Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
"warning": "Needs bgl draw update",
CoDEmanX
committed
"description": "Display and edit motion trails in the 3D View",
"doc_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Animation/Motion_Trail",
"tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/",
"category": "Animation",
}
import bgl
import blf
import bpy
from bpy_extras import view3d_utils
import math
import mathutils
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
IntProperty,
StringProperty,
PointerProperty,
)
# fake fcurve class, used if no fcurve is found for a path
class fake_fcurve():
def __init__(self, object, index, rotation=False, scale=False):
# location
if not rotation and not scale:
self.loc = object.location[index]
# scale
elif scale:
self.loc = object.scale[index]
# rotation
elif rotation == 'QUATERNION':
self.loc = object.rotation_quaternion[index]
elif rotation == 'AXIS_ANGLE':
self.loc = object.rotation_axis_angle[index]
else:
self.loc = object.rotation_euler[index]
self.keyframe_points = []
def evaluate(self, frame):
return(self.loc)
def range(self):
return([])
# get location curves of the given object
def get_curves(object, child=False):
if object.animation_data and object.animation_data.action:
action = object.animation_data.action
if child:
# posebone
curves = [
fc for fc in action.fcurves if len(fc.data_path) >= 14 and
fc.data_path[-9:] == '.location' and
child.name in fc.data_path.split("\"")
]
curves = [fc for fc in action.fcurves if fc.data_path == 'location']
elif object.animation_data and object.animation_data.use_nla:
curves = []
strips = []
for track in object.animation_data.nla_tracks:
not_handled = [s for s in track.strips]
while not_handled:
current_strip = not_handled.pop(-1)
if current_strip.action:
strips.append(current_strip)
if current_strip.strips:
# meta strip
not_handled += [s for s in current_strip.strips]
for strip in strips:
if child:
# posebone
curves = [
fc for fc in strip.action.fcurves if
len(fc.data_path) >= 14 and fc.data_path[-9:] == '.location' and
child.name in fc.data_path.split("\"")
]
curves = [fc for fc in strip.action.fcurves if fc.data_path == 'location']
if curves:
# use first strip with location fcurves
break
else:
# should not happen?
curves = []
# ensure we have three curves per object
fcx = None
fcy = None
fcz = None
for fc in curves:
if fc.array_index == 0:
fcx = fc
elif fc.array_index == 1:
fcy = fc
elif fc.array_index == 2:
fcz = fc
fcz = fake_fcurve(object, 2)
return([fcx, fcy, fcz])
# turn screen coordinates (x,y) into world coordinates vector
def screen_to_world(context, x, y):
depth_vector = view3d_utils.region_2d_to_vector_3d(
context.region, context.region_data, [x, y]
)
vector = view3d_utils.region_2d_to_location_3d(
context.region, context.region_data, [x, y],
depth_vector
)
return(vector)
# turn 3d world coordinates vector into screen coordinate integers (x,y)
def world_to_screen(context, vector):
prj = context.region_data.perspective_matrix * \
mathutils.Vector((vector[0], vector[1], vector[2], 1.0))
width_half = context.region.width / 2.0
height_half = context.region.height / 2.0
x = int(width_half + width_half * (prj.x / prj.w))
y = int(height_half + height_half * (prj.y / prj.w))
# correction for corner cases in perspective mode
if prj.w < 0:
if x < 0:
x = context.region.width * 2
else:
x = context.region.width * -2
if y < 0:
y = context.region.height * 2
else:
y = context.region.height * -2
return(x, y)
# calculate location of display_ob in worldspace
def get_location(frame, display_ob, offset_ob, curves):
if offset_ob:
bpy.context.scene.frame_set(frame)
display_mat = getattr(display_ob, "matrix", False)
if not display_mat:
