Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
bl_info = {
"name": "Export: Adobe After Effects (.jsx)",
"description": "Export cameras, selected objects & camera solution "
"3D Markers to Adobe After Effects CS3 and above",
"author": "Bartek Skorupa",
"version": (0, 0, 69),
"location": "File > Export > Adobe After Effects (.jsx)",
"warning": "",
"doc_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Import-Export/Adobe_After_Effects",
"category": "Import-Export",
}
import bpy
import datetime
from math import degrees, floor
from mathutils import Matrix, Vector, Color
def get_comp_data(context):
"""Create list of static blender's data"""
scene = context.scene
aspect_x = scene.render.pixel_aspect_x
aspect_y = scene.render.pixel_aspect_y
aspect = aspect_x / aspect_y
start = scene.frame_start
end = scene.frame_end
active_cam_frames = get_active_cam_for_each_frame(scene, start, end)
fps = floor(scene.render.fps / (scene.render.fps_base) * 1000.0) / 1000.0
return {
'scn': scene,
'width': scene.render.resolution_x,
'height': scene.render.resolution_y,
'aspect': aspect,
'fps': fps,
'start': start,
'end': end,
'duration': (end - start + 1.0) / fps,
'active_cam_frames': active_cam_frames,
'curframe': scene.frame_current,
}
def get_active_cam_for_each_frame(scene, start, end):
"""Create list of active camera for each frame in case active camera is set by markers"""
active_cam_frames = []
sorted_markers = []
markers = scene.timeline_markers
if markers:
for marker in markers:
if marker.camera:
sorted_markers.append([marker.frame, marker])
sorted_markers = sorted(sorted_markers)
if sorted_markers:
for frame in range(start, end + 1):
for m, marker in enumerate(sorted_markers):
if marker[0] > frame:
if m != 0:
active_cam_frames.append(
sorted_markers[m - 1][1].camera)
else:
active_cam_frames.append(marker[1].camera)
break
elif m == len(sorted_markers) - 1:
active_cam_frames.append(marker[1].camera)
if not active_cam_frames:
if scene.camera:
# in this case active_cam_frames array will have length of 1. This
# will indicate that there is only one active cam in all frames
active_cam_frames.append(scene.camera)
return(active_cam_frames)
def get_selected(context):
"""Create manageable list of selected objects"""
cameras = [] # List of selected cameras
solids = [] # List of selected meshes exported as AE solids
images = [] # List of selected meshes exported as AE AV layers
lights = [] # List of selected lights exported as AE lights
nulls = [] # List of selected objects except cameras (will be used to create nulls in AE)
obs = context.selected_objects
for ob in obs:
if ob.type == 'CAMERA':
cameras.append(ob)
elif is_image_plane(ob):
images.append(ob)
elif is_plane(ob):
solids.append(ob)
lights.append(ob)
selection = {
'cameras': cameras,
'images': images,
'solids': solids,
'lights': lights,
'nulls': nulls,
}
return selection
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
def get_first_material(obj):
for slot in obj.material_slots:
if slot.material is not None:
return slot.material
def get_image_node(mat):
for node in mat.node_tree.nodes:
if node.type == "TEX_IMAGE":
return node.image
def get_plane_color(obj):
"""Get the object's emission and base color, or 0.5 gray if no color is found."""
if obj.active_material is None:
color = (0.5,) * 3
elif obj.active_material:
from bpy_extras import node_shader_utils
wrapper = node_shader_utils.PrincipledBSDFWrapper(obj.active_material)
color = Color(wrapper.base_color[:3]) + wrapper.emission_color
return '[%f,%f,%f]' % (color[0], color[1], color[2])
def is_plane(obj):
"""Check if object is a plane
Makes a few assumptions:
- The mesh has exactly one quad face
- The mesh is a rectangle
For now this doesn't account for shear, which could happen e.g. if the
vertices are rotated, and the object is scaled non-uniformly...
