Skip to content
Snippets Groups Projects
space_view3d_panel_measure.py 54.7 KiB
Newer Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
#
# Uses volume calculation and manifold check code (GPL2+) from:
# http://www.shapeways.com/forum/index.php?t=msg&goto=3639
# Shapeways Volume Calculator by Benjamin Lauritzen (Loonsbury)
#
# #################################

bl_info = {
    "name": "Measure Panel",
    "author": "Buerbaum Martin (Pontiac), TNae (Normal patch), "
              "Benjamin Lauritzen (Loonsbury; Volume code), "
              "Alessandro Sala (patch: Units in 3D View), "
              "Daniel Ashby (callback removal code) ",
    "version": (0, 9, 1),
Brendon Murphy's avatar
Brendon Murphy committed
    "blender": (2, 74, 0),
    "location": "View3D > Properties > Measure Panel",
    "description": "Measure distances between objects",
Brendon Murphy's avatar
Brendon Murphy committed
    "warning": "Disable during Render. Broken register",
    "tracker_url": "https://developer.blender.org/maniphest/task/edit/form/2/",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
                "Scripts/3D_interaction/Panel_Measure",
    "category": "3D View",
}

"""
Measure panel

This script displays in OBJECT MODE:
* The distance of the 3D cursor to the origin of the
  3D space (if NOTHING is selected).
* The distance of the 3D cursor to the center of an object
  (if exactly ONE object is selected).
* The distance between 2 object centers
  (if exactly TWO objects are selected).
* The surface area of any selected mesh object.
* The average normal of the mesh surface of any selected mesh object.
* The volume of any selected mesh object.

Display in EDIT MODE (Local and Global space supported):
* The distance of the 3D cursor to the origin
  (in Local space it is the object center instead).
* The distance of the 3D cursor to a selected vertex.
* The distance between 2 selected vertices.

Usage:

This functionality can be accessed via the
"Properties" panel in 3D View ([N] key).

It's very helpful to use one or two "Empty" objects with
"Snap during transform" enabled for fast measurement.

More links:
http://gitorious.org/blender-scripts/blender-measure-panel-script
http://blenderartists.org/forum/showthread.php?t=177800
"""

import bpy
from bpy.props import *
from bpy.app.handlers import persistent
from mathutils import Vector, Matrix
import bgl
import blf
from bpy_extras.view3d_utils import location_3d_to_region_2d
from bpy_extras.mesh_utils import ngon_tessellate


# Precicion for display of float values.
PRECISION = 5

# Name of the custom properties as stored in the scene.
COLOR_LOCAL = (1.0, 0.5, 0.0, 0.8)
COLOR_GLOBAL = (0.5, 0.0, 1.0, 0.8)

# 3D View - text offset
OFFSET_LINE = 10   # Offset the text a bit to the right.
OFFSET_Y = 15      # Offset of the lines.
OFFSET_VALUE = 30  # Offset of value(s) from the text.

# 3D View - line width
LINE_WIDTH_XYZ = 1
LINE_WIDTH_DIST = 2


# Returns a tuple describing the current measuring system
# and formatting options.
# Returned data is meant to be passed to formatDistance().
# Original by Alessandro Sala (Feb, 12th 2012)
# Update by Alessandro Sala (Dec, 18th 2012)
def getUnitsInfo():
        scale = bpy.context.scene.unit_settings.scale_length
        unit_system = bpy.context.scene.unit_settings.system
        separate_units = bpy.context.scene.unit_settings.use_separate
        if unit_system == 'METRIC':
                scale_steps = ((1000, 'km'), (1, 'm'), (1 / 100, 'cm'),
                    (1 / 1000, 'mm'), (1 / 1000000, '\u00b5m'))
        elif unit_system == 'IMPERIAL':
                scale_steps = ((5280, 'mi'), (1, '\''),
                    (1 / 12, '"'), (1 / 12000, 'thou'))
                scale /= 0.3048  # BU to feet
        else:
                scale_steps = ((1, ' BU'),)
                separate_units = False

        return (scale, scale_steps, separate_units)


# Converts a distance from BU into the measuring system
# described by units_info.
# Original by Alessandro Sala (Feb, 12th 2012)
# Update by Alessandro Sala (Dec, 18th 2012)
def convertDistance(val, units_info):
        scale, scale_steps, separate_units = units_info
        sval = val * scale
        idx = 0
        while idx < len(scale_steps) - 1:
                if sval >= scale_steps[idx][0]:
                        break
                idx += 1
        factor, suffix = scale_steps[idx]
        sval /= factor
        if not separate_units or idx == len(scale_steps) - 1:
                dval = str(round(sval, PRECISION)) + suffix
        else:
                ival = int(sval)
                dval = str(round(ival, PRECISION)) + suffix
                fval = sval - ival
                idx += 1
                while idx < len(scale_steps):
                        fval *= scale_steps[idx - 1][0] / scale_steps[idx][0]
                        if fval >= 1:
                                dval += ' ' \
                                    + ("%.1f" % fval) \
                                    + scale_steps[idx][1]
                                break
                        idx += 1

        return dval


# Returns a single selected object.
# Returns None if more than one (or nothing) is selected.
# Note: Ignores the active object.
def getSingleObject():
    if len(bpy.context.selected_objects) == 1:
        return bpy.context.selected_objects[0]

    return None


# Returns a list with 2 3D points (Vector) and a color (RGBA)
# depending on the current view mode and the selection.
def getMeasurePoints(context):
    sce = context.scene
    mode = context.mode

    # Get a single selected object (or nothing).
    obj = getSingleObject()

    if mode == 'EDIT_MESH':
        obj = context.active_object

        if obj and obj.type == 'MESH' and obj.data:
            # Get mesh data from Object.
            mesh = obj.data

            # Get the selected vertices.
            # @todo: Better (more efficient) way to do this?
            verts_selected = [v for v in mesh.vertices if v.select == 1]

            if len(verts_selected) == 0:
                # Nothing selected.
                # We measure the distance from...
                # local  ... the object center to the 3D cursor.
                # global ... the origin to the 3D cursor.
                cur_loc = sce.cursor_location
                obj_loc = obj.matrix_world.to_translation()