# posebones have "matrix", objects have "matrix_world"
display_mat = display_ob.matrix_world
if offset_ob:
loc = display_mat.to_translation() + \
offset_ob.matrix_world.to_translation()
else:
loc = display_mat.to_translation()
else:
fcx, fcy, fcz = curves
locx = fcx.evaluate(frame)
locy = fcy.evaluate(frame)
locz = fcz.evaluate(frame)
loc = mathutils.Vector([locx, locy, locz])
return(loc)
# get position of keyframes and handles at the start of dragging
def get_original_animation_data(context, keyframes):
keyframes_ori = {}
handles_ori = {}
if context.active_object and context.active_object.mode == 'POSE':
armature_ob = context.active_object
objects = [[armature_ob, pb, armature_ob] for pb in
context.selected_pose_bones]
else:
objects = [[ob, False, False] for ob in context.selected_objects]
for action_ob, child, offset_ob in objects:
if not action_ob.animation_data:
continue
curves = get_curves(action_ob, child)
if len(curves) == 0:
continue
fcx, fcy, fcz = curves
if child:
display_ob = child
else:
display_ob = action_ob
# get keyframe positions
frame_old = context.scene.frame_current
keyframes_ori[display_ob.name] = {}
for frame in keyframes[display_ob.name]:
loc = get_location(frame, display_ob, offset_ob, curves)
keyframes_ori[display_ob.name][frame] = [frame, loc]
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# get handle positions
handles_ori[display_ob.name] = {}
for frame in keyframes[display_ob.name]:
handles_ori[display_ob.name][frame] = {}
left_x = [frame, fcx.evaluate(frame)]
right_x = [frame, fcx.evaluate(frame)]
for kf in fcx.keyframe_points:
if kf.co[0] == frame:
left_x = kf.handle_left[:]
right_x = kf.handle_right[:]
break
left_y = [frame, fcy.evaluate(frame)]
right_y = [frame, fcy.evaluate(frame)]
for kf in fcy.keyframe_points:
if kf.co[0] == frame:
left_y = kf.handle_left[:]
right_y = kf.handle_right[:]
break
left_z = [frame, fcz.evaluate(frame)]
right_z = [frame, fcz.evaluate(frame)]
for kf in fcz.keyframe_points:
if kf.co[0] == frame:
left_z = kf.handle_left[:]
right_z = kf.handle_right[:]
break
handles_ori[display_ob.name][frame]["left"] = [left_x, left_y,
left_z]
handles_ori[display_ob.name][frame]["right"] = [right_x, right_y,
right_z]
if context.scene.frame_current != frame_old:
context.scene.frame_set(frame_old)
return(keyframes_ori, handles_ori)
# callback function that calculates positions of all things that need be drawn
def calc_callback(self, context):
if context.active_object and context.active_object.mode == 'POSE':
armature_ob = context.active_object
objects = [
[armature_ob, pb, armature_ob] for pb in
context.selected_pose_bones
]
else:
objects = [[ob, False, False] for ob in context.selected_objects]
if objects == self.displayed:
selection_change = False
else:
selection_change = True
if self.lock and not selection_change and \
context.region_data.perspective_matrix == self.perspective and not \
context.window_manager.motion_trail.force_update:
return
self.paths = {} # value: list of lists with x, y, color
self.keyframes = {} # value: dict with frame as key and [x,y] as value
self.handles = {} # value: dict of dicts
self.timebeads = {} # value: dict with frame as key and [x,y] as value
self.click = {} # value: list of lists with frame, type, loc-vector
if selection_change:
# value: editbone inverted rotation matrix or None
self.edit_bones = {}
if selection_change or not self.lock or context.window_manager.\
motion_trail.force_update:
# contains locations of path, keyframes and timebeads
self.cached = {
"path": {}, "keyframes": {}, "timebeads_timing": {},
"timebeads_speed": {}
}
if self.cached["path"]:
use_cache = True
else:
use_cache = False
self.perspective = context.region_data.perspective_matrix.copy()
