Skip to content
Snippets Groups Projects
__init__.py 31.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • Michel Anders's avatar
    Michel Anders committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  SCA Tree Generator, a Blender addon
    #  (c) 2013 Michel J. Anders (varkenvarken)
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    bl_info = {
    	"name": "SCA Tree Generator",
    	"author": "michel anders (varkenvarken)",
    	"version": (0, 0, 8),
    	"blender": (2, 66, 0),
    	"location": "View3D > Add > Mesh",
    	"description": "Adds a tree created with the space colonization algorithm starting at the 3D cursor",
    	"warning": "",
    	"wiki_url": "https://github.com/varkenvarken/spacetree/wiki",
    	"tracker_url": "",
    	"category": "Add Mesh"}
    
    from time import time
    from random import random,gauss
    from functools import partial
    from math import sin,cos
    
    import bpy
    from bpy.props import FloatProperty, IntProperty, BoolProperty, EnumProperty
    from mathutils import Vector,Euler,Matrix,Quaternion
    
    from .simplefork import simplefork, simplefork2, quadfork, bridgequads # simple skinning algorithm building blocks
    from .sca import SCA, Branchpoint # the core class that implements the space colonization algorithm and the definition of a segment
    from .timer import Timer
    
    def availableGroups(self, context):
    	return [(name, name, name, n) for n,name in enumerate(bpy.data.groups.keys())]
    
    def availableGroupsOrNone(self, context):
    	groups = [ ('None', 'None', 'None', 1) ]
    	return groups + [(name, name, name, n+1) for n,name in enumerate(bpy.data.groups.keys())]
    
    def availableObjects(self, context):
    	return [(name, name, name, n+1) for n,name in enumerate(bpy.data.objects.keys())]
    
    def ellipsoid(r=5,rz=5,p=Vector((0,0,8)),taper=0):
    	r2=r*r
    	z2=rz*rz
    	if rz>r : r = rz
    	while True:
    		x = (random()*2-1)*r
    		y = (random()*2-1)*r
    		z = (random()*2-1)*r
    		f = (z+r)/(2*r)
    		f = 1 + f*taper if taper>=0 else (1-f)*-taper
    		if f*x*x/r2+f*y*y/r2+z*z/z2 <= 1:
    			yield p+Vector((x,y,z))
    
    def pointInsideMesh(pointrelativetocursor,ob):
    	# adapted from http://blenderartists.org/forum/showthread.php?195605-Detecting-if-a-point-is-inside-a-mesh-2-5-API&p=1691633&viewfull=1#post1691633
    	mat = ob.matrix_world.inverted()
    	orig = mat*(pointrelativetocursor+bpy.context.scene.cursor_location)
    	count = 0
    	axis=Vector((0,0,1))
    	while True:
    		location,normal,index = ob.ray_cast(orig,orig+axis*10000.0)
    		if index == -1: break
    		count += 1
    		orig = location + axis*0.00001
    	if count%2 == 0:
    		return False
    	return True
    	
    def ellipsoid2(rxy=5,rz=5,p=Vector((0,0,8)),surfacebias=1,topbias=1):
    	while True:
    		phi = 6.283*random()
    		theta = 3.1415*(random()-0.5)
    		r = random()**(surfacebias/2)
    		x = r*rxy*cos(theta)*cos(phi)
    		y = r*rxy*cos(theta)*sin(phi)
    		st=sin(theta)
    		st = (((st+1)/2)**topbias)*2-1
    		z = r*rz*st
    		#print(">>>%.2f %.2f %.2f "%(x,y,z))
    		m = p+Vector((x,y,z))
    		reject = False
    		for ob in bpy.context.selected_objects:
    			# probably we should check if each object is a mesh
    			if pointInsideMesh(m,ob) :
    				reject = True
    				break
    		if not reject:
    			yield m
    
    def halton3D(index):
    	"""
    	return a quasi random 3D vector R3 in [0,1].
    	each component is based on a halton sequence. 
    	quasi random is good enough for our purposes and is 
    	more evenly distributed then pseudo random sequences. 
    	See en.m.wikipedia.org/wiki/Halton_sequence
    	"""
    
    	def halton(index, base):
    		result=0
    		f=1.0/base
    		I=index
    		while I>0:
    			result += f*(I%base)
    			I=int(I/base)
    			f/=base
    		return result
    	return Vector((halton(index,2),halton(index,3),halton(index,5)))
    
    def insidegroup(pointrelativetocursor, group):
    	if bpy.data.groups.find(group)<0 : return False
    	for ob in bpy.data.groups[group].objects:
    		if pointInsideMesh(pointrelativetocursor,ob):
    			return True
    	return False
    
    def groupdistribution(crowngroup,shadowgroup=None,seed=0,size=Vector((1,1,1)),pointrelativetocursor=Vector((0,0,0))):
    	if crowngroup == shadowgroup:
    		shadowgroup = None # safeguard otherwise every marker would be rejected
    	nocrowngroup = bpy.data.groups.find(crowngroup)<0
    	noshadowgroup = (shadowgroup is None) or (bpy.data.groups.find(shadowgroup)<0) or (shadowgroup == 'None')
    	index=100+seed
    	nmarkers=0
    	nyield=0
    	while True:
    		nmarkers+=1
    		v = halton3D(index)
    		v[0] *= size[0]
    		v[1] *= size[1]
    		v[2] *= size[2]
    		v+=pointrelativetocursor
    		index+=1
    		insidecrown = nocrowngroup or insidegroup(v,crowngroup)
    		outsideshadow = noshadowgroup or not insidegroup(v,shadowgroup)
    		# if shadowgroup overlaps all or a significant part of the crowngroup
    		# no markers will be yielded and we would be in an endless loop.
    		# so if we yield too few correct markers we start yielding them anyway.
    		lowyieldrate = (nmarkers>200) and (nyield/nmarkers < 0.01)
    		if (insidecrown and outsideshadow) or lowyieldrate:
    			nyield+=1
    			yield v
    		
    def groupExtends(group):
    	"""
    	return a size,minimum tuple both Vector elements, describing the size and position
    	of the bounding box in world space that encapsulates all objects in a group.
    	"""
    	bb=[]
    	if bpy.data.groups.find(group) >=0 :
    		for ob in bpy.data.groups[group].objects:
    			rot = ob.matrix_world.to_quaternion()
    			scale = ob.matrix_world.to_scale()
    			translate = ob.matrix_world.translation
    			for v in ob.bound_box: # v is not a vector but an array of floats
    				p = ob.matrix_world * Vector(v[0:3])
    				bb.extend(p[0:3])
    	mx = Vector((max(bb[0::3]), max(bb[1::3]), max(bb[2::3])))
    	mn = Vector((min(bb[0::3]), min(bb[1::3]), min(bb[2::3])))
    	return mx-mn,mn
    
    def createLeaves(tree, probability=0.5, size=0.5, randomsize=0.1, randomrot=0.1, maxconnections=2, bunchiness=1.0):
    	p=bpy.context.scene.cursor_location
    	
    	verts=[]
    	faces=[]
    	c1=Vector((-size/10,-size/2,0))
    	c2=Vector((    size,-size/2,0))
    	c3=Vector((    size, size/2,0))
    	c4=Vector((-size/10, size/2,0))
    	t=gauss(1.0/probability,0.1)
    	bpswithleaves=0
    	for bp in tree.branchpoints:
    		if bp.connections < maxconnections:
    		
    			dv = tree.branchpoints[bp.parent].v - bp.v if bp.parent else Vector((0,0,0))
    			dvp = Vector((0,0,0))
    			
    			bpswithleaves+=1
    			nleavesonbp=0
    			while t<bpswithleaves:
    				nleavesonbp+=1
    				rx = (random()-0.5)*randomrot*6.283 # TODO vertical tilt in direction of tropism
    				ry = (random()-0.5)*randomrot*6.283
    				rot = Euler((rx,ry,random()*6.283),'ZXY')
    				scale = 1+(random()-0.5)*randomsize
    				v=c1.copy()
    				v.rotate(rot)
    				verts.append(v*scale+bp.v+dvp)
    				v=c2.copy()
    				v.rotate(rot)
    				verts.append(v*scale+bp.v+dvp)
    				v=c3.copy()
    				v.rotate(rot)
    				verts.append(v*scale+bp.v+dvp)
    				v=c4.copy()
    				v.rotate(rot)
    				verts.append(v*scale+bp.v+dvp)
    				n = len(verts)
    				faces.append((n-4,n-3,n-2,n-1))
    				t += gauss(1.0/probability,0.1)					 # this is not the best choice of distribution because we might get negative values especially if sigma is large
    				dvp = nleavesonbp*(dv/(probability**bunchiness)) # TODO add some randomness to the offset
    				
    	mesh = bpy.data.meshes.new('Leaves')
    	mesh.from_pydata(verts,[],faces)
    	mesh.update(calc_edges=True)
    	mesh.uv_textures.new()
    	return mesh
    
    def createMarkers(tree,scale=0.05):
    	#not used as markers are parented to tree object that is created at the cursor position
    	#p=bpy.context.scene.cursor_location
    	
    	verts=[]
    	faces=[]
    
    	tetraeder = [Vector((-1,1,-1)),Vector((1,-1,-1)),Vector((1,1,1)),Vector((-1,-1,1))]
    	tetraeder = [v * scale for v in tetraeder]
    	tfaces = [(0,1,2),(0,1,3),(1,2,3),(0,3,2)]
    	
    	for ep in tree.endpoints:
    		verts.extend([ep + v for v in tetraeder])
    		n=len(faces)
    		faces.extend([(f1+n,f2+n,f3+n) for f1,f2,f3 in tfaces])
    		
    	mesh = bpy.data.meshes.new('Markers')
    	mesh.from_pydata(verts,[],faces)
    	mesh.update(calc_edges=True)
    	return mesh
    
    
    def createObjects(tree, parent=None, objectname=None, probability=0.5, size=0.5, randomsize=0.1, randomrot=0.1, maxconnections=2, bunchiness=1.0):
    
    	if (parent is None) or (objectname is None) or (objectname == 'None') : return
    	
    	# not necessary, we parent the new objects: p=bpy.context.scene.cursor_location
    	
    	theobject = bpy.data.objects[objectname]
    	
    	t=gauss(1.0/probability,0.1)
    	bpswithleaves=0
    	for bp in tree.branchpoints:
    		if bp.connections < maxconnections:
    		
    			dv = tree.branchpoints[bp.parent].v - bp.v if bp.parent else Vector((0,0,0))
    			dvp = Vector((0,0,0))
    			
    			bpswithleaves+=1
    			nleavesonbp=0
    			while t<bpswithleaves:
    				nleavesonbp+=1
    				rx = (random()-0.5)*randomrot*6.283 # TODO vertical tilt in direction of tropism
    				ry = (random()-0.5)*randomrot*6.283
    				rot = Euler((rx,ry,random()*6.283),'ZXY')
    				scale = size+(random()-0.5)*randomsize
    				
    				# add new object and parent it
    				obj = bpy.data.objects.new(objectname,theobject.data)
    				obj.location = bp.v+dvp
    				obj.rotation_mode = 'ZXY'
    				obj.rotation_euler = rot[:]
    				obj.scale = [scale,scale,scale]
    				obj.parent = parent
    				bpy.context.scene.objects.link(obj)
    				
    				t += gauss(1.0/probability,0.1)					 # this is not the best choice of distribution because we might get negative values especially if sigma is large
    				dvp = nleavesonbp*(dv/(probability**bunchiness)) # TODO add some randomness to the offset
    
    def vertextend(v,dv):
    	n=len(v)
    	v.extend(dv)
    	return tuple(range(n,n+len(dv)))
    
    def vertcopy(loopa, v, p):
    	dv=[v[i]+p for i in loopa]
    	#print(loopa,p,dv)
    	return vertextend(v,dv)
    
    def bend(p0, p1, p2, loopa, loopb, verts):
    	# will extend this with a tri centered at p0
    	#print('bend')
    	return bridgequads(loopa, loopb, verts)
    
    def extend(p0, p1, p2, loopa, verts):
    	# will extend this with a tri centered at p0
    	#print('extend')
    	#print(p0,p1,p2,[verts[i] for i in loopa])
    	
    	# both difference point upward, we extend to the second
    	d1=p1-p0
    	d2=p0-p2
    	p=(verts[loopa[0]]+verts[loopa[1]]+verts[loopa[2]]+verts[loopa[3]])/4
    	a=d1.angle(d2,0)
    	if abs(a)<0.05:
    		#print('small angle')
    		loopb = vertcopy(loopa, verts, p0-d2/2-p)
    		# all verts in loopb are displaced the same amount so no need to find the minimum distance
    		n=4
    		return ([(loopa[(i)%n], loopa[(i+1)%n], loopb[(i+1)%n], loopb[(i)%n]) for i in range(n)] ,loopa, loopb)
    
    	r=d2.cross(d1)
    	q=Quaternion(r,-a)
    	dverts=[verts[i]-p for i in loopa]
    	#print('large angle',dverts,'axis',r)
    	for dv in dverts:
    		dv.rotate(q)
    	#print('rotated',dverts)
    	for dv in dverts:
    		dv+=(p0-d2/2)
    	#print('moved',dverts)
    	loopb=vertextend(verts,dverts)
    	# none of the verts in loopb are rotated so no need to find the minimum distance
    	n=4
    	return ([(loopa[(i)%n], loopa[(i+1)%n], loopb[(i+1)%n], loopb[(i)%n]) for i in range(n)] ,loopa, loopb)
    
    def nonfork(bp,parent,apex,verts,p,branchpoints):
    	#print('nonfork bp    ',bp.index,bp.v,bp.loop if hasattr(bp,'loop') else None)
    	#print('nonfork parent',parent.index,parent.v,parent.loop if hasattr(parent,'loop') else None)
    	#print('nonfork apex  ',apex.index,apex.v,apex.loop if hasattr(apex,'loop') else None)
    	if hasattr(bp,'loop'):
    		if hasattr(apex,'loop'):
    			#print('nonfork bend bp->apex')
    			return bend(bp.v+p, parent.v+p, apex.v+p, bp.loop, apex.loop, verts)
    		else:
    			#print('nonfork extend bp->apex')
    			faces,loop1,loop2 = extend(bp.v+p, parent.v+p, apex.v+p, bp.loop, verts)
    			apex.loop = loop2
    			return faces,loop1,loop2
    	else:
    		if hasattr(parent,'loop'):
    			#print('nonfork extend from bp->parent')
    			#faces,loop1,loop2 =  extend(bp.v+p, apex.v+p, parent.v+p, parent.loop, verts)
    			if parent.parent is None :
    				return None, None, None
    			grandparent=branchpoints[parent.parent]
    			faces,loop1,loop2 =  extend(grandparent.v+p, parent.v+p, bp.v+p, parent.loop, verts)
    			bp.loop = loop2
    			return faces,loop1,loop2
    		else:
    			#print('nonfork no loop')
    			# neither parent nor apex already have a loop calculated
    			# will fill this later ...
    			return None,None,None
    
    def endpoint(bp,parent,verts,p):
    	# extrapolate to tip of branch. we do not close the tip for now
    	faces,loop1,loop2 = extend(bp.v+p, parent.v+p, bp.v+(bp.v-parent.v)+p, bp.loop, verts)
    	return faces,loop1,loop2
    
    def root(bp,apex,verts,p):
    	# extrapolate non-forked roots
    	faces,loop1,loop2 = extend(bp.v+p, bp.v-(apex.v-bp.v)+p, apex.v+p, bp.loop, verts)
    	apex.loop=loop2
    	return faces,loop1,loop2
    
    def skin(aloop, bloop, faces):
    	n = len(aloop)
    	for i in range(n):
    		faces.append((aloop[i],aloop[(i+1)%n],bloop[(i+1)%n],bloop[i]))
    			
    def createGeometry(tree, power=0.5, scale=0.01, addleaves=False, pleaf=0.5, leafsize=0.5, leafrandomsize=0.1, leafrandomrot=0.1,
    	nomodifiers=True, skinmethod='NATIVE', subsurface=False,
    	maxleafconnections=2, bleaf=1.0,
    	timeperf=True):
    	
    	timings = Timer()
    	
    	p=bpy.context.scene.cursor_location
    	verts=[]
    	edges=[]
    	faces=[]
    	radii=[]
    	roots=set()
    	
    	# Loop over all branchpoints and create connected edges
    	for n,bp in enumerate(tree.branchpoints):
    		verts.append(bp.v+p)
    		radii.append(bp.connections)
    		bp.index=n
    		if not (bp.parent is None) :
    			edges.append((len(verts)-1,bp.parent))
    		else :
    			nv=len(verts)
    			roots.add(nv-1)
    	
    	timings.add('skeleton')
    	
    	# native skinning method
    	if nomodifiers == False and skinmethod == 'NATIVE': 
    		# add a quad edge loop to all roots
    		for r in roots:
    			rootp=verts[r]
    			nv=len(verts)
    			radius = 0.7071*((tree.branchpoints[r].connections+1)**power)*scale
    			verts.extend( [rootp+Vector((-radius,-radius,0)),rootp+Vector((radius,-radius,0)),rootp+Vector((radius,radius,0)),rootp+Vector((-radius,radius,0))])
    			tree.branchpoints[r].loop=(nv,nv+1,nv+2,nv+3)
    			#print('root verts',tree.branchpoints[r].loop)
    			#faces.append((nv,nv+1,nv+2))
    			edges.extend([(nv,nv+1),(nv+1,nv+2),(nv+2,nv+3),(nv+3,nv)])
    		
    		# skin all forked branchpoints, no attempt is yet made to adjust the radius
    		forkfork=set()
    		for bpi,bp in enumerate(tree.branchpoints):
    			if not( bp.apex is None or bp.shoot is None) :
    				apex = tree.branchpoints[bp.apex]
    				shoot = tree.branchpoints[bp.shoot]
    				p0 = bp.v
    				r0 = ((bp.connections+1)**power)*scale
    				p2 = apex.v
    				r2 = ((apex.connections+1)**power)*scale
    				p3 = shoot.v
    				r3 = ((shoot.connections+1)**power)*scale
    				
    				if bp.parent is not None:
    					parent = tree.branchpoints[bp.parent] 
    					p1 = parent.v
    					r1 = (parent.connections**power)*scale
    				else:
    					p1 = p0-(p2-p0)
    					r1=r0
    				
    				skinverts,skinfaces = quadfork(p0,p1,p2,p3,r0,r1,r2,r3)
    				nv=len(verts)
    				verts.extend([v+p for v in skinverts])
    				faces.extend([ tuple(v+nv for v in f) for f in skinfaces])
    				
    				# the vertices of the quads at the end of the internodes are returned as the first 12 vertices of a total of 22
    				# we store them for reuse by non-forked internodes but first check if we have a fork to fork connection
    				nv=len(verts)
    				if hasattr(bp,'loop') and not (bpi in forkfork) : # already assigned by another fork
    					faces.extend(bridgequads(bp.loop, [nv-22,nv-21,nv-20,nv-19], verts )[0])
    					forkfork.add(bpi)
    				else:
    					bp.loop = [nv-22,nv-21,nv-20,nv-19]
    					
    				if hasattr(apex,'loop') and not (bp.apex in forkfork) : # already assigned by another fork but not yet skinned
    					faces.extend(bridgequads(apex.loop, [nv-18,nv-17,nv-16,nv-15], verts )[0])
    					forkfork.add(bp.apex)
    				else:
    					apex.loop = [nv-18,nv-17,nv-16,nv-15]
    					
    				if hasattr(shoot,'loop') and not (bp.shoot in forkfork) : # already assigned by another fork but not yet skinned
    					faces.extend(bridgequads(shoot.loop, [nv-14,nv-13,nv-12,nv-11], verts )[0])
    					forkfork.add(bp.shoot)
    				else:
    					shoot.loop = [nv-14,nv-13,nv-12,nv-11]
    		
    		# skin the roots that are not forks
    		for r in roots:
    			bp=tree.branchpoints[r]
    			if bp.apex is not None and bp.parent is None and bp.shoot is None:
    				bfaces, apexloop, parentloop = root(bp,tree.branchpoints[bp.apex],verts,p)
    				if bfaces is not None:
    					faces.extend(bfaces)
    				
    		# skin all non-forking branchpoints, that is those not a root or and endpoint
    		skinnednonforks=set()
    		start=-1
    		while(start != len(skinnednonforks)):
    			start = len(skinnednonforks)
    			#print('-'*20,start)
    			for bp in tree.branchpoints:
    				if bp.shoot is None and not (bp.parent is None or bp.apex is None or bp in skinnednonforks) :
    					bfaces, apexloop, parentloop = nonfork(bp,tree.branchpoints[bp.parent],tree.branchpoints[bp.apex],verts,p,tree.branchpoints)
    					if bfaces is not None:
    						#print(bfaces,apexloop,parentloop)
    						faces.extend(bfaces)
    						skinnednonforks.add(bp)
    		
    		# skin endpoints
    		for bp in tree.branchpoints:
    			if bp.apex is None and bp.parent is not None:
    				bfaces, apexloop, parentloop = endpoint(bp,tree.branchpoints[bp.parent],verts,p)
    				if bfaces is not None:
    					faces.extend(bfaces)
    	# end of native skinning section
    	timings.add('nativeskin')
    	
    	# create the tree mesh
    	mesh = bpy.data.meshes.new('Tree')
    	mesh.from_pydata(verts, edges, faces)
    	mesh.update(calc_edges=True)
    	
    	# create the tree object an make it the only selected and active object in the scene
    	obj_new = bpy.data.objects.new(mesh.name, mesh)
    	base = bpy.context.scene.objects.link(obj_new)
    	for ob in bpy.context.scene.objects:
    		ob.select = False
    	base.select = True
    	bpy.context.scene.objects.active = obj_new
    	bpy.ops.object.origin_set(type='ORIGIN_CURSOR')
    	
    	timings.add('createmesh')
    	
    	# add a subsurf modifier to smooth the branches 
    	if nomodifiers == False:
    		if subsurface:
    			bpy.ops.object.modifier_add(type='SUBSURF')
    			bpy.context.active_object.modifiers[0].levels = 1
    			bpy.context.active_object.modifiers[0].render_levels = 1
    
    		# add a skin modifier
    		if skinmethod == 'BLENDER':
    			bpy.ops.object.modifier_add(type='SKIN')
    			bpy.context.active_object.modifiers[-1].use_smooth_shade=True
    			bpy.context.active_object.modifiers[-1].use_x_symmetry=True
    			bpy.context.active_object.modifiers[-1].use_y_symmetry=True
    			bpy.context.active_object.modifiers[-1].use_z_symmetry=True
    
    			skinverts = bpy.context.active_object.data.skin_vertices[0].data
    
    			for i,v in enumerate(skinverts):
    				v.radius = [(radii[i]**power)*scale,(radii[i]**power)*scale]
    				if i in roots:
    					v.use_root = True
    			
    			# add an extra subsurf modifier to smooth the skin
    			bpy.ops.object.modifier_add(type='SUBSURF')
    			bpy.context.active_object.modifiers[-1].levels = 1
    			bpy.context.active_object.modifiers[-1].render_levels = 2
    	
    	timings.add('modifiers')
    
    	# create the leaves object
    	if addleaves:
    		mesh = createLeaves(tree, pleaf, leafsize, leafrandomsize, leafrandomrot, maxleafconnections, bleaf)
    		obj_leaves = bpy.data.objects.new(mesh.name, mesh)
    		base = bpy.context.scene.objects.link(obj_leaves)
    		obj_leaves.parent = obj_new
    		bpy.context.scene.objects.active = obj_leaves
    		bpy.ops.object.origin_set(type='ORIGIN_CURSOR')
    		bpy.context.scene.objects.active = obj_new
    	
    	timings.add('leaves')
    	
    	if timeperf:
    		print(timings)
    		
    	return obj_new
    	
    class SCATree(bpy.types.Operator):
    	bl_idname = "mesh.sca_tree"
    	bl_label = "SCATree"
    	bl_options = {'REGISTER', 'UNDO', 'PRESET'}
    
    	internodeLength = FloatProperty(name="Internode Length",
    					description="Internode length in Blender Units",
    					default=0.75,
    					min=0.01,
    					soft_max=3.0,
    					subtype='DISTANCE',
    					unit='LENGTH')
    	killDistance = FloatProperty(name="Kill Distance",
    					description="Kill Distance as a multiple of the internode length",
    					default=3,
    					min=0.01,
    					soft_max=100.0)
    	influenceRange = FloatProperty(name="Influence Range",
    					description="Influence Range as a multiple of the internode length",
    					default=15,
    					min=0.01,
    					soft_max=100.0)
    	tropism = FloatProperty(name="Tropism",
    					description="The tendency of branches to bend up or down",
    					default=0,
    					min=-1.0,
    					soft_max=1.0)
    	power = FloatProperty(name="Power",
    					description="Tapering power of branch connections",
    					default=0.3,
    					min=0.01,
    					soft_max=1.0)
    	scale = FloatProperty(name="Scale",
    					description="Branch size",
    					default=0.01,
    					min=0.0001,
    					soft_max=1.0)
    	
    	# the group related properties are not saved as presets because on reload no groups with the same names might exist, causing an exception
    	useGroups = BoolProperty(name="Use object groups",
    					options={'ANIMATABLE','SKIP_SAVE'},
    					description="Use groups of objects to specify marker distribution",
    					default=False)
    	
    	crownGroup = EnumProperty(items=availableGroups,
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Crown Group',
    					description='Group of objects that specify crown shape')
    	
    	shadowGroup = EnumProperty(items=availableGroupsOrNone,
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Shadow Group',
    					description='Group of objects subtracted from the crown shape')
    	
    	exclusionGroup = EnumProperty(items=availableGroupsOrNone,
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Exclusion Group',
    					description='Group of objects that will not be penetrated by growing branches')
    	
    	useTrunkGroup = BoolProperty(name="Use trunk group", 
    					options={'ANIMATABLE','SKIP_SAVE'},
    					description="Use the locations of a group of objects to specify trunk starting points instead of 3d cursor",
    					default=False)
    	
    	trunkGroup = EnumProperty(items=availableGroups,
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Trunk Group',
    					description='Group of objects whose locations specify trunk starting points')
    	
    	crownSize = FloatProperty(name="Crown Size",
    					description="Crown size",
    					default=5,
    					min=1,
    					soft_max=29)
    	crownShape = FloatProperty(name="Crown Shape",
    					description="Crown shape",
    					default=1,
    					min=0.2,
    					soft_max=5)
    	crownOffset = FloatProperty(name="Crown Offset",
    					description="Crown offset (the length of the bole)",
    					default=3,
    					min=0,
    					soft_max=20.0)
    	surfaceBias = FloatProperty(name="Surface Bias",
    					description="Surface bias (how much markers are favored near the surface)",
    					default=1,
    					min=-10,
    					soft_max=10)
    	topBias = FloatProperty(name="Top Bias",
    					description="Top bias (how much markers are favored near the top)",
    					default=1,
    					min=-10,
    					soft_max=10)
    	randomSeed = IntProperty(name="Random Seed",
    					description="The seed governing random generation",
    					default=0,
    					min=0)
    	maxIterations = IntProperty(name="Maximum Iterations",
    					description="The maximum number of iterations allowed for tree generation",
    					default=40,
    					min=0)
    	numberOfEndpoints = IntProperty(name="Number of Endpoints",
    					description="The number of endpoints generated in the growing volume",
    					default=100,
    					min=0)
    	newEndPointsPer1000 = IntProperty(name="Number of new Endpoints",
    					description="The number of new endpoints generated in the growing volume per thousand iterations",
    					default=0,
    					min=0)
    	maxTime = FloatProperty(name="Maximum Time",
    					description=("The maximum time to run the generation for "
    								"in seconds/generation (0.0 = Disabled). Currently ignored"),
    					default=0.0,
    					min=0.0,
    					soft_max=10)
    	pLeaf = FloatProperty(name="Leaves per internode",
    					description=("The average number of leaves per internode"),
    					default=0.5,
    					min=0.0,
    					soft_max=4)
    	bLeaf = FloatProperty(name="Leaf clustering",
    					description=("How much leaves cluster to the end of the internode"),
    					default=1,
    					min=1,
    					soft_max=4)
    	leafSize = FloatProperty(name="Leaf Size",
    					description=("The leaf size"),
    					default=0.5,
    					min=0.0,
    					soft_max=1)
    	leafRandomSize = FloatProperty(name="Leaf Random Size",
    					description=("The amount of randomness to add to the leaf size"),
    					default=0.1,
    					min=0.0,
    					soft_max=10)
    	leafRandomRot = FloatProperty(name="Leaf Random Rotation",
    					description=("The amount of random rotation to add to the leaf"),
    					default=0.1,
    					min=0.0,
    					soft_max=1)
    	leafMaxConnections = IntProperty(name="Max Connections",
    					description="The maximum number of connections of an internode elegible for a leaf",
    					default=2,
    					min=0)
    	addLeaves = BoolProperty(name="Add Leaves", default=False)
    	
    	objectName = EnumProperty(items=availableObjects,
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Object Name',
    					description='Name of additional objects to duplicate at the branchpoints')
    	pObject = FloatProperty(name="Objects per internode",
    					description=("The average number of objects per internode"),
    					default=0.3,
    					min=0.0,
    					soft_max=1)
    	bObject = FloatProperty(name="Object clustering",
    					description=("How much objects cluster to the end of the internode"),
    					default=1,
    					min=1,
    					soft_max=4)
    	objectSize = FloatProperty(name="Object Size",
    					description=("The object size"),
    					default=1,
    					min=0.0,
    					soft_max=2)
    	objectRandomSize = FloatProperty(name="Object Random Size",
    					description=("The amount of randomness to add to the object size"),
    					default=0.1,
    					min=0.0,
    					soft_max=10)
    	objectRandomRot = FloatProperty(name="Object Random Rotation",
    					description=("The amount of random rotation to add to the object"),
    					default=0.1,
    					min=0.0,
    					soft_max=1)
    	objectMaxConnections = IntProperty(name="Max Connections for Object",
    					description="The maximum number of connections of an internode elegible for a object",
    					default=1,
    					min=0)
    	addObjects = BoolProperty(name="Add Objects", default=False)
    	
    	updateTree = BoolProperty(name="Update Tree", default=False)
    	
    	noModifiers = BoolProperty(name="No Modifers", default=True)
    	subSurface = BoolProperty(name="Sub Surface", default=False, description="Add subsurface modifier to trunk skin")
    	skinMethod = EnumProperty(items=[('NATIVE','Native','Built in skinning method',1),('BLENDER','Skin modifier','Use Blenders skin modifier',2)],
    					options={'ANIMATABLE','SKIP_SAVE'},
    					name='Skinning method',
    					description='How to add a surface to the trunk skeleton')
    	
    	showMarkers = BoolProperty(name="Show Markers", default=False)
    	markerScale = FloatProperty(name="Marker Scale",
    					description=("The size of the markers"),
    					default=0.05,
    					min=0.001,
    					soft_max=0.2)
    	timePerformance = BoolProperty(name="Time performance", default=False, description="Show duration of generation steps on console")
    	
    	@classmethod
    	def poll(self, context):
    		# Check if we are in object mode
    		return context.mode == 'OBJECT'
    
    	def execute(self, context):
    		
    		if not self.updateTree:
    			return {'PASS_THROUGH'}
    
    		timings=Timer()
    		
    		# necessary otherwize ray casts toward these objects may fail. However if nothing is selected, we get a runtime error ...
    		try:
    			bpy.ops.object.mode_set(mode='EDIT', toggle=False)
    			bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
    		except RuntimeError:
    			pass
    		
    		if self.useGroups:
    			size,minp = groupExtends(self.crownGroup)
    			volumefie=partial(groupdistribution,self.crownGroup,self.shadowGroup,self.randomSeed,size,minp-bpy.context.scene.cursor_location)
    		else:
    			volumefie=partial(ellipsoid2,self.crownSize*self.crownShape,self.crownSize,Vector((0,0,self.crownSize+self.crownOffset)),self.surfaceBias,self.topBias)
    		
    		startingpoints = []
    		if self.useTrunkGroup:
    			if bpy.data.groups.find(self.trunkGroup)>=0 :
    				for ob in bpy.data.groups[self.trunkGroup].objects :
    					p = ob.location - context.scene.cursor_location
    					startingpoints.append(Branchpoint(p,None))
    		
    		timings.add('scastart')
    		sca = SCA(NBP = self.maxIterations,
    			NENDPOINTS=self.numberOfEndpoints,
    			d=self.internodeLength,
    			KILLDIST=self.killDistance,
    			INFLUENCE=self.influenceRange,
    			SEED=self.randomSeed,
    			TROPISM=self.tropism,
    			volume=volumefie,
    			exclude=lambda p: insidegroup(p, self.exclusionGroup),
    			startingpoints=startingpoints)
    		timings.add('sca')
    			
    		if self.showMarkers:
    			mesh = createMarkers(sca, self.markerScale)
    			obj_markers = bpy.data.objects.new(mesh.name, mesh)
    			base = bpy.context.scene.objects.link(obj_markers)
    		timings.add('showmarkers')
    		