                # Convert to local space, if needed.
                if measureLocal(sce):
                    p1 = cur_loc
                    p2 = obj_loc
                    return (p1, p2, COLOR_GLOBAL)
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090

                else:
                    p1 = Vector((0.0, 0.0, 0.0))
                    p2 = cur_loc
                    return (p1, p2, COLOR_GLOBAL)

            elif len(verts_selected) == 1:
                # One vertex selected.
                # We measure the distance from the
                # selected vertex object to the 3D cursor.
                cur_loc = sce.cursor_location
                vert_loc = verts_selected[0].co.copy()

                # Convert to local or global space.
                if measureLocal(sce):
                    p1 = vert_loc
                    p2 = cur_loc
                    return (p1, p2, COLOR_LOCAL)

                else:
                    p1 = obj.matrix_world * vert_loc
                    p2 = cur_loc
                    return (p1, p2, COLOR_GLOBAL)

            elif len(verts_selected) == 2:
                # Two vertices selected.
                # We measure the distance between the
                # two selected vertices.
                obj_loc = obj.matrix_world.to_translation()
                vert1_loc = verts_selected[0].co.copy()
                vert2_loc = verts_selected[1].co.copy()

                # Convert to local or global space.
                if measureLocal(sce):
                    p1 = vert1_loc
                    p2 = vert2_loc
                    return (p1, p2, COLOR_LOCAL)

                else:
                    p1 = obj.matrix_world * vert1_loc
                    p2 = obj.matrix_world * vert2_loc
                    return (p1, p2, COLOR_GLOBAL)

            else:
                return None

    elif mode == 'OBJECT':
        # We are working in object mode.

        if len(context.selected_objects) > 2:
            return None
        elif len(context.selected_objects) == 2:
            # 2 objects selected.
            # We measure the distance between the 2 selected objects.
            obj1, obj2 = context.selected_objects
            obj1_loc = obj1.matrix_world.to_translation()
            obj2_loc = obj2.matrix_world.to_translation()
            return (obj1_loc, obj2_loc, COLOR_GLOBAL)

        elif obj:
            # One object selected.
            # We measure the distance from the object to the 3D cursor.
            cur_loc = sce.cursor_location
            obj_loc = obj.matrix_world.to_translation()
            return (obj_loc, cur_loc, COLOR_GLOBAL)

        elif not context.selected_objects:
            # Nothing selected.
            # We measure the distance from the origin to the 3D cursor.
            p1 = Vector((0.0, 0.0, 0.0))
            p2 = sce.cursor_location
            return (p1, p2, COLOR_GLOBAL)

        else:
            return None


# Return the length of an edge (in global space if "obj" is set).
# Respects the scaling (via the "obj.matrix_world" parameter).
def edgeLengthGlobal(edge, obj, globalSpace):
    v1, v2 = edge.vertices

    # Get vertex data
    v1 = obj.data.vertices[v1]
    v2 = obj.data.vertices[v2]

    if globalSpace:
        mat = obj.matrix_world
        # Apply transform matrix to vertex coordinates.
        v1 = mat * v1.co
        v2 = mat * v2.co
    else:
        v1 = v1.co
        v2 = v2.co

    return (v1 - v2).length


# Calculate the edge length of a mesh object.
# *) Set selectedOnly=1 if you only want to count selected edges.
# *) Set globalSpace=1 if you want to calculate
#    the global edge length (object mode).
# Note: Be sure you have updated the mesh data before
#       running this with selectedOnly=1!
# @todo Support other object types (surfaces, etc...)?
def objectEdgeLength(obj, selectedOnly, globalSpace):
    if obj and obj.type == 'MESH' and obj.data:
        edgeTotal = 0

        mesh = obj.data

        # Count the length of all edges.
        for ed in mesh.edges:
            if not selectedOnly or ed.select:
                edgeTotal += edgeLengthGlobal(ed, obj, globalSpace)

        return edgeTotal

    # We can not calculate a length for this object.
    return -1


# Return the area of a face (in global space).
# @note Copies the functionality of the following functions,
# but also respects the scaling (via the "obj.matrix_world" parameter):
# @sa: rna_mesh.c:rna_MeshTessFace_area_get
# @sa: math_geom.c:area_quad_v3
# @sa: math_geom.c:area_tri_v3
# @sa: math_geom.c:area_poly_v3
# @todo Fix calculation of "n" for n-gons?
def polyAreaGlobal(poly, obj):
    mesh = obj.data
    mat = obj.matrix_world.copy()
    norm = poly.normal

    area = 0.0

    if len(poly.vertices) > 3:
        # Tesselate the polygon into multiple tris
        tris = ngon_tessellate(mesh, poly.vertices)

        for tri in tris:
            # Get vertex data
            v1, v2, v3 = tri

            # Get indices from original poly
            v1 = poly.vertices[v1]
            v2 = poly.vertices[v2]
            v3 = poly.vertices[v3]

            # Get vertex information from indices
            v1 = mesh.vertices[v1]
            v2 = mesh.vertices[v2]
            v3 = mesh.vertices[v3]

            # Apply transform matrix to vertex coordinates.
            v1 = mat * v1.co
            v2 = mat * v2.co
            v3 = mat * v3.co

            # Calculate area for the new tri
            vec1 = v3 - v2
            vec2 = v1 - v2

            n = vec1.cross(vec2)

            area += n.length / 2.0

    elif len(poly.vertices) == 3:
        # Triangle

        # Get vertex indices
        v1, v2, v3 = poly.vertices

        # Get vertex data
        v1 = mesh.vertices[v1]
        v2 = mesh.vertices[v2]
        v3 = mesh.vertices[v3]

        # Apply transform matrix to vertex coordinates.
        v1 = mat * v1.co
        v2 = mat * v2.co
        v3 = mat * v3.co

        vec1 = v3 - v2
        vec2 = v1 - v2

        n = vec1.cross(vec2)

        area = n.length / 2.0

    # Apply rotation and scale to the normal as well.
    rot_mat = obj.matrix_world.to_quaternion()
    scale = obj.matrix_world.to_scale()
    norm = rot_mat * norm
    norm = Vector((
        norm.x * scale.x,
        norm.y * scale.y,
        norm.z * scale.z)).normalized()