self.displayed = objects # store, so it can be checked next time
context.window_manager.motion_trail.force_update = False
global_undo = context.preferences.edit.use_global_undo
context.preferences.edit.use_global_undo = False
for action_ob, child, offset_ob in objects:
if selection_change:
if not child:
self.edit_bones[action_ob.name] = None
else:
bpy.ops.object.mode_set(mode='EDIT')
editbones = action_ob.data.edit_bones
mat = editbones[child.name].matrix.copy().to_3x3().inverted()
bpy.ops.object.mode_set(mode='POSE')
self.edit_bones[child.name] = mat
if not action_ob.animation_data:
continue
curves = get_curves(action_ob, child)
if len(curves) == 0:
continue
if context.window_manager.motion_trail.path_before == 0:
range_min = context.scene.frame_start
range_min = max(
context.scene.frame_start,
context.scene.frame_current -
context.window_manager.motion_trail.path_before
)
if context.window_manager.motion_trail.path_after == 0:
range_max = context.scene.frame_end
range_max = min(context.scene.frame_end,
context.scene.frame_current +
context.window_manager.motion_trail.path_after
)
fcx, fcy, fcz = curves
if child:
display_ob = child
# get location data of motion path
path = []
speeds = []
frame_old = context.scene.frame_current
step = 11 - context.window_manager.motion_trail.path_resolution
if display_ob.name not in self.cached["path"]:
self.cached["path"][display_ob.name] = {}
if use_cache and range_min - 1 in self.cached["path"][display_ob.name]:
prev_loc = self.cached["path"][display_ob.name][range_min - 1]
else:
prev_loc = get_location(range_min - 1, display_ob, offset_ob, curves)
self.cached["path"][display_ob.name][range_min - 1] = prev_loc
for frame in range(range_min, range_max + 1, step):
if use_cache and frame in self.cached["path"][display_ob.name]:
loc = self.cached["path"][display_ob.name][frame]
else:
loc = get_location(frame, display_ob, offset_ob, curves)
self.cached["path"][display_ob.name][frame] = loc
if not context.region or not context.space_data:
continue
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
if context.window_manager.motion_trail.path_style == 'simple':
path.append([x, y, [0.0, 0.0, 0.0], frame, action_ob, child])
else:
dloc = (loc - prev_loc).length
path.append([x, y, dloc, frame, action_ob, child])
speeds.append(dloc)
prev_loc = loc
# calculate color of path
if context.window_manager.motion_trail.path_style == 'speed':
speeds.sort()
min_speed = speeds[0]
d_speed = speeds[-1] - min_speed
for i, [x, y, d_loc, frame, action_ob, child] in enumerate(path):
relative_speed = (d_loc - min_speed) / d_speed # 0.0 to 1.0
red = min(1.0, 2.0 * relative_speed)
blue = min(1.0, 2.0 - (2.0 * relative_speed))
path[i][2] = [red, 0.0, blue]
elif context.window_manager.motion_trail.path_style == 'acceleration':
accelerations = []
prev_speed = 0.0
for i, [x, y, d_loc, frame, action_ob, child] in enumerate(path):
accel = d_loc - prev_speed
accelerations.append(accel)
path[i][2] = accel
prev_speed = d_loc
accelerations.sort()
min_accel = accelerations[0]
max_accel = accelerations[-1]
for i, [x, y, accel, frame, action_ob, child] in enumerate(path):
if accel < 0:
relative_accel = accel / min_accel # values from 0.0 to 1.0
green = 1.0 - relative_accel
path[i][2] = [1.0, green, 0.0]
elif accel > 0:
relative_accel = accel / max_accel # values from 0.0 to 1.0
red = 1.0 - relative_accel
path[i][2] = [red, 1.0, 0.0]
else:
path[i][2] = [1.0, 1.0, 0.0]
self.paths[display_ob.name] = path
# get keyframes and handles
keyframes = {}
handle_difs = {}
kf_time = []
click = []
if display_ob.name not in self.cached["keyframes"]:
self.cached["keyframes"][display_ob.name] = {}
for fc in curves:
for kf in fc.keyframe_points:
# handles for location mode
if context.window_manager.motion_trail.mode == 'location':
if kf.co[0] not in handle_difs:
handle_difs[kf.co[0]] = {"left": mathutils.Vector(),
"right": mathutils.Vector(), "keyframe_loc": None}
handle_difs[kf.co[0]]["left"][fc.array_index] = \
(mathutils.Vector(kf.handle_left[:]) -
mathutils.Vector(kf.co[:])).normalized()[1]
handle_difs[kf.co[0]]["right"][fc.array_index] = \
(mathutils.Vector(kf.handle_right[:]) -
mathutils.Vector(kf.co[:])).normalized()[1]
# keyframes
if kf.co[0] in kf_time:
continue
kf_time.append(kf.co[0])
co = kf.co[0]
if use_cache and co in \
self.cached["keyframes"][display_ob.name]:
loc = self.cached["keyframes"][display_ob.name][co]
loc = get_location(co, display_ob, offset_ob, curves)
self.cached["keyframes"][display_ob.name][co] = loc
if handle_difs:
handle_difs[co]["keyframe_loc"] = loc
keyframes[kf.co[0]] = [x, y]
if context.window_manager.motion_trail.mode != 'speed':
# can't select keyframes in speed mode
click.append([kf.co[0], "keyframe",
mathutils.Vector([x, y]), action_ob, child])
self.keyframes[display_ob.name] = keyframes
# handles are only shown in location-altering mode
if context.window_manager.motion_trail.mode == 'location' and \
context.window_manager.motion_trail.handle_display:
# calculate handle positions
handles = {}
for frame, vecs in handle_difs.items():
if child:
# bone space to world space
mat = self.edit_bones[child.name].copy().inverted()
vec_left = vecs["left"] * mat
vec_right = vecs["right"] * mat
vec_left = vecs["left"]
vec_right = vecs["right"]
if vecs["keyframe_loc"] is not None:
vec_keyframe = vecs["keyframe_loc"]
else:
vec_keyframe = get_location(frame, display_ob, offset_ob,
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
x_left, y_left = world_to_screen(
context, vec_left * 2 + vec_keyframe
)
x_right, y_right = world_to_screen(
context, vec_right * 2 + vec_keyframe
)
handles[frame] = {"left": [x_left, y_left],
"right": [x_right, y_right]}
click.append([frame, "handle_left",
mathutils.Vector([x_left, y_left]), action_ob, child])
click.append([frame, "handle_right",
mathutils.Vector([x_right, y_right]), action_ob, child])
self.handles[display_ob.name] = handles
# calculate timebeads for timing mode
if context.window_manager.motion_trail.mode == 'timing':
timebeads = {}
n = context.window_manager.motion_trail.timebeads * (len(kf_time) - 1)
dframe = (range_max - range_min) / (n + 1)
if not use_cache:
if display_ob.name not in self.cached["timebeads_timing"]:
self.cached["timebeads_timing"][display_ob.name] = {}
for i in range(1, n + 1):
frame = range_min + i * dframe
if use_cache and frame in \
self.cached["timebeads_timing"][display_ob.name]:
loc = self.cached["timebeads_timing"][display_ob.name][frame]
else:
loc = get_location(frame, display_ob, offset_ob, curves)
self.cached["timebeads_timing"][display_ob.name][frame] = loc
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
timebeads[frame] = [x, y]
click.append(
[frame, "timebead", mathutils.Vector([x, y]),
action_ob, child]
)
self.timebeads[display_ob.name] = timebeads
# calculate timebeads for speed mode
if context.window_manager.motion_trail.mode == 'speed':
angles = dict([[kf, {"left": [], "right": []}] for kf in
self.keyframes[display_ob.name]])
for fc in curves:
for i, kf in enumerate(fc.keyframe_points):
if i != 0:
angle = mathutils.Vector([-1, 0]).angle(
mathutils.Vector(kf.handle_left) -
mathutils.Vector(kf.co), 0
)
if angle != 0:
angles[kf.co[0]]["left"].append(angle)
if i != len(fc.keyframe_points) - 1:
angle = mathutils.Vector([1, 0]).angle(
mathutils.Vector(kf.handle_right) -
mathutils.Vector(kf.co), 0
)
if angle != 0:
angles[kf.co[0]]["right"].append(angle)
timebeads = {}
kf_time.sort()
if not use_cache:
if display_ob.name not in self.cached["timebeads_speed"]:
self.cached["timebeads_speed"][display_ob.name] = {}
for frame, sides in angles.items():
if sides["left"]:
perc = (sum(sides["left"]) / len(sides["left"])) / \
(math.pi / 2)
perc = max(0.4, min(1, perc * 5))
previous = kf_time[kf_time.index(frame) - 1]
bead_frame = frame - perc * ((frame - previous - 2) / 2)
if use_cache and bead_frame in \
self.cached["timebeads_speed"][display_ob.name]:
loc = self.cached["timebeads_speed"][display_ob.name][bead_frame]
else:
loc = get_location(bead_frame, display_ob, offset_ob,
curves)
self.cached["timebeads_speed"][display_ob.name][bead_frame] = loc
x, y = world_to_screen(context, loc)
timebeads[bead_frame] = [x, y]
click.append(
[bead_frame, "timebead",
mathutils.Vector([x, y]),
action_ob, child]
)
if sides["right"]:
perc = (sum(sides["right"]) / len(sides["right"])) / \
(math.pi / 2)
perc = max(0.4, min(1, perc * 5))
next = kf_time[kf_time.index(frame) + 1]
bead_frame = frame + perc * ((next - frame - 2) / 2)
if use_cache and bead_frame in \
self.cached["timebeads_speed"][display_ob.name]:
loc = self.cached["timebeads_speed"][display_ob.name][bead_frame]
else:
loc = get_location(bead_frame, display_ob, offset_ob,
curves)
self.cached["timebeads_speed"][display_ob.name][bead_frame] = loc
x, y = world_to_screen(context, loc)
timebeads[bead_frame] = [x, y]
click.append(
[bead_frame, "timebead",
mathutils.Vector([x, y]),
action_ob, child]
)
self.timebeads[display_ob.name] = timebeads
# add frame positions to click-list
if context.window_manager.motion_trail.frame_display:
path = self.paths[display_ob.name]
for x, y, color, frame, action_ob, child in path:
click.append(
[frame, "frame",
mathutils.Vector([x, y]),
action_ob, child]
)
self.click[display_ob.name] = click
if context.scene.frame_current != frame_old:
context.scene.frame_set(frame_old)
context.preferences.edit.use_global_undo = global_undo
except:
# restore global undo in case of failure (see T52524)
context.preferences.edit.use_global_undo = global_undo
# draw in 3d-view
def draw_callback(self, context):
# polling
if (context.mode not in ('OBJECT', 'POSE') or
not context.window_manager.motion_trail.enabled):
# display limits
if context.window_manager.motion_trail.path_before != 0:
limit_min = context.scene.frame_current - \
context.window_manager.motion_trail.path_before
else:
limit_min = -1e6
if context.window_manager.motion_trail.path_after != 0:
limit_max = context.scene.frame_current + \
context.window_manager.motion_trail.path_after
else:
limit_max = 1e6
# draw motion path
bgl.glEnable(bgl.GL_BLEND)
bgl.glLineWidth(context.window_manager.motion_trail.path_width)
alpha = 1.0 - (context.window_manager.motion_trail.path_transparency / 100.0)
if context.window_manager.motion_trail.path_style == 'simple':
bgl.glColor4f(0.0, 0.0, 0.0, alpha)
for objectname, path in self.paths.items():
bgl.glBegin(bgl.GL_LINE_STRIP)
for x, y, color, frame, action_ob, child in path:
if frame < limit_min or frame > limit_max:
continue
bgl.glVertex2i(x, y)
bgl.glEnd()
else:
for objectname, path in self.paths.items():
for i, [x, y, color, frame, action_ob, child] in enumerate(path):
if frame < limit_min or frame > limit_max:
continue
prev_path = path[i - 1]
halfway = [(x + prev_path[0]) / 2, (y + prev_path[1]) / 2]
bgl.glColor4f(r, g, b, alpha)
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex2i(int(halfway[0]), int(halfway[1]))
bgl.glVertex2i(x, y)
bgl.glEnd()
if i != len(path) - 1:
next_path = path[i + 1]
halfway = [(x + next_path[0]) / 2, (y + next_path[1]) / 2]
bgl.glColor4f(r, g, b, alpha)
bgl.glBegin(bgl.GL_LINE_STRIP)
bgl.glVertex2i(x, y)
bgl.glVertex2i(int(halfway[0]), int(halfway[1]))
bgl.glEnd()
