Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from mathutils import *
import math
import datetime
from . properties import *
Degrees = "\xb0"
def format_time(theTime, UTCzone, daylightSavings, longitude):
hh = str(int(theTime))
min = (theTime - int(theTime)) * 60
sec = int((min - int(min)) * 60)
mm = "0" + str(int(min)) if min < 10 else str(int(min))
ss = "0" + str(sec) if sec < 10 else str(sec)
zone = UTCzone
if(longitude < 0):
zone *= -1
if daylightSavings:
zone += 1
gt = int(theTime) - zone
if gt < 0:
gt = 24 + gt
elif gt > 23:
gt = gt - 24
gt = str(gt)
return ("Local: " + hh + ":" + mm + ":" + ss,
"UTC: " + gt + ":" + mm + ":" + ss)
def format_hms(theTime):
hh = str(int(theTime))
min = (theTime - int(theTime)) * 60
sec = int((min - int(min)) * 60)
mm = "0" + str(int(min)) if min < 10 else str(int(min))
ss = "0" + str(sec) if sec < 10 else str(sec)
return (hh + ":" + mm + ":" + ss)
def format_lat_long(latLong, isLatitude):
hh = str(abs(int(latLong)))
min = abs((latLong - int(latLong)) * 60)
sec = abs(int((min - int(min)) * 60))
mm = "0" + str(int(min)) if min < 10 else str(int(min))
ss = "0" + str(sec) if sec < 10 else str(sec)
if latLong == 0:
coordTag = " "
else:
if isLatitude:
coordTag = " N" if latLong > 0 else " S"
else:
coordTag = " E" if latLong > 0 else " W"
return hh + Degrees + " " + mm + "' " + ss + '"' + coordTag
############################################################################
#
# PlaceSun() will cycle through all the selected objects of type LAMP or
# MESH and call setSunPosition to place them in the sky.
#
############################################################################
def Move_sun():
if Sun.PP.UsageMode == "HDR":
Sun.Theta = math.pi / 2 - degToRad(Sun.Elevation)
Sun.Phi = -Sun.Azimuth
locX = math.sin(Sun.Phi) * math.sin(-Sun.Theta) * Sun.SunDistance
locY = math.sin(Sun.Theta) * math.cos(Sun.Phi) * Sun.SunDistance
locZ = math.cos(Sun.Theta) * Sun.SunDistance
try:
nt = bpy.context.scene.world.node_tree.nodes
envTex = nt.get(Sun.HDR_texture)
if Sun.Bind.azDiff and envTex.texture_mapping.rotation.z == 0.0:
envTex.texture_mapping.rotation.z = Sun.Bind.azDiff
if envTex and Sun.BindToSun:
az = Sun.Azimuth
if Sun.Bind.azStart < az:
taz = az - Sun.Bind.azStart
else:
taz = -(Sun.Bind.azStart - az)
envTex.texture_mapping.rotation.z += taz
Sun.Bind.azStart = az
obj = bpy.context.scene.objects.get(Sun.SunObject)
try:
obj.location = locX, locY, locZ
except:
pass
if obj.type == 'LAMP':
obj.rotation_euler = (
(math.radians(Sun.Elevation - 90), 0, -Sun.Azimuth))
except:
pass
return True
totalObjects = len(Sun.Selected_objects)
localTime = Sun.Time
if Sun.Longitude > 0:
zone = Sun.UTCzone * -1
else:
zone = Sun.UTCzone
if Sun.DaylightSavings:
zone -= 1
northOffset = radToDeg(Sun.NorthOffset)
if Sun.ShowRiseSet:
calcSunrise_Sunset(1)
calcSunrise_Sunset(0)
getSunPosition(None, localTime, Sun.Latitude, Sun.Longitude,
northOffset, zone, Sun.Month, Sun.Day, Sun.Year,
Sun.SunDistance)
if Sun.UseSkyTexture:
try:
nt = bpy.context.scene.world.node_tree.nodes
sunTex = nt.get(Sun.SkyTexture)
if sunTex:
locX = math.sin(Sun.Phi) * math.sin(-Sun.Theta)
locY = math.sin(Sun.Theta) * math.cos(Sun.Phi)
locZ = math.cos(Sun.Theta)
sunTex.texture_mapping.rotation.z = 0.0