"""
if obj.type != 'MESH':
return False
if len(obj.data.polygons) != 1:
return False
if len(obj.data.polygons[0].vertices) != 4:
return False
v1, v2, v3, v4 = (obj.data.vertices[v].co for v in obj.data.polygons[0].vertices)
# Check that poly is a parallelogram
if -v1 + v2 + v4 != v3:
return False
# Check that poly has at least one right angle
if (v2-v1).dot(v4-v1) != 0.0:
return False
# If my calculations are correct, that should make it a rectangle
return True
def is_image_plane(obj):
"""Check if object is a plane with an image
Makes a few assumptions:
- The mesh is a plane
- The mesh has exactly one material
- There is only one image in this material node tree
"""
if not is_plane(obj):
return False
if not len(obj.material_slots):
return False
mat = get_first_material(obj)
if mat is None:
return False
img = get_image_node(mat)
if img is None:
return False
if len(obj.data.vertices) == 4:
return True
def get_image_filepath(obj):
mat = get_first_material(obj)
img = get_image_node(mat)
filepath = img.filepath
filepath = bpy.path.abspath(filepath)
filepath = os.path.abspath(filepath)
filepath = filepath.replace('\\', '\\\\')
return filepath
def get_image_size(obj):
mat = get_first_material(obj)
img = get_image_node(mat)
return img.size
def get_plane_matrix(obj):
"""Get object's polygon local matrix from vertices."""
v1, v2, v3, v4 = (obj.data.vertices[v].co for v in obj.data.polygons[0].vertices)
p0 = obj.matrix_world @ v1
px = obj.matrix_world @ v2 - p0
py = obj.matrix_world @ v4 - p0
rot_mat = Matrix((px, py, px.cross(py))).transposed().to_4x4()
trans_mat = Matrix.Translation(p0 + (px + py) / 2.0)
mat = trans_mat @ rot_mat
return mat
def get_image_plane_matrix(obj):
"""Get object's polygon local matrix from uvs.
This will only work if uvs occupy all space, to get bounds
"""
for p_i, p in enumerate(obj.data.uv_layers.active.data):
if p.uv == Vector((0, 0)):
p0 = p_i
elif p.uv == Vector((1, 0)):
px = p_i
elif p.uv == Vector((0, 1)):
py = p_i
verts = obj.data.vertices
loops = obj.data.loops
p0 = obj.matrix_world @ verts[loops[p0].vertex_index].co
px = obj.matrix_world @ verts[loops[px].vertex_index].co - p0
py = obj.matrix_world @ verts[loops[py].vertex_index].co - p0
rot_mat = Matrix((px, py, px.cross(py))).transposed().to_4x4()
trans_mat = Matrix.Translation(p0 + (px + py) / 2.0)
mat = trans_mat @ rot_mat
return mat
def convert_name(name):
"""Convert names of objects to avoid errors in AE"""
name = "_" + name
'''
# Digits are not allowed at beginning of AE vars names.
# This section is commented, as "_" is added at beginning of names anyway.
# Placeholder for this name modification is left so that it's not ignored if needed
if name[0].isdigit():
name = "_" + name
'''
name = bpy.path.clean_name(name)
name = name.replace("-", "_")
return name
def convert_transform_matrix(matrix, width, height, aspect,
x_rot_correction=False, ae_size=100.0):
"""Convert from Blender's Location, Rotation and Scale
to AE's Position, Rotation/Orientation and Scale
This function will be called for every object for every frame
"""
scale_mat = Matrix.Scale(width, 4)
# Get blender transform data for ob
b_loc = matrix.to_translation()
b_rot = matrix.to_euler('ZYX') # ZYX euler matches AE's orientation and allows to use x_rot_correction
b_scale = matrix.to_scale()
# Convert to AE Position Rotation and Scale. Axes in AE are different:
# AE's X is Blender's X,
# AE's Y is Blender's -Z,
# AE's Z is Blender's Y
x = (b_loc.x * 100.0 / aspect + width / 2.0) * ae_size / 100.0
y = (-b_loc.z * 100.0 + height / 2.0) * ae_size / 100.0
z = (b_loc.y * 100.0) * ae_size / 100.0
# Convert rotations to match AE's orientation.
# If not x_rot_correction
rx = degrees(b_rot.x) # AE's X orientation = blender's X rotation if 'ZYX' euler.
