topZ - taper]))
                    coords.append(Vector([0, offset,                topZ]))
                    coords.append(Vector([0, offset + (mid - web),  topZ]))
                    coords.append(Vector([0, offset + (mid + web),  topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ - taper]))
                    coords.append(Vector([0, offset + (mid + web),  topZ - self.tf]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + self.w,       baseZ + taper]))
                    coords.append(Vector([0, offset + self.w,       baseZ]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ]))
                    for j in range(16):
                        coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
                    # If the bottom meets the ground:
                    #   Bottom be flat with the xy plane, but shifted down.
                    #   Either project onto the plane along a vector (hard) or use the built in
                    #       interest found in mathutils.geometry (easy).  Using intersect:
                    if self.g:
                        for j in range(16):
                            coords[j] = intersect_line_plane(coords[j], coords[j + 16],
                                                             Vector([0, 0, topZ]),
                                                             Vector([0, 0, 1]))
                    self.G.Make_mesh(coords, self.faces3a, 'stringer')
    
    
                    if self.dis or self.nS == 1:
                        offset += self.wT / (self.nS + 1)
                    else:
                        offset += (self.wT - self.w) / (self.nS - 1)
    
            # taper = 100%:
            else:
                for i in range(self.nS):
                    coords = []
                    coords.append(Vector([0, offset,                baseZ]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + (mid - web),  topZ - self.tf]))
                    coords.append(Vector([0, offset,                topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ]))
                    coords.append(Vector([0, offset + (mid + web),  topZ - self.tf]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + self.w,       baseZ]))
                    for j in range(8):
                        coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
                    self.G.Make_mesh(coords, self.faces3b, 'stringer')
                    offset += self.wT / (self.nS + 1)
                    
            return {'FINISHED'}
    
    
    
        def housed_I_beam(self):
    
            webOrth = Vector([self.rise, 0, -self.run]).normalized()
            webHeight = Vector([self.run + self.tT, 0, -self.hT]).project(webOrth).length
            vDelta_1 = self.tf * tan(self.G.angle)
            vDelta_2 = (self.rise * (self.nT - 1)) - (webHeight + self.tf)
            flange_y = (self.w - self.tw) / 2
            front = -self.tT - self.tf
            outer = -self.tO - self.tw - flange_y
    
            coords = []
            if self.tp > 0:
                # Upper-Outer flange:
                coords.append(Vector([front, outer, -self.rise]))
                coords.append(Vector([-self.tT, outer, -self.rise]))
                coords.append(Vector([-self.tT, outer, 0]))
                coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
                                      self.rise * (self.nT - 1)]))
                coords.append(Vector([self.run * self.nT, outer,
                                      self.rise * (self.nT - 1)]))
                coords.append(Vector([self.run * self.nT, outer,
                                      (self.rise * (self.nT - 1)) + self.tf]))
                coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
                                      (self.rise * (self.nT - 1)) + self.tf]))
                coords.append(Vector([front, outer, self.tf - vDelta_1]))
                # Lower-Outer flange:
                coords.append(coords[0] + Vector([self.tf + webHeight, 0, 0]))
                coords.append(coords[1] + Vector([self.tf + webHeight, 0, 0]))
                coords.append(intersect_line_line(coords[9],
                                                  coords[9] - Vector([0, 0, 1]),
                                                  Vector([self.run, 0, -self.hT - self.tf]),
                                                  Vector([self.run * 2, 0, self.rise - self.hT - self.tf]))[0])
                coords.append(Vector([(self.run * self.nT) - ((webHeight - self.hT) / tan(self.G.angle)),
                                      outer, vDelta_2]))
                coords.append(coords[4] - Vector([0, 0, self.tf + webHeight]))
                coords.append(coords[5] - Vector([0, 0, self.tf + webHeight]))
                coords.append(coords[11] + Vector([0, 0, self.tf]))
                coords.append(intersect_line_line(coords[8],
                                                  coords[8] - Vector([0, 0, 1]),
                                                  Vector([self.run, 0, -self.hT]),
                                                  Vector([self.run * 2, 0, self.rise - self.hT]))[0])
                # Outer web:
                coords.append(coords[1] + Vector([0, flange_y, 0]))
                coords.append(coords[8] + Vector([0, flange_y, 0]))
                coords.append(coords[15] + Vector([0, flange_y, 0]))
                coords.append(coords[14] + Vector([0, flange_y, 0]))
                coords.append(coords[13] + Vector([0, flange_y, 0]))
                coords.append(coords[4] + Vector([0, flange_y, 0]))
                coords.append(coords[3] + Vector([0, flange_y, 0]))
                coords.append(coords[2] + Vector([0, flange_y, 0]))
                # Upper-Inner flange and lower-inner flange:
                for i in range(16):
                    coords.append(coords[i] + Vector([0, self.w, 0]))
                # Inner web:
                for i in range(8):
                    coords.append(coords[i + 16] + Vector([0, self.tw, 0]))
                # Mid nodes to so faces will be quads:
                for i in [0,7,6,5,9,10,11,12]:
                    coords.append(coords[i] + Vector([0, flange_y, 0]))
                for i in range(8):
                    coords.append(coords[i + 48] + Vector([0, self.tw, 0]))
    