sunTex.sun_direction = locX, locY, locZ
except:
pass
if Sun.UseSunObject:
try:
obj = bpy.context.scene.objects.get(Sun.SunObject)
setSunPosition(obj, Sun.SunDistance)
if obj.type == 'LAMP':
obj.rotation_euler = (
(math.radians(Sun.Elevation - 90), 0,
math.radians(-Sun.AzNorth)))
except:
pass
if totalObjects < 1 or not Sun.UseObjectGroup:
return False
if Sun.ObjectGroup == 'ECLIPTIC':
# Ecliptic
if totalObjects > 1:
timeIncrement = Sun.TimeSpread / (totalObjects - 1)
localTime = localTime + timeIncrement * (totalObjects - 1)
else:
timeIncrement = Sun.TimeSpread
for obj in Sun.Selected_objects:
mesh = obj.type
if mesh == 'LAMP' or mesh == 'MESH':
getSunPosition(obj,
localTime,
Sun.Latitude, Sun.Longitude,
northOffset, zone,
Sun.Month, Sun.Day, Sun.Year,
Sun.SunDistance)
setSunPosition(obj, Sun.SunDistance)
localTime = localTime - timeIncrement
if mesh == 'LAMP':
obj.rotation_euler = (
(math.radians(Sun.Elevation - 90), 0,
math.radians(-Sun.AzNorth)))
else:
# Analemma
dayIncrement = 365 / totalObjects
day = Sun.Day_of_year + dayIncrement * (totalObjects - 1)
for obj in Sun.Selected_objects:
mesh = obj.type
if mesh == 'LAMP' or mesh == 'MESH':
dt = (datetime.date(Sun.Year, 1, 1) +
datetime.timedelta(day - 1))
getSunPosition(obj, localTime,
Sun.Latitude, Sun.Longitude,
northOffset, zone, dt.month, dt.day,
Sun.Year, Sun.SunDistance)
setSunPosition(obj, Sun.SunDistance)
day -= dayIncrement
if mesh == 'LAMP':
obj.rotation_euler = (
(math.radians(Sun.Elevation - 90), 0,
math.radians(-Sun.AzNorth)))
return True
############################################################################
#
# Calculate the actual position of the sun based on input parameters.
#
# The sun positioning algorithms below are based on the National Oceanic
# and Atmospheric Administration's (NOAA) Solar Position Calculator
# which rely on calculations of Jean Meeus' book "Astronomical Algorithms."
# Use of NOAA data and products are in the public domain and may be used
# freely by the public as outlined in their policies at
# www.nws.noaa.gov/disclaimer.php
#
# The calculations of this script can be verified with those of NOAA's
# using the Azimuth and Solar Elevation displayed in the SunPos_Panel.
# NOAA's web site is:
# http://www.esrl.noaa.gov/gmd/grad/solcalc
############################################################################
def getSunPosition(obj, localTime, latitude, longitude, northOffset,
utcZone, month, day, year, distance):
longitude *= -1 # for internal calculations
utcTime = localTime + utcZone # Set Greenwich Meridian Time
if latitude > 89.93: # Latitude 90 and -90 gives
latitude = degToRad(89.93) # erroneous results so nudge it
elif latitude < -89.93:
latitude = degToRad(-89.93)
else:
latitude = degToRad(latitude)
t = julianTimeFromY2k(utcTime, year, month, day)
e = degToRad(obliquityCorrection(t))
L = apparentLongitudeOfSun(t)
solarDec = sunDeclination(e, L)
eqtime = calcEquationOfTime(t)
timeCorrection = (eqtime - 4 * longitude) + 60 * utcZone
trueSolarTime = ((utcTime - utcZone) * 60.0 + timeCorrection) % 1440
hourAngle = trueSolarTime / 4.0 - 180.0
if hourAngle < -180.0:
hourAngle += 360.0
csz = (math.sin(latitude) * math.sin(solarDec) +
math.cos(latitude) * math.cos(solarDec) *
math.cos(degToRad(hourAngle)))