    return area, norm


# Calculate the surface area of a mesh object.
# *) Set selectedOnly=1 if you only want to count selected faces.
# *) Set globalSpace=1 if you want to calculate
#    the global surface area (object mode).
# Note: Be sure you have updated the mesh data before
#       running this with selectedOnly=1!
# @todo Support other object types (surfaces, etc...)?
def objectSurfaceArea(obj, selectedOnly, globalSpace):
    if obj and obj.type == 'MESH' and obj.data:
        areaTotal = 0
        normTotal = Vector((0.0, 0.0, 0.0))

        mesh = obj.data

        # Count the area of all the faces.
        for poly in mesh.polygons:
            if not selectedOnly or poly.select:
                if globalSpace:
                    a, n = polyAreaGlobal(poly, obj)
                    areaTotal += a
                    normTotal += n
                else:
                    areaTotal += poly.area
                    normTotal += poly.normal

        return areaTotal, normTotal

    # We can not calculate an area for this object.
    return -1, Vector((0.0, 0.0, 0.0))


# Calculate the volume of a mesh object.
# Copyright Loonsbury (loonsbury@yahoo.com)
def objectVolume(obj, globalSpace):
    if obj and obj.type == 'MESH' and obj.data:

        # Check if mesh is non-manifold
        if not checkManifold(obj):
            return -1

        # Check if mesh has n-gons
        if checkNgon(obj):
            return -2

        mesh = obj.data

        volTot = 0

        for poly in mesh.polygons:
            fzn = poly.normal.z

            if len(poly.vertices) == 4:
                v1, v2, v3, v4 = poly.vertices
            else:
                v1, v2, v3 = poly.vertices

            v1 = mesh.vertices[v1]
            v2 = mesh.vertices[v2]
            v3 = mesh.vertices[v3]

            # Scaled vert coordinates with object XYZ offsets for
            # selection extremes/sizing.
            if globalSpace:
                x1 = v1.co[0] * obj.scale[0] + obj.location[0]
                y1 = v1.co[1] * obj.scale[1] + obj.location[1]
                z1 = v1.co[2] * obj.scale[2] + obj.location[2]

                x2 = v2.co[0] * obj.scale[0] + obj.location[0]
                y2 = v2.co[1] * obj.scale[1] + obj.location[1]
                z2 = v2.co[2] * obj.scale[2] + obj.location[2]

                x3 = v3.co[0] * obj.scale[0] + obj.location[0]
                y3 = v3.co[1] * obj.scale[1] + obj.location[1]
                z3 = v3.co[2] * obj.scale[2] + obj.location[2]

            else:
                x1, y1, z1 = v1.co
                x2, y2, z2 = v2.co
                x3, y3, z3 = v3.co

            pa = 0.5 * abs(
                (x1 * (y3 - y2))
                + (x2 * (y1 - y3))
                + (x3 * (y2 - y1)))
            volume = ((z1 + z2 + z3) / 3.0) * pa

            # Allowing for quads
            if len(poly.vertices) == 4:
                # Get vertex data
                v4 = mesh.vertices[v4]

                if globalSpace:
                    x4 = v4.co[0] * obj.scale[0] + obj.location[0]
                    y4 = v4.co[1] * obj.scale[1] + obj.location[1]
                    z4 = v4.co[2] * obj.scale[2] + obj.location[2]

                else:
                    x4, y4, z4 = v4.co

                pa = 0.5 * abs(
                    (x1 * (y4 - y3))
                    + (x3 * (y1 - y4))
                    + (x4 * (y3 - y1)))

                volume += ((z1 + z3 + z4) / 3.0) * pa

            if fzn < 0:
                fzn = -1

            elif fzn > 0:
                fzn = 1

            else:
                fzn = 0

            volTot += fzn * volume

        return volTot

#    else:
#        print obj.name, ': Object must be a mesh!'        # TODO

    return -3


# Manifold Checks
# Copyright Loonsbury (loonsbury@yahoo.com)
def checkManifold(obj):
    if obj and obj.type == 'MESH' and obj.data:
        mesh = obj.data

        mc = dict([(ed.key, 0) for ed in mesh.edges])     # TODO

        for p in mesh.polygons:
            for ek in p.edge_keys:
                mc[ek] += 1
                if mc[ek] > 2:
                    return 0

        mt = [e[1] for e in mc.items()]
        mt.sort()

        if mt[0] < 2:
            return 0

        if mt[len(mt) - 1] > 2:
            return 0

        return 1

    else:
        return -1


# Check if a mesh has n-gons (polygon with more than 4 edges).
def checkNgon(obj):
    if obj and obj.type == 'MESH' and obj.data:
        mesh = obj.data

        for p in mesh.polygons:
            if len(p.vertices) > 4:
                return 1

        return 0

    else:
        return -1


# User friendly access to the "space" setting.
def measureGlobal(sce):
    return (sce.measure_panel_transform == "measure_global")


# User friendly access to the "space" setting.
def measureLocal(sce):
    return (sce.measure_panel_transform == "measure_local")


# Calculate values if geometry, selection or cursor changed.
@persistent
def scene_update(context):
    sce = context
    mode = bpy.context.mode

    if (mode == 'EDIT_MESH' and not sce.measure_panel_update):
        return

    if (bpy.data.objects.is_updated
        or bpy.context.scene.is_updated
        or sce.measure_panel_update):
        # TODO: Better way to check selection changes and cursor changes?

        sel_objs = bpy.context.selected_objects

        # EDGE LENGTH
        if sce.measure_panel_calc_edge_length:
            if (mode == 'EDIT_MESH'
                and sce.measure_panel_update):
                sce.measure_panel_update = 0
                obj = bpy.context.object

                #if obj.is_updated:
                length_total = objectEdgeLength(obj, True,
                    measureGlobal(sce))
                sce.measure_panel_edge_length = length_total

            elif mode == 'OBJECT':
                length_total = -1

                for o in sel_objs:
                    if o.type == 'MESH':
                        length = objectEdgeLength(o, False, measureGlobal(sce))

                        if length >= 0:
                            if length_total < 0:
                                length_total = 0

                            length_total += length

                sce.measure_panel_edge_length = length_total

        # AREA
        # Handle mesh surface area calulations
        if sce.measure_panel_calc_area:
            if (mode == 'EDIT_MESH'
                and sce.measure_panel_update):
                sce.measure_panel_update = 0
                obj = bpy.context.active_object

                if obj and obj.type == 'MESH' and obj.data:
                    # "Note: a Mesh will return the selection state of the mesh
                    # when EditMode was last exited. A Python script operating
                    # in EditMode must exit EditMode before getting the current
                    # selection state of the mesh."
                    # http://www.blender.org/documentation/249PythonDoc/
                    # /Mesh.MVert-class.html#sel
                    # We can only provide this by existing &
                    # re-entering EditMode.
                    # @todo: Better way to do this?