# draw frames
if context.window_manager.motion_trail.frame_display:
bgl.glColor4f(1.0, 1.0, 1.0, 1.0)
bgl.glPointSize(1)
bgl.glBegin(bgl.GL_POINTS)
for objectname, path in self.paths.items():
for x, y, color, frame, action_ob, child in path:
if frame < limit_min or frame > limit_max:
continue
if self.active_frame and objectname == self.active_frame[0] \
and abs(frame - self.active_frame[1]) < 1e-4:
bgl.glEnd()
bgl.glColor4f(1.0, 0.5, 0.0, 1.0)
bgl.glPointSize(3)
bgl.glBegin(bgl.GL_POINTS)
bgl.glEnd()
bgl.glColor4f(1.0, 1.0, 1.0, 1.0)
bgl.glPointSize(1)
bgl.glBegin(bgl.GL_POINTS)
else:
# time beads are shown in speed and timing modes
if context.window_manager.motion_trail.mode in ('speed', 'timing'):
bgl.glColor4f(0.0, 1.0, 0.0, 1.0)
bgl.glPointSize(4)
bgl.glBegin(bgl.GL_POINTS)
for objectname, values in self.timebeads.items():
for frame, coords in values.items():
if frame < limit_min or frame > limit_max:
continue
if self.active_timebead and \
objectname == self.active_timebead[0] and \
abs(frame - self.active_timebead[1]) < 1e-4:
bgl.glEnd()
bgl.glColor4f(1.0, 0.5, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
bgl.glColor4f(0.0, 1.0, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
else:
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
# handles are only shown in location mode
if context.window_manager.motion_trail.mode == 'location':
# draw handle-lines
bgl.glColor4f(0.0, 0.0, 0.0, 1.0)
bgl.glLineWidth(1)
bgl.glBegin(bgl.GL_LINES)
for objectname, values in self.handles.items():
for frame, sides in values.items():
if frame < limit_min or frame > limit_max:
continue
for side, coords in sides.items():
if self.active_handle and \
objectname == self.active_handle[0] and \
side == self.active_handle[2] and \
abs(frame - self.active_handle[1]) < 1e-4:
bgl.glEnd()
bgl.glColor4f(.75, 0.25, 0.0, 1.0)
bgl.glBegin(bgl.GL_LINES)
bgl.glVertex2i(self.keyframes[objectname][frame][0],
self.keyframes[objectname][frame][1])
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
bgl.glColor4f(0.0, 0.0, 0.0, 1.0)
bgl.glBegin(bgl.GL_LINES)
else:
bgl.glVertex2i(self.keyframes[objectname][frame][0],
self.keyframes[objectname][frame][1])
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
# draw handles
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
bgl.glPointSize(4)
bgl.glBegin(bgl.GL_POINTS)
for objectname, values in self.handles.items():
for frame, sides in values.items():
if frame < limit_min or frame > limit_max:
continue
for side, coords in sides.items():
if self.active_handle and \
objectname == self.active_handle[0] and \
side == self.active_handle[2] and \
abs(frame - self.active_handle[1]) < 1e-4:
bgl.glEnd()
bgl.glColor4f(1.0, 0.5, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
else:
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
# draw keyframes
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
bgl.glPointSize(6)
bgl.glBegin(bgl.GL_POINTS)
for objectname, values in self.keyframes.items():
for frame, coords in values.items():
if frame < limit_min or frame > limit_max:
continue
if self.active_keyframe and \
objectname == self.active_keyframe[0] and \
abs(frame - self.active_keyframe[1]) < 1e-4:
bgl.glEnd()
bgl.glColor4f(1.0, 0.5, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
bgl.glBegin(bgl.GL_POINTS)
else:
bgl.glVertex2i(coords[0], coords[1])
bgl.glEnd()
# draw keyframe-numbers
if context.window_manager.motion_trail.keyframe_numbers:
blf.size(0, 12, 72)
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
for objectname, values in self.keyframes.items():
for frame, coords in values.items():
if frame < limit_min or frame > limit_max:
continue
blf.position(0, coords[0] + 3, coords[1] + 3, 0)
text = str(frame).split(".")