if csz > 1.0:
csz = 1.0
elif csz < -1.0:
csz = -1.0
zenith = math.acos(csz)
azDenom = math.cos(latitude) * math.sin(zenith)
if abs(azDenom) > 0.001:
azRad = ((math.sin(latitude) *
math.cos(zenith)) - math.sin(solarDec)) / azDenom
if abs(azRad) > 1.0:
azRad = -1.0 if (azRad < 0.0) else 1.0
azimuth = 180.0 - radToDeg(math.acos(azRad))
if hourAngle > 0.0:
azimuth = -azimuth
else:
azimuth = 180.0 if (latitude > 0.0) else 0.0
if azimuth < 0.0:
azimuth = azimuth + 360.0
exoatmElevation = 90.0 - radToDeg(zenith)
if exoatmElevation > 85.0:
refractionCorrection = 0.0
else:
te = math.tan(degToRad(exoatmElevation))
if exoatmElevation > 5.0:
refractionCorrection = (
58.1 / te - 0.07 / (te ** 3) + 0.000086 / (te ** 5))
elif (exoatmElevation > -0.575):
s1 = (-12.79 + exoatmElevation * 0.711)
s2 = (103.4 + exoatmElevation * (s1))
s3 = (-518.2 + exoatmElevation * (s2))
refractionCorrection = 1735.0 + exoatmElevation * (s3)
else:
refractionCorrection = -20.774 / te
refractionCorrection = refractionCorrection / 3600
if Sun.ShowRefraction:
solarElevation = 90.0 - (radToDeg(zenith) - refractionCorrection)
else:
solarElevation = 90.0 - radToDeg(zenith)
solarAzimuth = azimuth + northOffset
Sun.AzNorth = solarAzimuth
Sun.Theta = math.pi / 2 - degToRad(solarElevation)
Sun.Phi = degToRad(solarAzimuth) * -1
Sun.Azimuth = azimuth
Sun.Elevation = solarElevation
def setSunPosition(obj, distance):
locX = math.sin(Sun.Phi) * math.sin(-Sun.Theta) * distance
locY = math.sin(Sun.Theta) * math.cos(Sun.Phi) * distance
locZ = math.cos(Sun.Theta) * distance
#----------------------------------------------
# Update selected object in viewport
#----------------------------------------------
try:
obj.location = locX, locY, locZ
except:
pass
def calcSunriseSetUTC(rise, jd, latitude, longitude):
t = calcTimeJulianCent(jd)
eqTime = calcEquationOfTime(t)
solarDec = calcSunDeclination(t)
hourAngle = calcHourAngleSunrise(latitude, solarDec)
if not rise:
hourAngle = -hourAngle
delta = longitude + radToDeg(hourAngle)
timeUTC = 720 - (4.0 * delta) - eqTime
return timeUTC
def calcSunDeclination(t):
e = degToRad(obliquityCorrection(t))
L = apparentLongitudeOfSun(t)
solarDec = sunDeclination(e, L)
return solarDec
def calcHourAngleSunrise(lat, solarDec):
latRad = degToRad(lat)
HAarg = (math.cos(degToRad(90.833)) /
(math.cos(latRad) * math.cos(solarDec))
- math.tan(latRad) * math.tan(solarDec))
if HAarg < -1.0:
HAarg = -1.0
elif HAarg > 1.0:
HAarg = 1.0
HA = math.acos(HAarg)
return HA
def calcSolarNoon(jd, longitude, timezone, dst):
t = calcTimeJulianCent(jd - longitude / 360.0)
eqTime = calcEquationOfTime(t)
noonOffset = 720.0 - (longitude * 4.0) - eqTime
newt = calcTimeJulianCent(jd + noonOffset / 1440.0)
eqTime = calcEquationOfTime(newt)
nv = 780.0 if dst else 720.0
noonLocal = (nv - (longitude * 4.0) - eqTime + (timezone * 60.0)) % 1440
Sun.SolarNoon.time = noonLocal / 60.0
def calcSunrise_Sunset(rise):
if Sun.Longitude > 0:
zone = Sun.UTCzone * -1
else:
zone = Sun.UTCzone
jd = getJulianDay(Sun.Year, Sun.Month, Sun.Day)
timeUTC = calcSunriseSetUTC(rise, jd, Sun.Latitude, Sun.Longitude)
newTimeUTC = calcSunriseSetUTC(rise, jd + timeUTC / 1440.0,
Sun.Latitude, Sun.Longitude)
timeLocal = newTimeUTC + (-zone * 60.0)
tl = timeLocal / 60.0