                    # Get mesh data from Object.
                    me = obj.data

                    # Get transformation matrix from object.
                    ob_mat = obj.matrix_world
                    # Also make an inversed copy! of the matrix.
                    ob_mat_inv = ob_mat.copy()
                    Matrix.invert(ob_mat_inv)

                    # Get the selected vertices.
                    # @todo: Better (more efficient) way to do this?
                    verts_selected = [v for v in me.vertices if v.select == 1]

                    if len(verts_selected) >= 3:
                        # Get selected faces
                        # @todo: Better (more efficient) way to do this?
                        polys_selected = [p for p in me.polygons
                            if p.select == 1]

                        if len(polys_selected) > 0:
                            area, normal = objectSurfaceArea(obj, True,
                                measureGlobal(sce))
                            if area >= 0.0:
                                sce.measure_panel_area1 = area
                                sce.measure_panel_normal1 = normal

            elif mode == 'OBJECT':
                # We are working in object mode.

                # Get a single selected object (or nothing).
                obj = getSingleObject()

                if len(sel_objs) > 2:
                    return
# @todo Make this work again.
#                    # We have more that 2 objects selected...
#
#                    mesh_objects = [o for o in context.selected_objects
#                       if o.type == 'MESH']

#                    if len(mesh_objects) > 0:
#                        # ... and at least one of them is a mesh.
#
#                        for o in mesh_objects:
#                            area = objectSurfaceArea(o, False,
#                                measureGlobal(sce))
#                           if area >= 0:
#                               #row.label(text=o.name, icon='OBJECT_DATA')
#                               #row.label(text=str(round(area, PRECISION))
#                               #    + " BU^2")

                elif len(sel_objs) == 2:
                    # 2 objects selected.

                    obj1, obj2 = sel_objs

                    # Calculate surface area of the objects.
                    area1, normal1 = objectSurfaceArea(obj1, False,
                        measureGlobal(sce))
                    area2, normal2 = objectSurfaceArea(obj2, False,
                        measureGlobal(sce))
                    sce.measure_panel_area1 = area1
                    sce.measure_panel_area2 = area2
                    sce.measure_panel_normal1 = normal1
                    sce.measure_panel_normal2 = normal2

                elif obj:
                    # One object selected.

                    # Calculate surface area of the object.
                    area, normal = objectSurfaceArea(obj, False,
                        measureGlobal(sce))

                    sce.measure_panel_area1 = area
                    sce.measure_panel_normal1 = normal

        # VOLUME
        # Handle mesh volume calulations.
        if sce.measure_panel_calc_volume:
            obj = getSingleObject()

            if mode == 'OBJECT':
                # We are working in object mode.

                #if len(sel_objs) > 2:       # TODO
                #el
                if len(sel_objs) == 2:
                    # 2 objects selected.

                    obj1, obj2 = sel_objs

                    # Calculate surface area of the objects.
                    volume1 = objectVolume(obj1, measureGlobal(sce))
                    volume2 = objectVolume(obj2, measureGlobal(sce))

                    sce.measure_panel_volume1 = volume1
                    sce.measure_panel_volume2 = volume2

                elif obj:
                    # One object selected.

                    # Calculate surface area of the object.
                    volume1 = objectVolume(obj, measureGlobal(sce))

                    sce.measure_panel_volume1 = volume1


def draw_measurements_callback(self, context):
    sce = context.scene

    draw = 0
    if hasattr(sce, "measure_panel_draw"):
        draw = sce.measure_panel_draw

    # 2D drawing code example
    #bgl.glBegin(bgl.GL_LINE_STRIP)
    #bgl.glVertex2i(0, 0)
    #bgl.glVertex2i(80, 100)
    #bgl.glEnd()

    # Get measured 3D points and colors.
    line = getMeasurePoints(context)

    if line:
        p1, p2, color = line

        dist = (p1 - p2).length

        # Write distance value into the scene property,
        # so we can display it in the panel & refresh the panel.
        if hasattr(sce, "measure_panel_dist"):
            sce.measure_panel_dist = dist
            context.area.tag_redraw()

        if draw:
            # Get & convert the Perspective Matrix of the current view/region.
            view3d = bpy.context
            region = view3d.region_data
            perspMatrix = region.perspective_matrix
            tempMat = [perspMatrix[j][i] for i in range(4) for j in range(4)]
            perspBuff = bgl.Buffer(bgl.GL_FLOAT, 16, tempMat)

            # ---
            # Store previous OpenGL settings.
            # Store MatrixMode
            MatrixMode_prev = bgl.Buffer(bgl.GL_INT, [1])
            bgl.glGetIntegerv(bgl.GL_MATRIX_MODE, MatrixMode_prev)
            MatrixMode_prev = MatrixMode_prev[0]

            # Store projection matrix
            ProjMatrix_prev = bgl.Buffer(bgl.GL_DOUBLE, [16])
            bgl.glGetFloatv(bgl.GL_PROJECTION_MATRIX, ProjMatrix_prev)

            # Store Line width
            lineWidth_prev = bgl.Buffer(bgl.GL_FLOAT, [1])
            bgl.glGetFloatv(bgl.GL_LINE_WIDTH, lineWidth_prev)
            lineWidth_prev = lineWidth_prev[0]

            # Store GL_BLEND
            blend_prev = bgl.Buffer(bgl.GL_BYTE, [1])
            bgl.glGetFloatv(bgl.GL_BLEND, blend_prev)
            blend_prev = blend_prev[0]

            line_stipple_prev = bgl.Buffer(bgl.GL_BYTE, [1])
            bgl.glGetFloatv(bgl.GL_LINE_STIPPLE, line_stipple_prev)
            line_stipple_prev = line_stipple_prev[0]