ry = -degrees(b_rot.y) # AE's Y orientation = -blender's Y rotation if 'ZYX' euler
rz = -degrees(b_rot.z) # AE's Z orientation = -blender's Z rotation if 'ZYX' euler
# In Blender, ob of zero rotation lays on floor.
# In AE, layer of zero orientation "stands"
rx -= 90.0
# Convert scale to AE scale. ae_size is a global multiplier.
sx = b_scale.x * ae_size
sy = b_scale.y * ae_size
sz = b_scale.z * ae_size
return x, y, z, rx, ry, rz, sx, sy, sz
# Get camera's lens and convert to AE's "zoom" value in pixels
# this function will be called for every camera for every frame
#
#
# AE's lens is defined by "zoom" in pixels.
# Zoom determines focal angle or focal length.
#
# ZOOM VALUE CALCULATIONS:
#
# Given values:
# - sensor width (camera.data.sensor_width)
# - sensor height (camera.data.sensor_height)
# - sensor fit (camera.data.sensor_fit)
# - lens (blender's lens in mm)
# - width (width of the composition/scene in pixels)
# - height (height of the composition/scene in pixels)
# - PAR (pixel aspect ratio)
#
# Calculations are made using sensor's size and scene/comp dimension (width or height).
# If camera.sensor_fit is set to 'HORIZONTAL':
# sensor = camera.data.sensor_width, dimension = width.
#
# If camera.sensor_fit is set to 'AUTO':
# sensor = camera.data.sensor_width
# (actually, it just means to use the first value)
# In AUTO, if the vertical size is greater than the horizontal size:
# dimension = width
# else:
# dimension = height
# If camera.sensor_fit is set to 'VERTICAL':
# sensor = camera.data.sensor_height, dimension = height
#
# Zoom can be calculated using simple proportions.
#
# |
# / |
# / |
# / | d
# s |\ / | i
# e | \ / | m
# n | \ / | e
# s | / \ | n
# o | / \ | s
# r |/ \ | i
# \ | o
# | | \ | n
# | | \ |
# | | |
# lens | zoom
#
# zoom / dimension = lens / sensor =>
# zoom = lens * dimension / sensor
# Above is true if square pixels are used. If not,
# aspect compensation is needed, so final formula is:
# zoom = lens * dimension / sensor * aspect
def convert_lens(camera, width, height, aspect):
if camera.data.sensor_fit == 'VERTICAL':
sensor = camera.data.sensor_height
else:
sensor = camera.data.sensor_width
if (camera.data.sensor_fit == 'VERTICAL'
or camera.data.sensor_fit == 'AUTO'
and (width / height) * aspect < 1.0):
dimension = height
else:
dimension = width
zoom = camera.data.lens * dimension / sensor * aspect
return zoom
# convert object bundle's matrix. Not ready yet. Temporarily not active
# def get_ob_bundle_matrix_world(cam_matrix_world, bundle_matrix):
# matrix = cam_matrix_basis
# return matrix
def write_jsx_file(file, data, selection, include_animation,
include_active_cam, include_selected_cams,
include_selected_objects, include_cam_bundles,
include_image_planes, ae_size):
"""jsx script for AE creation"""
print("\n---------------------------\n- Export to After Effects -\n---------------------------")
# Store the current frame to restore it at the end of export
curframe = data['curframe']
# Create array which will contain all keyframes values
js_data = {
'times': '',
'cameras': {},
'images': {},
'solids': {},
'lights': {},
'nulls': {},
'bundles_cam': {},
'bundles_ob': {}, # not ready yet
}
# Create structure for active camera/cameras
if include_active_cam and data['active_cam_frames']:
# Check if more than one active cam exists
# (True if active cams set by markers)
if len(data['active_cam_frames']) == 1:
# Take name of the only active camera in scene
name_ae = convert_name(data['active_cam_frames'][0].name)
else:
name_ae = 'Active_Camera'
# Store name to be used when creating keyframes for active cam
active_cam_name = name_ae
js_data['cameras'][name_ae] = {
'position': '',
'position_static': '',
'position_anim': False,
'orientation': '',
'orientation_static': '',
'orientation_anim': False,
'zoom': '',
'zoom_static': '',
'zoom_anim': False,
}
# Create camera structure for selected cameras
if include_selected_cams:
for obj in selection['cameras']:
# More than one camera can be selected
if convert_name(obj.name) != active_cam_name:
name_ae = convert_name(obj.name)
js_data['cameras'][name_ae] = {
'position': '',
'position_static': '',
'position_anim': False,
'orientation': '',
'orientation_static': '',