getSunPosition(None, tl, Sun.Latitude, Sun.Longitude, 0.0,
zone, Sun.Month, Sun.Day, Sun.Year,
Sun.SunDistance)
if Sun.DaylightSavings:
timeLocal += 60.0
tl = timeLocal / 60.0
if tl < 0.0:
tl += 24.0
elif tl > 24.0:
tl -= 24.0
if rise:
Sun.Sunrise.time = tl
Sun.Sunrise.azimuth = Sun.Azimuth
Sun.Sunrise.elevation = Sun.Elevation
calcSolarNoon(jd, Sun.Longitude, -zone, Sun.DaylightSavings)
getSunPosition(None, Sun.SolarNoon.time, Sun.Latitude, Sun.Longitude,
0.0, zone, Sun.Month, Sun.Day, Sun.Year,
Sun.SunDistance)
Sun.SolarNoon.elevation = Sun.Elevation
else:
Sun.Sunset.time = tl
Sun.Sunset.azimuth = Sun.Azimuth
Sun.Sunset.elevation = Sun.Elevation
##########################################################################
# Get the elapsed julian time since 1/1/2000 12:00 gmt
# Y2k epoch (1/1/2000 12:00 gmt) is Julian day 2451545.0
##########################################################################
def julianTimeFromY2k(utcTime, year, month, day):
century = 36525.0 # Days in Julian Century
epoch = 2451545.0 # Julian Day for 1/1/2000 12:00 gmt
jd = getJulianDay(year, month, day)
return ((jd + (utcTime / 24)) - epoch) / century
def getJulianDay(year, month, day):
if month <= 2:
year -= 1
month += 12
A = math.floor(year / 100)
B = 2 - A + math.floor(A / 4.0)
jd = (math.floor((365.25 * (year + 4716.0))) +
math.floor(30.6001 * (month + 1)) + day + B - 1524.5)
return jd
def calcTimeJulianCent(jd):
t = (jd - 2451545.0) / 36525.0
return t
def sunDeclination(e, L):
return (math.asin(math.sin(e) * math.sin(L)))
def calcEquationOfTime(t):
epsilon = obliquityCorrection(t)
ml = degToRad(meanLongitudeSun(t))
e = eccentricityEarthOrbit(t)
m = degToRad(meanAnomalySun(t))
y = math.tan(degToRad(epsilon) / 2.0)
y = y * y
sin2ml = math.sin(2.0 * ml)
cos2ml = math.cos(2.0 * ml)
sin4ml = math.sin(4.0 * ml)
sinm = math.sin(m)
sin2m = math.sin(2.0 * m)
etime = (y * sin2ml - 2.0 * e * sinm + 4.0 * e * y *
sinm * cos2ml - 0.5 * y ** 2 * sin4ml - 1.25 * e ** 2 * sin2m)
return (radToDeg(etime) * 4)
def obliquityCorrection(t):
ec = obliquityOfEcliptic(t)
omega = 125.04 - 1934.136 * t
return (ec + 0.00256 * math.cos(degToRad(omega)))
def obliquityOfEcliptic(t):
return ((23.0 + 26.0 / 60 + (21.4480 - 46.8150) / 3600 * t -
(0.00059 / 3600) * t ** 2 + (0.001813 / 3600) * t ** 3))
def trueLongitudeOfSun(t):
return (meanLongitudeSun(t) + equationOfSunCenter(t))
def calcSunApparentLong(t):
o = trueLongitudeOfSun(t)
omega = 125.04 - 1934.136 * t
lamb = o - 0.00569 - 0.00478 * math.sin(degToRad(omega))
return lamb
def apparentLongitudeOfSun(t):
return (degToRad(trueLongitudeOfSun(t) - 0.00569 - 0.00478 *
math.sin(degToRad(125.04 - 1934.136 * t))))
def meanLongitudeSun(t):
return (280.46646 + 36000.76983 * t + 0.0003032 * t ** 2) % 360
def equationOfSunCenter(t):
m = degToRad(meanAnomalySun(t))
c = ((1.914602 - 0.004817 * t - 0.000014 * t ** 2) * math.sin(m) +
(0.019993 - 0.000101 * t) * math.sin(m * 2) +
0.000289 * math.sin(m * 3))
return c
def meanAnomalySun(t):
return (357.52911 + t * (35999.05029 - 0.0001537 * t))
def eccentricityEarthOrbit(t):
return (0.016708634 - 0.000042037 * t - 0.0000001267 * t ** 2)
def degToRad(angleDeg):
return (math.pi * angleDeg / 180.0)
def radToDeg(angleRad):
return (180.0 * angleRad / math.pi)