            # Store glColor4f
            color_prev = bgl.Buffer(bgl.GL_FLOAT, [4])
            bgl.glGetFloatv(bgl.GL_COLOR, color_prev)

            # ---
            # Prepare for 3D drawing
            bgl.glLoadIdentity()
            bgl.glMatrixMode(bgl.GL_PROJECTION)
            bgl.glLoadMatrixf(perspBuff)

            bgl.glEnable(bgl.GL_BLEND)
            bgl.glEnable(bgl.GL_LINE_STIPPLE)

            # ---
            # Draw 3D stuff.
            bgl.glLineWidth(LINE_WIDTH_XYZ)
            # X
            bgl.glColor4f(1, 0, 0, 0.8)
            bgl.glBegin(bgl.GL_LINE_STRIP)
            bgl.glVertex3f(p1[0], p1[1], p1[2])
            bgl.glVertex3f(p2[0], p1[1], p1[2])
            bgl.glEnd()
            # Y
            bgl.glColor4f(0, 1, 0, 0.8)
            bgl.glBegin(bgl.GL_LINE_STRIP)
            bgl.glVertex3f(p1[0], p1[1], p1[2])
            bgl.glVertex3f(p1[0], p2[1], p1[2])
            bgl.glEnd()
            # Z
            bgl.glColor4f(0, 0, 1, 0.8)
            bgl.glBegin(bgl.GL_LINE_STRIP)
            bgl.glVertex3f(p1[0], p1[1], p1[2])
            bgl.glVertex3f(p1[0], p1[1], p2[2])
            bgl.glEnd()

            # Dist
            bgl.glLineWidth(LINE_WIDTH_DIST)
            bgl.glColor4f(color[0], color[1], color[2], color[3])
            bgl.glBegin(bgl.GL_LINE_STRIP)
            bgl.glVertex3f(p1[0], p1[1], p1[2])
            bgl.glVertex3f(p2[0], p2[1], p2[2])
            bgl.glEnd()

            # ---
            # Restore previous OpenGL settings
            bgl.glLoadIdentity()
            bgl.glMatrixMode(MatrixMode_prev)
            bgl.glLoadMatrixf(ProjMatrix_prev)
            bgl.glLineWidth(lineWidth_prev)
            if not blend_prev:
                bgl.glDisable(bgl.GL_BLEND)
            if not line_stipple_prev:
                bgl.glDisable(bgl.GL_LINE_STIPPLE)
            bgl.glColor4f(
                color_prev[0],
                color_prev[1],
                color_prev[2],
                color_prev[3])

            # ---
            # Draw (2D) text
            # We do this after drawing the lines so
            # we can draw it OVER the line.
            coord_2d = location_3d_to_region_2d(
                context.region,
                context.space_data.region_3d,
                p1.lerp(p2, 0.5))

            texts = [
                ("Dist:", dist),
                ("X:", abs(p1[0] - p2[0])),
                ("Y:", abs(p1[1] - p2[1])),
                ("Z:", abs(p1[2] - p2[2]))]

            # Draw all texts
            # @todo Get user pref for text color in 3D View
            bgl.glColor4f(1.0, 1.0, 1.0, 1.0)
            blf.size(0, 12, 72)  # Prevent font size to randomly change.

            uinfo = getUnitsInfo()

            loc_x = coord_2d[0] + OFFSET_LINE
            loc_y = coord_2d[1]

            for t in texts:
                text = t[0]

                value = convertDistance(t[1], uinfo)

                blf.position(0, loc_x, loc_y, 0)
                blf.draw(0, text)
                blf.position(0, loc_x + OFFSET_VALUE, loc_y, 0)
                blf.draw(0, value)

                loc_y -= OFFSET_Y


# Callback code Daniel Ashby 2014-10-30
class VIEW3D_OT_display_measurements(bpy.types.Operator):
    """Display the measurements made in the 'Measure' panel"""
    bl_idname = "view3d.display_measurements"
    bl_label = "Display measurements"
    bl_description = "Display the measurements made in the" \
        " 'Measure' panel in the 3D View"
    bl_options = {'REGISTER'}  # TODO: can this be removed?
    _handle = None

    @staticmethod
    def handle_add(self, context):
        VIEW3D_OT_display_measurements._handle \
        = bpy.types.SpaceView3D.draw_handler_add(
                draw_measurements_callback,
                (self, context),
                'WINDOW', 'POST_PIXEL')

    @staticmethod
    def handle_remove(context):
        if VIEW3D_OT_display_measurements._handle is not None:
            bpy.types.SpaceView3D.draw_handler_remove(
                VIEW3D_OT_display_measurements._handle,
                'WINDOW')
        VIEW3D_OT_display_measurements._handle = None

    def modal(self, context, event):
        if context.area:
            context.area.tag_redraw

        if not context.window_manager.display_measurements_runstate:
            #stop script
            VIEW3D_OT_display_measurements.handle_remove(context)
            return {'CANCELLED'}

        return {'PASS_THROUGH'}

    def cancel(self, context):
        if context.window_manager.display_measurements_runstate:
            display_measurements.handle_remove(context)
            context.window_manager.display_measurements_runstate = False
        return {'CANCELLED'}

    def invoke(self, context, event):
        if context.area.type == 'VIEW_3D':
            if context.window_manager.display_measurements_runstate is False:
                # operator is called for the first time, start everything
                context.window_manager.display_measurements_runstate = True
                VIEW3D_OT_display_measurements.handle_add(self, context)
                context.window_manager.modal_handler_add(self)
                return {'RUNNING_MODAL'}

            else:
                # operator is called again, stop displaying
                context.window_manager.display_measurements_runstate = False
                return {'CANCELLED'}

        else:
            self.report({'WARNING'}, "3D View not found, can't run operator"
                " for 'Display measurements'")
            return {'CANCELLED'}


class VIEW3D_OT_activate_measure_panel(bpy.types.Operator):
    bl_label = "Activate"
    bl_idname = "view3d.activate_measure_panel"
    bl_description = "Activate the callback needed to draw the lines"
    bl_options = {'REGISTER'}

    def invoke(self, context, event):