if len(text) == 1:
text = text[0]
elif len(text[1]) == 1 and text[1] == "0":
text = text[0]
else:
text = text[0] + "." + text[1][0]
if self.active_keyframe and \
objectname == self.active_keyframe[0] and \
abs(frame - self.active_keyframe[1]) < 1e-4:
bgl.glColor4f(1.0, 0.5, 0.0, 1.0)
blf.draw(0, text)
bgl.glColor4f(1.0, 1.0, 0.0, 1.0)
else:
blf.draw(0, text)
# restore opengl defaults
bgl.glLineWidth(1)
bgl.glDisable(bgl.GL_BLEND)
bgl.glColor4f(0.0, 0.0, 0.0, 1.0)
bgl.glPointSize(1)
# change data based on mouse movement
def drag(context, event, drag_mouse_ori, active_keyframe, active_handle,
active_timebead, keyframes_ori, handles_ori, edit_bones):
# change 3d-location of keyframe
if context.window_manager.motion_trail.mode == 'location' and \
active_keyframe:
objectname, frame, frame_ori, action_ob, child = active_keyframe
if child:
mat = action_ob.matrix_world.copy().inverted() * \
edit_bones[child.name].copy().to_4x4()
else:
mat = 1
mouse_ori_world = screen_to_world(context, drag_mouse_ori[0],
drag_mouse_ori[1]) * mat
vector = screen_to_world(context, event.mouse_region_x,
event.mouse_region_y) * mat
d = vector - mouse_ori_world
loc_ori_ws = keyframes_ori[objectname][frame][1]
loc_ori_bs = loc_ori_ws * mat
new_loc = loc_ori_bs + d
curves = get_curves(action_ob, child)
for i, curve in enumerate(curves):
for kf in curve.keyframe_points:
if kf.co[0] == frame:
kf.co[1] = new_loc[i]
kf.handle_left[1] = handles_ori[objectname][frame]["left"][i][1] + d[i]
kf.handle_right[1] = handles_ori[objectname][frame]["right"][i][1] + d[i]
elif context.window_manager.motion_trail.mode == 'location' and active_handle:
objectname, frame, side, action_ob, child = active_handle
if child:
mat = action_ob.matrix_world.copy().inverted() * \
edit_bones[child.name].copy().to_4x4()
else:
mat = 1
mouse_ori_world = screen_to_world(context, drag_mouse_ori[0],
drag_mouse_ori[1]) * mat
vector = screen_to_world(context, event.mouse_region_x,
event.mouse_region_y) * mat
d = vector - mouse_ori_world
curves = get_curves(action_ob, child)
for i, curve in enumerate(curves):
for kf in curve.keyframe_points:
if kf.co[0] == frame:
if side == "left":
# change handle type, if necessary
if kf.handle_left_type in (
'AUTO',
'AUTO_CLAMPED',
'ANIM_CLAMPED'):
kf.handle_left_type = 'ALIGNED'
elif kf.handle_left_type == 'VECTOR':
kf.handle_left_type = 'FREE'
# change handle position(s)
kf.handle_left[1] = handles_ori[objectname][frame]["left"][i][1] + d[i]
if kf.handle_left_type in (
'ALIGNED',
'ANIM_CLAMPED',
'AUTO',
'AUTO_CLAMPED'):
dif = (
abs(handles_ori[objectname][frame]["right"][i][0] -
kf.co[0]) / abs(kf.handle_left[0] -
kf.co[0])
) * d[i]
kf.handle_right[1] = handles_ori[objectname][frame]["right"][i][1] - dif
elif side == "right":
# change handle type, if necessary
if kf.handle_right_type in (
'AUTO',
'AUTO_CLAMPED',
'ANIM_CLAMPED'):
kf.handle_left_type = 'ALIGNED'
kf.handle_right_type = 'ALIGNED'
elif kf.handle_right_type == 'VECTOR':
kf.handle_left_type = 'FREE'
kf.handle_right_type = 'FREE'
# change handle position(s)
kf.handle_right[1] = handles_ori[objectname][frame]["right"][i][1] + d[i]
if kf.handle_right_type in (
'ALIGNED',
'ANIM_CLAMPED',
'AUTO',
'AUTO_CLAMPED'):
dif = (
abs(handles_ori[objectname][frame]["left"][i][0] -
kf.co[0]) / abs(kf.handle_right[0] -
kf.co[0])
) * d[i]
kf.handle_left[1] = handles_ori[objectname][frame]["left"][i][1] - dif
# change position of all keyframes on timeline
elif context.window_manager.motion_trail.mode == 'timing' and \
active_timebead:
objectname, frame, frame_ori, action_ob, child = active_timebead
curves = get_curves(action_ob, child)
ranges = [val for c in curves for val in c.range()]
ranges.sort()
range_min = round(ranges[0])
range_max = round(ranges[-1])
range = range_max - range_min
dx_screen = -(mathutils.Vector([event.mouse_region_x,
event.mouse_region_y]) - drag_mouse_ori)[0]
dx_screen = dx_screen / context.region.width * range
new_frame = frame + dx_screen
shift_low = max(1e-4, (new_frame - range_min) / (frame - range_min))
shift_high = max(1e-4, (range_max - new_frame) / (range_max - frame))
new_mapping = {}
for i, curve in enumerate(curves):
for j, kf in enumerate(curve.keyframe_points):
frame_map = kf.co[0]
if frame_map < range_min + 1e-4 or \
frame_map > range_max - 1e-4:
continue
frame_ori = False
for f in keyframes_ori[objectname]:
if abs(f - frame_map) < 1e-4:
frame_ori = keyframes_ori[objectname][f][0]
value_ori = keyframes_ori[objectname][f]
break
if not frame_ori:
continue
if frame_ori <= frame:
frame_new = (frame_ori - range_min) * shift_low + \
range_min
else:
frame_new = range_max - (range_max - frame_ori) * \
shift_high
frame_new = max(
range_min + j, min(frame_new, range_max -
(len(curve.keyframe_points) - j) + 1)
)
d_frame = frame_new - frame_ori
if frame_new not in new_mapping:
new_mapping[frame_new] = value_ori
kf.co[0] = frame_new
kf.handle_left[0] = handles_ori[objectname][frame_ori]["left"][i][0] + d_frame
kf.handle_right[0] = handles_ori[objectname][frame_ori]["right"][i][0] + d_frame
del keyframes_ori[objectname]
keyframes_ori[objectname] = {}
for new_frame, value in new_mapping.items():
keyframes_ori[objectname][new_frame] = value
# change position of active keyframe on the timeline
elif context.window_manager.motion_trail.mode == 'timing' and \
active_keyframe:
objectname, frame, frame_ori, action_ob, child = active_keyframe
if child:
mat = action_ob.matrix_world.copy().inverted() * \
edit_bones[child.name].copy().to_4x4()
else:
mat = action_ob.matrix_world.copy().inverted()
mouse_ori_world = screen_to_world(context, drag_mouse_ori[0],
drag_mouse_ori[1]) * mat
vector = screen_to_world(context, event.mouse_region_x,
event.mouse_region_y) * mat
d = vector - mouse_ori_world
locs_ori = [[f_ori, coords] for f_mapped, [f_ori, coords] in
keyframes_ori[objectname].items()]
locs_ori.sort()
direction = 1
range = False