    		sca.iterate2(newendpointsper1000=self.newEndPointsPer1000,maxtime=self.maxTime)
    		timings.add('iterate')
    		
    		obj_new=createGeometry(sca,self.power,self.scale,self.addLeaves, self.pLeaf, self.leafSize, self.leafRandomSize, self.leafRandomRot,
    			self.noModifiers, self.skinMethod, self.subSurface,
    			self.leafMaxConnections, self.bLeaf,
    			self.timePerformance)
    		
    		timings.add('objcreationstart')
    		if self.addObjects:
    			createObjects(sca, obj_new,
    				objectname=self.objectName,
    				probability=self.pObject,
    				size=self.objectSize,
    				randomsize=self.objectRandomSize,
    				randomrot=self.objectRandomRot,
    				maxconnections=self.objectMaxConnections,
    				bunchiness=self.bObject)
    		timings.add('objcreation')
    		
    		if self.showMarkers:
    			obj_markers.parent = obj_new
    		
    		self.updateTree = False
    		
    		if self.timePerformance:
    			timings.add('Total')
    			print(timings)
    			
    		return {'FINISHED'}
    
    	def draw(self, context):
    		layout = self.layout
    
    		layout.prop(self, 'updateTree', icon='MESH_DATA')
    
    		columns=layout.row()
    		col1=columns.column()
    		col2=columns.column()
    		
    		box = col1.box()
    		box.label("Generation Settings:")
    		box.prop(self, 'randomSeed')
    		box.prop(self, 'maxIterations')
    
    		box = col1.box()
    		box.label("Shape Settings:")
    		box.prop(self, 'numberOfEndpoints')
    		box.prop(self, 'internodeLength')
    		box.prop(self, 'influenceRange')
    		box.prop(self, 'killDistance')
    		box.prop(self, 'power')
    		box.prop(self, 'scale')
    		box.prop(self, 'tropism')
    		
    		newbox = col2.box()
    		newbox.label("Crown shape")
    		newbox.prop(self,'useGroups')
    		if self.useGroups:
    			newbox.label("Object groups defining crown shape")
    			groupbox = newbox.box()
    			groupbox.prop(self,'crownGroup')
    			groupbox = newbox.box()
    			groupbox.alert=(self.shadowGroup == self.crownGroup)
    			groupbox.prop(self,'shadowGroup')
    			groupbox = newbox.box()
    			groupbox.alert=(self.exclusionGroup == self.crownGroup)
    			groupbox.prop(self,'exclusionGroup')
    		else:
    			newbox.label("Simple ellipsoid defining crown shape")
    			newbox.prop(self, 'crownSize')
    			newbox.prop(self, 'crownShape')
    			newbox.prop(self, 'crownOffset')
    		newbox = col2.box()
    		newbox.prop(self,'useTrunkGroup')
    		if self.useTrunkGroup:
    			newbox.prop(self,'trunkGroup')
    			
    		box.prop(self, 'surfaceBias')
    		box.prop(self, 'topBias')
    		box.prop(self, 'newEndPointsPer1000')
    		
    		box = col2.box()
    		box.label("Skin options:")
    		box.prop(self, 'noModifiers')
    		if not self.noModifiers:
    			box.prop(self,'skinMethod')
    			box.prop(self,'subSurface')
    		
    		layout.prop(self, 'addLeaves', icon='MESH_DATA')
    		if self.addLeaves:
    			box = layout.box()
    			box.label("Leaf Settings:")
    			box.prop(self,'pLeaf')
    			box.prop(self,'bLeaf')
    			box.prop(self,'leafSize') 
    			box.prop(self,'leafRandomSize') 	
    			box.prop(self,'leafRandomRot')
    			box.prop(self,'leafMaxConnections')
    		
    		layout.prop(self,'addObjects', icon='MESH_DATA')
    		if self.addObjects:
    			box = layout.box()
    			box.label("Object Settings:")
    			box.prop(self,'objectName')
    			box.prop(self,'pObject')
    			box.prop(self,'bObject')
    			box.prop(self,'objectSize')
    			box.prop(self,'objectRandomSize')
    			box.prop(self,'objectRandomRot')
    			box.prop(self,'objectMaxConnections')
    
    		box = layout.box()
    		box.label("Debug Settings:")
    		box.prop(self, 'showMarkers')
    		if self.showMarkers:
    			box.prop(self, 'markerScale')
    		box.prop(self, 'timePerformance')
    		
    def menu_func(self, context):
    	self.layout.operator(SCATree.bl_idname, text="Add Tree to Scene",
    												icon='PLUGIN').updateTree = True
    
    def register():
    	bpy.utils.register_module(__name__)
    	bpy.types.INFO_MT_mesh_add.append(menu_func)
    
    
    def unregister():
    	bpy.types.INFO_MT_mesh_add.remove(menu_func)
    	bpy.utils.unregister_module(__name__)
    
    
    if __name__ == "__main__":
    	register()