'orientation_anim': False,
'zoom': '',
'zoom_static': '',
'zoom_anim': False,
}
# Create structure for solids
for obj in selection['solids']:
name_ae = convert_name(obj.name)
js_data['solids'][name_ae] = {
'position': '',
'position_static': '',
'position_anim': False,
'orientation_static': '',
'orientation_anim': False,
'scale_static': '',
'scale_anim': False,
# Create structure for images
for obj in selection['images']:
name_ae = convert_name(obj.name)
js_data['images'][name_ae] = {
'position': '',
'position_static': '',
'position_anim': False,
'orientation': '',
'orientation_static': '',
'orientation_anim': False,
'scale': '',
'scale_static': '',
'scale_anim': False,
'filepath': '',
}
# Create structure for lights
for obj in selection['lights']:
if include_selected_objects:
name_ae = obj.data.type + convert_name(obj.name)
js_data['lights'][name_ae] = {
'type': obj.data.type,
'intensity': '',
'intensity_static': '',
'intensity_anim': False,
'Cone Angle': '',
'Cone Angle_static': '',
'Cone Angle_anim': False,
'Cone Feather': '',
'Cone Feather_static': '',
'Cone Feather_anim': False,
'Color': '',
'Color_static': '',
'Color_anim': False,
'position': '',
'position_static': '',
'position_anim': False,
'orientation': '',
'orientation_static': '',
'orientation_anim': False,
}
# Create structure for nulls
# nulls representing blender's obs except cameras, lights and solids
for obj in selection['nulls']:
if include_selected_objects:
name_ae = convert_name(obj.name)
js_data['nulls'][name_ae] = {
'position': '',
'position_static': '',
'position_anim': False,
'orientation': '',
'orientation_static': '',
'orientation_anim': False,
'scale': '',
'scale_static': '',
'scale_anim': False,
}
# Create structure for cam bundles including positions
# (cam bundles don't move)
if include_cam_bundles:
# Go through each selected camera and active cameras
selected_cams = []
active_cams = []
if include_active_cam:
active_cams = data['active_cam_frames']
if include_selected_cams:
for cam in selection['cameras']:
selected_cams.append(cam)
# List of cameras that will be checked for 'CAMERA SOLVER'
cams = list(set.union(set(selected_cams), set(active_cams)))
for cam in cams:
# Go through each constraints of this camera
for constraint in cam.constraints:
# Does the camera have a Camera Solver constraint
if constraint.type == 'CAMERA_SOLVER':
# Which movie clip does it use
if constraint.use_active_clip:
clip = data['scn'].active_clip
else:
clip = constraint.clip
# Go through each tracking point
for track in clip.tracking.tracks:
# Does this tracking point have a bundle
# (has its 3D position been solved)
# Get the name of the tracker
name_ae = convert_name(str(cam.name) + '__' +
str(track.name))
js_data['bundles_cam'][name_ae] = {
'position': '',
}
# Bundles are in camera space.
# Transpose to world space
matrix = Matrix.Translation(cam.matrix_basis.copy()
@ track.bundle)
# Convert the position into AE space
ae_transform = (convert_transform_matrix(
matrix, data['width'], data['height'],
data['aspect'], False, ae_size))
js_data['bundles_cam'][name_ae]['position'] += ('[%f,%f,%f],' % (ae_transform[0], ae_transform[1], ae_transform[2]))
# Get all keyframes for each object and store in dico
if include_animation:
end = data['end'] + 1
else:
end = data['start'] + 1
for frame in range(data['start'], end):
print("working on frame: " + str(frame))
data['scn'].frame_set(frame)
# Get time for this loop
js_data['times'] += '%f,' % ((frame - data['start']) / data['fps'])
# Keyframes for active camera/cameras
if include_active_cam and data['active_cam_frames'] != []:
if len(data['active_cam_frames']) == 1:
cur_cam_index = 0
else:
cur_cam_index = frame - data['start']
active_cam = data['active_cam_frames'][cur_cam_index]
name_ae = active_cam_name
# Convert cam transform properties to AE space
ae_transform = (convert_transform_matrix(
active_cam.matrix_world.copy(), data['width'], data['height'],
data['aspect'], True, ae_size))
# Convert Blender's lens to AE's zoom in pixels
zoom = convert_lens(active_cam, data['width'], data['height'],
data['aspect'])
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0], ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3], ae_transform[4],