        # Execute operator (this adds the callback)
        # if it wasn't done yet.
        bpy.ops.view3d.display_measurements()
        return {'FINISHED'}


class VIEW3D_OT_reenter_editmode(bpy.types.Operator):
    bl_label = "Re-enter EditMode"
    bl_idname = "view3d.reenter_editmode"
    bl_description = "Update mesh data of an active mesh object " \
        "(this is done by exiting and re-entering mesh edit mode)"
    bl_options = {'REGISTER'}

    def invoke(self, context, event):

        # Get the active object.
        obj = context.active_object
        sce = context.scene

        if obj and obj.type == 'MESH' and context.mode == 'EDIT_MESH':
            # Exit and re-enter mesh EditMode.
            bpy.ops.object.mode_set(mode='OBJECT')
            bpy.ops.object.mode_set(mode='EDIT')
            sce.measure_panel_update = 1
            return {'FINISHED'}

        return {'CANCELLED'}


class VIEW3D_PT_measure(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'UI'
    bl_label = "Measure"
    bl_options = {'DEFAULT_CLOSED'}

    @classmethod
    def poll(cls, context):
        # Only display this panel in the object and edit mode 3D view.
        mode = context.mode
        if (context.area.type == 'VIEW_3D' and
            (mode == 'EDIT_MESH' or mode == 'OBJECT')):
            return 1

        return 0

    def draw_header(self, context):
        layout = self.layout
        sce = context.scene

        if not context.window_manager.display_measurements_runstate:
            layout.operator("view3d.display_measurements", text="Activate",
                icon="PLAY")

    def draw(self, context):
        layout = self.layout
        sce = context.scene
        mode = context.mode

        # Get a single selected object (or nothing).
        obj = getSingleObject()

        drawTansformButtons = 1

        if mode == 'EDIT_MESH':
            obj = context.active_object

            row = layout.row()
            row.operator("view3d.reenter_editmode",
                text="Update selection")
#               @todo
#                description="The calculated values can" \
#                    " not be updated in mesh edit mode" \
#                    " automatically. Press this button" \
#                    " to do this manually, after you changed" \
#                    " the selection")

            if obj and obj.type == 'MESH' and obj.data:
                # "Note: a Mesh will return the selection state of the mesh
                # when EditMode was last exited. A Python script operating
                # in EditMode must exit EditMode before getting the current
                # selection state of the mesh."
                # http://www.blender.org/documentation/249PythonDoc/
                # /Mesh.MVert-class.html#sel
                # We can only provide this by existing & re-entering EditMode.
                # @todo: Better way to do this?

                # Get mesh data from Object.
                mesh = obj.data

                # Get transformation matrix from object.
                ob_mat = obj.matrix_world
                # Also make an inversed copy! of the matrix.
                ob_mat_inv = ob_mat.copy()
                Matrix.invert(ob_mat_inv)

                # Get the selected vertices.
                # @todo: Better (more efficient) way to do this?
                verts_selected = [v for v in mesh.vertices if v.select == 1]

                if len(verts_selected) == 0:
                    # Nothing selected.
                    # We measure the distance from...
                    # local  ... the object center to the 3D cursor.
                    # global ... the origin to the 3D cursor.
                    layout.label(text="Distance")

                    box = layout.box()
                    row = box.row()
                    row.prop(sce, "measure_panel_dist")

                    row = box.row()
                    row.label(text="", icon='PIVOT_CURSOR')
                    row.label(text="", icon='ARROW_LEFTRIGHT')
                    if measureLocal(sce):
                        row.label(text="Obj. Center")
                    else:
                        row.label(text="Origin [0,0,0]")

                    layout.prop(sce, "measure_panel_draw")

                elif len(verts_selected) == 1:
                    # One vertex selected.
                    # We measure the distance from the
                    # selected vertex object to the 3D cursor.
                    layout.label(text="Distance")

                    box = layout.box()
                    row = box.row()
                    row.prop(sce, "measure_panel_dist")

                    row = box.row()
                    row.label(text="", icon='PIVOT_CURSOR')
                    row.label(text="", icon='ARROW_LEFTRIGHT')
                    row.label(text="", icon='VERTEXSEL')

                    layout.prop(sce, "measure_panel_draw")

                elif len(verts_selected) == 2:
                    # Two vertices selected.
                    # We measure the distance between the
                    # two selected vertices.
                    layout.label(text="Distance")

                    box = layout.box()
                    row = box.row()
                    row.prop(sce, "measure_panel_dist")

                    row = box.row()
                    row.label(text="", icon='VERTEXSEL')
                    row.label(text="", icon='ARROW_LEFTRIGHT')
                    row.label(text="", icon='VERTEXSEL')

                    layout.prop(sce, "measure_panel_draw")

                edges_selected = [ed for ed in mesh.edges if ed.select == 1]
                if len(edges_selected) >= 1:
                    row = layout.row()
                    row.prop(sce, "measure_panel_calc_edge_length",
                        text="Edge Length (selected edges)")

                    if sce.measure_panel_calc_edge_length:
                        if sce.measure_panel_edge_length >= 0:
                            box = layout.box()
                            row = box.row()
                            row.label(
                                text=str(len(edges_selected)),
                                icon='EDGESEL')

                            row = box.row()
                            row.label(text="Length")
                            row.prop(sce, "measure_panel_edge_length")

                if len(verts_selected) > 2:
                    row = layout.row()
                    row.prop(sce, "measure_panel_calc_area",
                        text="Surface area (selected faces)")

                    if sce.measure_panel_calc_area:
                        # Get selected faces
                        # @todo: Better (more efficient) way to do this?
                        polys_selected = [p for p in mesh.polygons
                            if p.select == 1]

                        if len(polys_selected) > 0:
                            if sce.measure_panel_area1 >= 0:
                                box = layout.box()
                                row = box.row()
                                row.label(
                                    text=str(len(polys_selected)),
                                    icon='FACESEL')

                                row = box.row()
                                row.label(text="Area")
                                row.prop(sce, "measure_panel_area1")

                                row = box.row()
                                row.label(text="Normal")
                                row = box.row()
                                row.prop(sce, "measure_panel_normal1")

                        else:
                            row = layout.row()
                            row.label(text="Selection not supported",
                                icon='INFO')

                if drawTansformButtons:
                    row = layout.row()
                    row.prop(sce,
                        "measure_panel_transform",
                        expand=True)

        elif mode == 'OBJECT':
            # We are working in object mode.

            mesh_objects = [o for o in context.selected_objects
                        if o.type == 'MESH']

            if len(context.selected_objects) > 2:
                # We have more that 2 objects selected...