                self.G.Make_mesh(coords, self.faces3c, 'stringer')
    
                for i in coords:
    
                    i += Vector([0, self.wT + self.tw, 0])
    
    
                self.G.Make_mesh(coords, self.faces3c, 'stringer')
            
            return {'FINISHED'}
    
    
    
        def C_Beam(self):
            mid = self.w / 2
            web = self.tw / 2
            # Bottom of the stringer:
            baseZ = -self.rise - self.hT - self.h
            # Top of the strigner:
            topZ = -self.rise - self.hT
            # Vertical taper amount:
            taper = self.tf * self.tp
    
            if self.dis or self.nS == 1:
                offset = (self.wT / (self.nS + 1)) - mid
            else:
                offset = 0
    
            # taper < 100%:
            if self.tp > 0:
                for i in range(self.nS):
                    coords = []
                    coords.append(Vector([0, offset,                baseZ]))
                    coords.append(Vector([0, offset,                baseZ + taper]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + (mid - web),  topZ - self.tf]))
                    coords.append(Vector([0, offset,                topZ - taper]))
                    coords.append(Vector([0, offset,                topZ]))
                    coords.append(Vector([0, offset + (mid - web),  topZ]))
                    coords.append(Vector([0, offset + (mid + web),  topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ - taper]))
                    coords.append(Vector([0, offset + (mid + web),  topZ - self.tf]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + self.w,       baseZ + taper]))
                    coords.append(Vector([0, offset + self.w,       baseZ]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ]))
                    for j in range(16):
                        coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
                    # If the bottom meets the ground:
                    #   Bottom be flat with the xy plane, but shifted down.
                    #   Either project onto the plane along a vector (hard) or use the built in
                    #       interest found in mathutils.geometry (easy).  Using intersect:
                    if self.g:
                        for j in range(16):
                            coords[j] = intersect_line_plane(coords[j], coords[j + 16],
                                                             Vector([0, 0, topZ]),
                                                             Vector([0, 0, 1]))
                    self.G.Make_mesh(coords, self.faces3a, 'stringer')
    
                    if self.dis or self.nS == 1:
                        offset += self.wT / (self.nS + 1)
                    else:
                        offset += (self.wT - self.w) / (self.nS - 1)
            # taper = 100%:
            else:
                for i in range(self.nS):
                    coords = []
                    coords.append(Vector([0, offset,                baseZ]))
                    coords.append(Vector([0, offset + (mid - web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + (mid - web),  topZ - self.tf]))
                    coords.append(Vector([0, offset,                topZ]))
                    coords.append(Vector([0, offset + self.w,       topZ]))
                    coords.append(Vector([0, offset + (mid + web),  topZ - self.tf]))
                    coords.append(Vector([0, offset + (mid + web),  baseZ + self.tf]))
                    coords.append(Vector([0, offset + self.w,       baseZ]))
                    for j in range(8):
                        coords.append(coords[j]+Vector([self.run * self.nT, 0, self.rise * self.nT]))
                    self.G.Make_mesh(coords, self.faces3b, 'stringer')
                    offset += self.wT / (self.nS + 1)
                    
            return {'FINISHED'}
    
    
        def housed_C_beam(self):
            webOrth = Vector([self.rise, 0, -self.run]).normalized()
            webHeight = Vector([self.run + self.tT, 0, -self.hT]).project(webOrth).length
            vDelta_1 = self.tf * tan(self.G.angle)
            vDelta_2 = (self.rise * (self.nT - 1)) - (webHeight + self.tf)
            flange_y = (self.w - self.tw) / 2
            front = -self.tT - self.tf
            outer = -self.tO - self.tw - flange_y
    
            coords = []
            if self.tp > 0:
                # Upper-Outer flange:
                coords.append(Vector([front, outer, -self.rise]))
                coords.append(Vector([-self.tT, outer, -self.rise]))
                coords.append(Vector([-self.tT, outer, 0]))
                coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
                                      self.rise * (self.nT - 1)]))
                coords.append(Vector([self.run * self.nT, outer,
                                      self.rise * (self.nT - 1)]))
                coords.append(Vector([self.run * self.nT, outer,
                                      (self.rise * (self.nT - 1)) + self.tf]))
                coords.append(Vector([(self.run * (self.nT - 1)) - self.tT, outer,
                                      (self.rise * (self.nT - 1)) + self.tf]))
                coords.append(Vector([front, outer, self.tf - vDelta_1]))
                # Lower-Outer flange:
                coords.append(coords[0] + Vector([self.tf + webHeight, 0, 0]))
                coords.append(coords[1] + Vector([self.tf + webHeight, 0, 0]))
                coords.append(intersect_line_line(coords[9],
                                                  coords[9] - Vector([0, 0, 1]),
                                                  Vector([self.run, 0, -self.hT - self.tf]),
                                                  Vector([self.run * 2, 0, self.rise - self.hT - self.tf]))[0])
                coords.append(Vector([(self.run * self.nT) - ((webHeight - self.hT) / tan(self.G.angle)),
                                      outer, vDelta_2]))
                coords.append(coords[4] - Vector([0, 0, self.tf + webHeight]))
                coords.append(coords[5] - Vector([0, 0, self.tf + webHeight]))
                coords.append(coords[11] + Vector([0, 0, self.tf]))
                coords.append(intersect_line_line(coords[8],
                                                  coords[8] - Vector([0, 0, 1]),
                                                  Vector([self.run, 0, -self.hT]),
                                                  Vector([self.run * 2, 0, self.rise - self.hT]))[0])
                # Outer web:
                coords.append(coords[1] + Vector([0, flange_y, 0]))
                coords.append(coords[8] + Vector([0, flange_y, 0]))
                coords.append(coords[15] + Vector([0, flange_y, 0]))
                coords.append(coords[14] + Vector([0, flange_y, 0]))
                coords.append(coords[13] + Vector([0, flange_y, 0]))
                coords.append(coords[4] + Vector([0, flange_y, 0]))
                coords.append(coords[3] + Vector([0, flange_y, 0]))
                coords.append(coords[2] + Vector([0, flange_y, 0]))
                # Upper-Inner flange and lower-inner flange:
                for i in range(16):
                    coords.append(coords[i] + Vector([0, self.w, 0]))
                # Inner web:
                for i in range(8):
                    coords.append(coords[i + 16] + Vector([0, self.tw, 0]))
                # Mid nodes to so faces will be quads:
                for i in [0,7,6,5,9,10,11,12]:
                    coords.append(coords[i] + Vector([0, flange_y, 0]))
                for i in range(8):
                    coords.append(coords[i + 48] + Vector([0, self.tw, 0]))
    
                self.G.Make_mesh(coords, self.faces3c, 'stringer')
    
                for i in coords:
                    i += Vector([0, (self.tO * 2) + self.wT + self.tf, 0])
    
                self.G.Make_mesh(coords, self.faces3c, 'stringer')