ae_transform[5])
js_camera = js_data['cameras'][name_ae]
js_camera['position'] += position
js_camera['orientation'] += orientation
js_camera['zoom'] += zoom
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_camera['position_static']:
js_camera['position_anim'] = True
if orientation != js_camera['orientation_static']:
js_camera['orientation_anim'] = True
if zoom != js_camera['zoom_static']:
js_camera['zoom_anim'] = True
js_camera['position_static'] = position
js_camera['orientation_static'] = orientation
js_camera['zoom_static'] = zoom
# Keyframes for selected cameras
if include_selected_cams:
for obj in selection['cameras']:
if convert_name(obj.name) != active_cam_name:
# Get cam name
name_ae = convert_name(obj.name)
# Convert cam transform properties to AE space
ae_transform = convert_transform_matrix(
obj.matrix_world.copy(), data['width'],
data['height'], data['aspect'], True, ae_size)
# Convert Blender's lens to AE's zoom in pixels
zoom = convert_lens(obj, data['width'], data['height'],
data['aspect'])
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0],
ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3],
ae_transform[4],
ae_transform[5])
js_camera = js_data['cameras'][name_ae]
js_camera['position'] += position
js_camera['orientation'] += orientation
js_camera['zoom'] += zoom
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_camera['position_static']:
js_camera['position_anim'] = True
if orientation != js_camera['orientation_static']:
js_camera['orientation_anim'] = True
if zoom != js_camera['zoom_static']:
js_camera['zoom_anim'] = True
js_camera['position_static'] = position
js_camera['orientation_static'] = orientation
js_camera['zoom_static'] = zoom
# Keyframes for all solids.
if include_selected_objects:
for obj in selection['solids']:
# Get object name
name_ae = convert_name(obj.name)
# Convert obj transform properties to AE space
plane_matrix = get_plane_matrix(obj)
# Scale plane to account for AE's transforms
plane_matrix = plane_matrix @ Matrix.Scale(100.0 / data['width'], 4)
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
ae_transform = convert_transform_matrix(
plane_matrix, data['width'], data['height'],
data['aspect'], True, ae_size)
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0],
ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3],
ae_transform[4],
ae_transform[5])
# plane_width, plane_height, _ = plane_matrix.to_scale()
scale = '[%f,%f,%f],' % (ae_transform[6],
ae_transform[7] * data['width'] / data['height'],
ae_transform[8])
js_solid = js_data['solids'][name_ae]
js_solid['color'] = get_plane_color(obj)
js_solid['width'] = data['width']
js_solid['height'] = data['height']
js_solid['position'] += position
js_solid['orientation'] += orientation
js_solid['scale'] += scale
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_solid['position_static']:
js_solid['position_anim'] = True
if orientation != js_solid['orientation_static']:
js_solid['orientation_anim'] = True
if scale != js_solid['scale_static']:
js_solid['scale_anim'] = True
js_solid['position_static'] = position
js_solid['orientation_static'] = orientation
js_solid['scale_static'] = scale
# Keyframes for all lights.
if include_selected_objects:
for obj in selection['lights']:
# Get object name
name_ae = obj.data.type + convert_name(obj.name)
type = obj.data.type
# Convert ob transform properties to AE space
ae_transform = convert_transform_matrix(
obj.matrix_world.copy(), data['width'], data['height'],
data['aspect'], True, ae_size)
color = obj.data.color
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0], ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3],
ae_transform[4],
ae_transform[5])
energy = '[%f],' % (obj.data.energy * 100.0)
color = '[%f,%f,%f],' % (color[0], color[1], color[2])
js_light = js_data['lights'][name_ae]
js_light['position'] += position
js_light['orientation'] += orientation
js_light['intensity'] += energy
js_light['Color'] += color
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_light['position_static']:
js_light['position_anim'] = True
if orientation != js_light['orientation_static']:
js_light['orientation_anim'] = True