                # EDGES
                row = layout.row()
                row.prop(sce, "measure_panel_calc_edge_length",
                    text="Edge Length")

                if sce.measure_panel_calc_edge_length:
                    if len(mesh_objects) > 0:
                        box = layout.box()

                        row = box.row()
                        row.label(text="Total edge length")
                        row.prop(sce, "measure_panel_edge_length")

                # AREA
                row = layout.row()
                row.prop(sce, "measure_panel_calc_area",
                        text="Surface area")

                if sce.measure_panel_calc_area:
                    if len(mesh_objects) > 0:
                        # ... and at least one of them is a mesh.

                        # Calculate and display surface area of the objects.
                        # @todo: Convert to scene units! We do not have a
                        # FloatProperty field here for automatic conversion.

                        row = layout.row()
                        row.label(text="Multiple objects not yet supported",
                            icon='INFO')
                        row = layout.row()
                        row.label(text="(= More than two meshes)",
                            icon='INFO')
# @todo Make this work again.
#                        for o in mesh_objects:
#                            area = objectSurfaceArea(o, False,
#                                measureGlobal(sce))
#                            if area >= 0:
#                                row = layout.row()
#                                row.label(text=o.name, icon='OBJECT_DATA')
#                                row.label(text=str(round(area, PRECISION))
#                                    + " BU^2")

            elif len(context.selected_objects) == 2:
                # 2 objects selected.
                # We measure the distance between the 2 selected objects.
                layout.label(text="Distance")

                obj1, obj2 = context.selected_objects

                box = layout.box()
                row = box.row()
                row.prop(sce, "measure_panel_dist")

                row = box.row()
                row.label(text="", icon='OBJECT_DATA')
                row.prop(obj1, "name", text="")

                row.label(text="", icon='ARROW_LEFTRIGHT')

                row.label(text="", icon='OBJECT_DATA')
                row.prop(obj2, "name", text="")

                layout.prop(sce, "measure_panel_draw")

                # EDGES
                row = layout.row()
                row.prop(sce, "measure_panel_calc_edge_length",
                    text="Edge Length")

                if sce.measure_panel_calc_edge_length:
                    if sce.measure_panel_edge_length >= 0:
                        if len(mesh_objects) > 0:
                            box = layout.box()

                            row = box.row()
                            row.label(text="Total edge length")
                            row.prop(sce, "measure_panel_edge_length")

                # AREA

                row = layout.row()
                row.prop(sce, "measure_panel_calc_area",
                    text="Surface area")

                if sce.measure_panel_calc_area:
                    # Display surface area of the objects.
                    if (sce.measure_panel_area1 >= 0
                    or sce.measure_panel_area2 >= 0):
                        if sce.measure_panel_area1 >= 0:
                            box = layout.box()
                            row = box.row()
                            row.label(text=obj1.name, icon='OBJECT_DATA')

                            row = box.row()
                            row.label(text="Area")
                            row.prop(sce, "measure_panel_area1")

                            row = box.row()
                            row.label(text="Normal")
                            row = box.row()
                            row.prop(sce, "measure_panel_normal1")

                        if sce.measure_panel_area2 >= 0:
                            box = layout.box()
                            row = box.row()
                            row.label(text=obj2.name, icon='OBJECT_DATA')

                            row = box.row()
                            row.label(text="Area")
                            row.prop(sce, "measure_panel_area2")

                            row = box.row()
                            row.label(text="Normal")
                            row = box.row()
                            row.prop(sce, "measure_panel_normal2")

                # VOL
                row = layout.row()
                row.prop(sce, "measure_panel_calc_volume",
                    text="Volume")

                if sce.measure_panel_calc_volume:
                    # Display volume of the objects.
                    if sce.measure_panel_volume1 >= -2:
                        box = layout.box()
                        row = box.row()
                        row.label(text=obj1.name, icon='OBJECT_DATA')

                        if sce.measure_panel_volume1 >= 0:
                            row = box.row()
                            row.label(text="Volume")
                            row.prop(sce, "measure_panel_volume1")
                        elif sce.measure_panel_volume1 >= -1:
                            row = box.row()
                            row.label(text="Mesh is non-manifold!",
                                icon='INFO')
                        else:  # -2
                            row = box.row()
                            row.label(text="Mesh has n-gons (faces with " \
                                "more than 4 edges)!",
                                icon='INFO')

                    if sce.measure_panel_volume2 >= -2:
                        box = layout.box()
                        row = box.row()
                        row.label(text=obj2.name, icon='OBJECT_DATA')

                        if sce.measure_panel_volume2 >= 0:
                            row = box.row()
                            row.label(text="Volume")
                            row.prop(sce, "measure_panel_volume2")
                        elif sce.measure_panel_volume2 >= -1:
                            row = box.row()
                            row.label(text="Mesh is non-manifold!",
                                icon='INFO')
                        else:  # -2
                            row = box.row()
                            row.label(text="Mesh has n-gons (faces with " \
                                "more than 4 edges)!",
                                icon='INFO')

            elif obj:
                # One object selected.
                # We measure the distance from the object to the 3D cursor.
                layout.label(text="Distance")

                box = layout.box()
                row = box.row()
                row.prop(sce, "measure_panel_dist")

                row = box.row()
                row.label(text="", icon='PIVOT_CURSOR')

                row.label(text="", icon='ARROW_LEFTRIGHT')

                row.label(text="", icon='OBJECT_DATA')
                row.prop(obj, "name", text="")

                layout.prop(sce, "measure_panel_draw")

                # EDGES
                row = layout.row()
                row.prop(sce, "measure_panel_calc_edge_length",
                    text="Edge Length")

                if sce.measure_panel_calc_edge_length:
                    if sce.measure_panel_edge_length >= 0:
                        if len(mesh_objects) > 0:
                            box = layout.box()

                            row = box.row()
                            row.label(text="Total edge length")
                            row.prop(sce, "measure_panel_edge_length")

                # AREA
                row = layout.row()
                row.prop(sce, "measure_panel_calc_area",
                    text="Surface area")

                if sce.measure_panel_calc_area:
                    # Display surface area of the object.

                    if sce.measure_panel_area1 >= 0.0:
                        box = layout.box()
                        row = box.row()
                        row.label(text=obj.name, icon='OBJECT_DATA')

                        row = box.row()
                        row.label(text="Area")
                        row.prop(sce, "measure_panel_area1")

                        row = box.row()
                        row.label(text="Normal")
                        row = box.row()
                        row.prop(sce, "measure_panel_normal1")

                # VOL
                row = layout.row()
                row.prop(sce, "measure_panel_calc_volume",
                    text="Volume")

                if sce.measure_panel_calc_volume:
                    # Display volume of the objects.
                    if sce.measure_panel_volume1 >= -2:
                        box = layout.box()
                        row = box.row()
                        row.label(text=obj.name, icon='OBJECT_DATA')

                        if sce.measure_panel_volume1 >= 0:
                            row = box.row()
                            row.label(text="Volume")
                            row.prop(sce, "measure_panel_volume1")
                        elif sce.measure_panel_volume1 >= -1:
                            row = box.row()
                            row.label(text="Mesh is non-manifold!",
                                icon='INFO')
                        else:  # -2
                            row = box.row()
                            row.label(text="Mesh has n-gons (faces with " \
                                "more than 4 edges)!",
                                icon='INFO')

            elif not context.selected_objects:
                # Nothing selected.
                # We measure the distance from the origin to the 3D cursor.
                layout.label(text="Distance")

                box = layout.box()
                row = box.row()
                row.prop(sce, "measure_panel_dist")

                row = box.row()
                row.label(text="", icon='PIVOT_CURSOR')
                row.label(text="", icon='ARROW_LEFTRIGHT')
                row.label(text="Origin [0,0,0]")

                layout.prop(sce, "measure_panel_draw")

            else:
                row = layout.row()
                row.label(text="Selection not supported",
                    icon='INFO')

            if drawTansformButtons:
                row = layout.row()
                row.prop(sce,
                    "measure_panel_transform",
                    expand=True)

classes = (
    VIEW3D_OT_display_measurements,
    VIEW3D_OT_reenter_editmode,
    VIEW3D_PT_measure)


def register():
    bpy.app.handlers.scene_update_post.append(scene_update)

    # Define a temporary attribute for the distance value
    bpy.types.Scene.measure_panel_dist = bpy.props.FloatProperty(
        name="Distance",
        precision=PRECISION,
        unit="LENGTH")
    bpy.types.Scene.measure_panel_edge_length = bpy.props.FloatProperty(
        name="",
        precision=PRECISION,
        unit="LENGTH")
    bpy.types.Scene.measure_panel_area1 = bpy.props.FloatProperty(
        name="",
        precision=PRECISION,
        unit="AREA")
    bpy.types.Scene.measure_panel_area2 = bpy.props.FloatProperty(
        name="",
        precision=PRECISION,
        unit="AREA")
    bpy.types.Scene.measure_panel_normal1 = bpy.props.FloatVectorProperty(
        name="",
        precision=PRECISION,
        subtype="XYZ")
    bpy.types.Scene.measure_panel_normal2 = bpy.props.FloatVectorProperty(
        name="",
        precision=PRECISION,
        subtype="XYZ")
    bpy.types.Scene.measure_panel_volume1 = bpy.props.FloatProperty(
        name="",
        precision=PRECISION,
        unit="VOLUME")
    bpy.types.Scene.measure_panel_volume2 = bpy.props.FloatProperty(
        name="",
        precision=PRECISION,
        unit="VOLUME")

    TRANSFORM = [
        ("measure_global", "Global",
         "Calculate values in global space"),
        ("measure_local", "Local",
         "Calculate values inside the local object space")]

    # Define dropdown for the global/local setting
    bpy.types.Scene.measure_panel_transform = bpy.props.EnumProperty(
        name="Space",
        description="Choose in which space you want to measure",
        items=TRANSFORM,
        default='measure_global')

    # Define property for the draw setting.
    bpy.types.Scene.measure_panel_draw = bpy.props.BoolProperty(
        name="Draw distance",
        description="Draw distances in 3D View",
        default=1)

    bpy.types.Scene.measure_panel_calc_edge_length = bpy.props.BoolProperty(
        description="Calculate total length of (selected) edges",
        default=0)

    # Define property for the calc-area setting.
    # @todo prevent double calculations for each refresh automatically?
    bpy.types.Scene.measure_panel_calc_area = bpy.props.BoolProperty(
        description="Calculate mesh surface area (heavy CPU "
                    "usage on bigger meshes)",
        default=0)

    # Define property for the calc-volume setting.
    bpy.types.Scene.measure_panel_calc_volume = bpy.props.BoolProperty(
        description="Calculate mesh volume (heavy CPU "
                    "usage on bigger meshes)",
        default=0)

     # Define dropdown for the global/local setting
    bpy.types.Scene.measure_panel_update = bpy.props.BoolProperty(
        description="Update CPU heavy calculations",
        default=0)

    # Callback code Daniel Ashby 2014-10-30
    # Runstate initially always set to False
    # note: it is not stored in the Scene, but in window manager:
    wm = bpy.types.WindowManager
    wm.display_measurements_runstate = bpy.props.BoolProperty(default=False)

    for c in classes:
        bpy.utils.register_class(c)


def unregister():
    bpy.app.handlers.scene_update_post.remove(scene_update)

    VIEW3D_OT_display_measurements.handle_remove(bpy.context)

    for c in classes:
        bpy.utils.unregister_class(c)

    # Remove properties.
    del bpy.types.Scene.measure_panel_dist
    del bpy.types.Scene.measure_panel_edge_length
    del bpy.types.Scene.measure_panel_area1
    del bpy.types.Scene.measure_panel_area2
    del bpy.types.Scene.measure_panel_normal1
    del bpy.types.Scene.measure_panel_normal2
    del bpy.types.Scene.measure_panel_volume1
    del bpy.types.Scene.measure_panel_volume2
    del bpy.types.Scene.measure_panel_transform
    del bpy.types.Scene.measure_panel_draw
    del bpy.types.Scene.measure_panel_calc_edge_length
    del bpy.types.Scene.measure_panel_calc_area
    del bpy.types.Scene.measure_panel_calc_volume
    del bpy.types.Scene.measure_panel_update

if __name__ == "__main__":
    register()