if energy != js_light['intensity_static']:
js_light['intensity_anim'] = True
if color != js_light['Color_static']:
js_light['Color_anim'] = True
js_light['position_static'] = position
js_light['orientation_static'] = orientation
js_light['intensity_static'] = energy
js_light['Color_static'] = color
cone_angle = '[%f],' % (degrees(obj.data.spot_size))
cone_feather = '[%f],' % (obj.data.spot_blend * 100.0)
js_light['Cone Angle'] += cone_angle
js_light['Cone Feather'] += cone_feather
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if cone_angle != js_light['Cone Angle_static']:
js_light['Cone Angle_anim'] = True
if cone_feather != js_light['Cone Feather_static']:
js_light['Cone Feather_anim'] = True
js_light['Cone Angle_static'] = cone_angle
js_light['Cone Feather_static'] = cone_feather
# Keyframes for all nulls
if include_selected_objects:
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
for obj in selection['nulls']:
# Get object name
name_ae = convert_name(obj.name)
# Convert obj transform properties to AE space
ae_transform = convert_transform_matrix(obj.matrix_world.copy(), data['width'], data['height'], data['aspect'], True, ae_size)
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0], ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3], ae_transform[4],
ae_transform[5])
scale = '[%f,%f,%f],' % (ae_transform[6], ae_transform[7],
ae_transform[8])
js_null = js_data['nulls'][name_ae]
js_null['position'] += position
js_null['orientation'] += orientation
js_null['scale'] += scale
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_null['position_static']:
js_null['position_anim'] = True
if orientation != js_null['orientation_static']:
js_null['orientation_anim'] = True
if scale != js_null['scale_static']:
js_null['scale_anim'] = True
js_null['position_static'] = position
js_null['orientation_static'] = orientation
js_null['scale_static'] = scale
# Keyframes for all images
if include_image_planes:
for obj in selection['images']:
# Get object name
name_ae = convert_name(obj.name)
# Convert obj transform properties to AE space
plane_matrix = get_image_plane_matrix(obj)
# Scale plane to account for AE's transforms
plane_matrix = plane_matrix @ Matrix.Scale(100.0 / data['width'], 4)
ae_transform = convert_transform_matrix(
plane_matrix, data['width'], data['height'],
data['aspect'], True, ae_size)
# Store all values in dico
position = '[%f,%f,%f],' % (ae_transform[0],
ae_transform[1],
ae_transform[2])
orientation = '[%f,%f,%f],' % (ae_transform[3],
ae_transform[4],
ae_transform[5])
image_width, image_height = get_image_size(obj)
ratio_to_comp = image_width / data['width']
scale = '[%f,%f,%f],' % (ae_transform[6] / ratio_to_comp,
ae_transform[7] / ratio_to_comp
* image_width / image_height,
ae_transform[8])
js_image = js_data['images'][name_ae]
js_image['position'] += position
js_image['orientation'] += orientation
js_image['scale'] += scale
# Check if properties change values compared to previous frame
# If property don't change through out the whole animation,
# keyframes won't be added
if frame != data['start']:
if position != js_image['position_static']:
js_image['position_anim'] = True
if orientation != js_image['orientation_static']:
js_image['orientation_anim'] = True
if scale != js_image['scale_static']:
js_image['scale_anim'] = True
js_image['position_static'] = position
js_image['orientation_static'] = orientation
js_image['scale_static'] = scale
js_image['filepath'] = get_image_filepath(obj)
# keyframes for all object bundles. Not ready yet.
#
#
#
# ---- write JSX file
jsx_file = open(file, 'w')
# Make the jsx executable in After Effects (enable double click on jsx)
jsx_file.write('#target AfterEffects\n\n')
# Script's header
jsx_file.write('/**************************************\n')
jsx_file.write('Scene : %s\n' % data['scn'].name)
jsx_file.write('Resolution : %i x %i\n' % (data['width'], data['height']))
jsx_file.write('Duration : %f\n' % (data['duration']))
jsx_file.write('FPS : %f\n' % (data['fps']))
jsx_file.write('Date : %s\n' % datetime.datetime.now())
jsx_file.write('Exported with io_export_after_effects.py\n')
jsx_file.write('**************************************/\n\n\n\n')
# Wrap in function
jsx_file.write("function compFromBlender(){\n")
# Create new comp
if bpy.data.filepath:
comp_name = convert_name(
os.path.splitext(os.path.basename(bpy.data.filepath))[0])
else:
comp_name = "BlendComp"
jsx_file.write('\nvar compName = prompt("Blender Comp\'s Name \\nEnter Name of newly created Composition","%s","Composition\'s Name");\n' % comp_name)
jsx_file.write('if (compName){')
# Continue only if comp name is given. If not - terminate
jsx_file.write(
'\nvar newComp = app.project.items.addComp(compName, %i, %i, %f, %f, %f);'
% (data['width'], data['height'], data['aspect'],
data['duration'], data['fps']))
jsx_file.write('\nnewComp.displayStartTime = %f;\n\n\n'
% ((data['start'] + 1.0) / data['fps']))
# Create camera bundles (nulls)
jsx_file.write('// ************** CAMERA 3D MARKERS **************\n\n')
for name_ae, obj in js_data['bundles_cam'].items():
jsx_file.write('var %s = newComp.layers.addNull();\n' % (name_ae))
jsx_file.write('%s.threeDLayer = true;\n' % name_ae)
jsx_file.write('%s.source.name = "%s";\n' % (name_ae, name_ae))
jsx_file.write('%s.property("position").setValue(%s);\n\n'
% (name_ae, obj['position']))
jsx_file.write('\n')
# Create object bundles (not ready yet)
# Create objects (nulls)
jsx_file.write('// ************** OBJECTS **************\n\n')
for name_ae, obj in js_data['nulls'].items():
jsx_file.write('var %s = newComp.layers.addNull();\n' % (name_ae))
jsx_file.write('%s.threeDLayer = true;\n' % name_ae)
jsx_file.write('%s.source.name = "%s";\n' % (name_ae, name_ae))
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Set values of properties, add keyframes only where needed
for prop in ("position", "orientation", "scale"):
if include_animation and obj[prop + '_anim']:
jsx_file.write(
'%s.property("%s").setValuesAtTimes([%s],[%s]);\n'
% (name_ae, prop, js_data['times'], obj[prop]))
else:
jsx_file.write(
'%s.property("%s").setValue(%s);\n'
% (name_ae, prop, obj[prop + '_static']))
jsx_file.write('\n')
jsx_file.write('\n')
# Create solids
jsx_file.write('// ************** SOLIDS **************\n\n')
for name_ae, obj in js_data['solids'].items():
jsx_file.write(
'var %s = newComp.layers.addSolid(%s,"%s",%i,%i,%f);\n' % (
name_ae,
obj['color'],
name_ae,
obj['width'],
obj['height'],
1.0))
jsx_file.write(
'%s.threeDLayer = true;\n' % name_ae)
jsx_file.write(
'%s.source.name = "%s";\n' % (name_ae, name_ae))
# Set values of properties, add keyframes only where needed
for prop in ("position", "orientation", "scale"):
if include_animation and obj[prop + '_anim']:
jsx_file.write(
'%s.property("%s").setValuesAtTimes([%s],[%s]);\n'
% (name_ae, prop, js_data['times'], obj[prop]))
else:
jsx_file.write(
'%s.property("%s").setValue(%s);\n'
% (name_ae, prop, obj[prop + '_static']))
jsx_file.write('\n')
jsx_file.write('\n')
# Create images
jsx_file.write('// ************** IMAGES **************\n\n')
for name_ae, obj in js_data['images'].items():
jsx_file.write(
'var newFootage = app.project.importFile(new ImportOptions(File("%s")))\n'
% (obj['filepath']))
jsx_file.write(
'var %s = newComp.layers.add(newFootage);\n' % (name_ae))
jsx_file.write(
'%s.threeDLayer = true;\n' % name_ae)
jsx_file.write(
'%s.source.name = "%s";\n' % (name_ae, name_ae))
# Set values of properties, add keyframes only where needed
for prop in ("position", "orientation", "scale"):
if include_animation and obj[prop + '_anim']:
jsx_file.write(
'%s.property("%s").setValuesAtTimes([%s],[%s]);\n'
% (name_ae, prop, js_data['times'], obj[prop]))
else:
jsx_file.write(
'%s.property("%s").setValue(%s);\n'
% (name_ae, prop, obj[prop + '_static']))
jsx_file.write('\n')
jsx_file.write('\n')
# Create lights
jsx_file.write('// ************** LIGHTS **************\n\n')
for name_ae, obj in js_data['lights'].items():
jsx_file.write(
'var %s = newComp.layers.addLight("%s", [0.0, 0.0]);\n'
% (name_ae, name_ae))
jsx_file.write(
'%s.autoOrient = AutoOrientType.NO_AUTO_ORIENT;\n'
% name_ae)
# Set values of properties, add keyframes only where needed
props = ["position", "orientation", "intensity", "Color"]
if obj['type'] == 'SPOT':
props.extend(("Cone Angle", "Cone Feather"))
for prop in props:
if include_animation and obj[prop + '_anim']: