Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
import copy
import bgl
import blf
import mathutils
from mathutils import *
from math import *
#from math import sin, cos, tan, atan, degrees, radians, asin, acos
from bpy_extras import view3d_utils
from bpy.app.handlers import persistent
from .utils_function import *
def scene_cast(region, rv3d, co2d):
ray_origin = view3d_utils.region_2d_to_origin_3d(region, rv3d, co2d)
#np_print('ray_origin', ray_origin)
view_vector = view3d_utils.region_2d_to_vector_3d(region, rv3d, co2d)
#np_print('view_vector', view_vector)
ray_target = ray_origin + view_vector * 1000
#np_print('ray_target', ray_target)
if bpy.app.version[0] > 1 and bpy.app.version[1] > 76:
scenecast = bpy.context.scene.ray_cast(ray_origin, view_vector)
#np_print('scenecast', scenecast)
result = scenecast[0]
hitloc = scenecast[1]
normal = scenecast[2]
face_index = scenecast[3]
hitob = scenecast[4]
matrix = scenecast[5]
else:
scenecast = bpy.context.scene.ray_cast(ray_origin, ray_target)
#np_print('scenecast', scenecast)
result = scenecast[0]
hitloc = scenecast[3]
normal = scenecast[4]
hitob = scenecast[1]
matrix = scenecast[2]
if hitob is not None:
matrix = hitob.matrix_world.copy()
matrix_inv = matrix.inverted()
ray_origin_obj = matrix_inv * ray_origin
ray_target_obj = matrix_inv * ray_target
obcast = hitob.ray_cast(ray_origin_obj, ray_target_obj)
#np_print('obcast', obcast)
face_index = obcast[2]
else:
face_index = -1
return (result, hitloc, normal, face_index, hitob, matrix, ray_origin, view_vector, ray_target)
def construct_roto_widget(alpha_0, alpha_1, fac, r1, r2, angstep):
if alpha_1 >= alpha_0: alpha = alpha_1 - alpha_0
else: alpha = alpha_1 + (360 - alpha_0)
ring_sides = abs(int(alpha / angstep)) + 1
np_print('ring_sides', ring_sides)
ring_angstep = alpha / ring_sides
np_print('ring_sides, ring_angstep', ring_sides, ring_angstep)
ring = []
ang = alpha_0
co1 = Vector((0.0, 0.0, 0.0))
co1[0] = round(cos(radians(ang)), 8)
co1[1] = round(sin(radians(ang)), 8)
co1 = co1 * r1 * fac
ring.append(co1)
co2 = Vector((0.0, 0.0, 0.0))
co2[0] = round(cos(radians(ang)), 8)
co2[1] = round(sin(radians(ang)), 8)
co2 = co2 * r2 * fac
ring.append(co2)
for i in range(2, (2 + ring_sides)):
co = Vector((0.0, 0.0, 0.0))
ang = ang + ring_angstep
co[0] = round(cos(radians(ang)), 8)
co[1] = round(sin(radians(ang)), 8)
co = co * r2 * fac
#np_print('co', co)
#np_print('ring', ring)
ring.append(co)
np_print('one done')
for i in range((2 + ring_sides) + 1, (2 + (2 * ring_sides)+2)):
co = Vector((0.0, 0.0, 0.0))
co[0] = round(cos(radians(ang)), 8)
co[1] = round(sin(radians(ang)), 8)
ang = ang - ring_angstep
#np_print('co', co)
#np_print('ring', ring)
co = co * r1 * fac
ring.append(co)
np_print('two done')
return ring
def construct_circle_2d(r, angstep):
sides = int(360 / angstep) + 1
angstep = 360 / sides
circle = []
ang = 0
for i in range(0, sides):
co = [0.0, 0.0]
co[0] = round(cos(radians(ang)), 8)*r
co[1] = round(sin(radians(ang)), 8)*r
ang = ang + angstep
circle.append(co)
#np_print('circle', circle)
return circle
def get_ro_x_from_iso(region, rv3d, co2d, centerloc):
scenecast = scene_cast(region, rv3d, co2d)
ray_origin = scenecast[6]
view_vector = scenecast[7]
ray_target = scenecast[8]
n = scenecast[2]
if n == Vector((0.0, 0.0, 0.0)):
if ray_origin[2] > 0:
if ray_target[2] < ray_origin[2]: n = Vector((0.0, 0.0, 1.0))
else:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]: n = Vector((0.0, -1.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]): n = Vector((0.0, 1.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]): n = Vector((1.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]: n = Vector((-1.0, 0.0, 0.0))
if ray_origin[2] < 0:
if ray_target[2] > ray_origin[2]: n = Vector((0.0, 0.0, 1.0))
else:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]: n = Vector((0.0, -1.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]): n = Vector((0.0, 1.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]): n = Vector((1.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]: n = Vector((-1.0, 0.0, 0.0))
if ray_origin[2] == 0:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]: n = Vector((0.0, -1.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]): n = Vector((0.0, 1.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]): n = Vector((1.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]: n = Vector((-1.0, 0.0, 0.0))
isohipse = mathutils.geometry.intersect_plane_plane(centerloc, n, centerloc, Vector((0.0, 0.0, 1.0)))
#np_print('n = ', n)
#np_print('isohipse = ', isohipse)
if isohipse == (None, None): viso = Vector((0.0, 0.0, 0.0)) + Vector((1.0, 0.0, 0.0))
else: viso = Vector((0.0, 0.0, 0.0)) - isohipse[1]
if isohipse == (None, None): isohipse = (centerloc, (centerloc + Vector((1.0, 0.0, 0.0))))
else: isohipse = (isohipse[0], isohipse[0] - isohipse[1])
viso = viso.normalized()
v = Vector((1.0, 0.0, 0.0))
ro_hor = v.rotation_difference(viso)
ro_hor = Quaternion ((0.0000, 0.0000, -0.0000, 1.000))
#ro_hor_deg = degrees(ro_hor)
#np_print('viso = ', viso)
#np_print( viso[0], viso[1], viso[2])
#np_print('ro_hor = ', ro_hor)
#np_print('ro_hor_deg = ', ro_hor_deg)
return (ro_hor, isohipse)
def get_ro_normal_from_vertical(region, rv3d, co2d):
scenecast = scene_cast(region, rv3d, co2d)
ray_origin = scenecast[6]
view_vector = scenecast[7]
ray_target = scenecast[8]
hitloc = scenecast[1]
n = scenecast[2]
if n == Vector((0.0, 0.0, 0.0)):
if ray_origin[2] > 0:
if ray_target[2] < ray_origin[2]:
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
n = Vector((0.0, 0.0, 1.0))
if ray_origin[2] > 10: draw_plane_point = Vector((0.0, 0.0, (ray_origin[2] - 10)))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
else:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]:
n = Vector((0.0, -1.0, 0.0))
if ray_origin[1] > 0 or ray_origin[1] < -10: draw_plane_point = Vector((0.0, (ray_origin[1] + 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]):
n = Vector((0.0, 1.0, 0.0))
if ray_origin[1] < 0 or ray_origin[1] > 10: draw_plane_point = Vector((0.0, (ray_origin[1] - 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]):
n = Vector((1.0, 0.0, 0.0))
if ray_origin[0] > 10 or ray_origin[0] < 0: draw_plane_point = Vector(((ray_origin[0] - 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]:
n = Vector((-1.0, 0.0, 0.0))
if ray_origin[0] < -10 or ray_origin[0] > 0: draw_plane_point = Vector(((ray_origin[0] + 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
if ray_origin[2] < 0:
if ray_target[2] > ray_origin[2]:
n = Vector((0.0, 0.0, -1.0))
if ray_origin[2] < -10: draw_plane_point = Vector((0.0, 0.0, (ray_origin[2] + 10)))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
else:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]:
n = Vector((0.0, -1.0, 0.0))
if ray_origin[1] > 0 or ray_origin[1] < -10: draw_plane_point = Vector((0.0, (ray_origin[1] + 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]):
n = Vector((0.0, 1.0, 0.0))
if ray_origin[1] < 0 or ray_origin[1] > 10: draw_plane_point = Vector((0.0, (ray_origin[1] - 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]):
n = Vector((1.0, 0.0, 0.0))
if ray_origin[0] > 10 or ray_origin[0] < 0: draw_plane_point = Vector(((ray_origin[0] - 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]:
n = Vector((-1.0, 0.0, 0.0))
if ray_origin[0] < -10 or ray_origin[0] > 0: draw_plane_point = Vector(((ray_origin[0] + 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
if ray_origin[2] == 0:
if view_vector[1] > 0 and abs(view_vector[0]) <= view_vector[1]:
n = Vector((0.0, -1.0, 0.0))
if ray_origin[1] > 0 or ray_origin[1] < -10: draw_plane_point = Vector((0.0, (ray_origin[1] + 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[1] < 0 and abs(view_vector[0]) <= abs(view_vector[1]):
n = Vector((0.0, 1.0, 0.0))
if ray_origin[1] < 0 or ray_origin[1] > 10: draw_plane_point = Vector((0.0, (ray_origin[1] - 10), 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] < 0 and abs(view_vector[1]) <= abs(view_vector[0]):
n = Vector((1.0, 0.0, 0.0))
if ray_origin[0] > 10 or ray_origin[0] < 0: draw_plane_point = Vector(((ray_origin[0] - 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
elif view_vector[0] > 0 and abs(view_vector[1]) <= view_vector[0]:
n = Vector((-1.0, 0.0, 0.0))
if ray_origin[0] < -10 or ray_origin[0] > 0: draw_plane_point = Vector(((ray_origin[0] + 10), 0.0, 0.0))
else: draw_plane_point = Vector((0.0, 0.0, 0.0))
hitloc = mathutils.geometry.intersect_line_plane(ray_origin, (ray_origin + view_vector), draw_plane_point, n)
v = Vector((0.0, 0.0, 1.0))
np_print('n', n)
q = v.rotation_difference(n)
v = Vector((0.0, 0.0, 1.0))
ro = v.rotation_difference(n)
#np_print('ro = ', ro)
return (n, ro, hitloc)
def get_fac_from_view_loc_plane(region, rv3d, rmin, centerloc, q):
# writing the dots for circle at center of scene:
radius = 1
ang = 0.0
circle = [(0.0 ,0.0 ,0.0)]
while ang < 360.0:
circle.append(((cos(radians(ang)) * radius), (sin(radians(ang)) * radius), (0.0)))
ang += 10
circle.append(((cos(radians(0.0)) * radius), (sin(radians(0.0)) * radius), (0.0)))
# rotating and translating the circle to user picked angle and place:
circle = rotate_graphic(circle, q)
circle = translate_graphic(circle, centerloc)
rmax = 1
for i, co in enumerate(circle):
co = view3d_utils.location_3d_to_region_2d(region, rv3d, co)
circle[i] = co
for i in range(1, 18):
r = (circle[0] - circle[i]).length
r1 = (circle[0] - circle[i + 18]).length
#if (r + r1) > rmax and abs(r - r1) < min(r, r1)/5: rmax = (r+r1)/2
#if (r + r1) > rmax and abs(r - r1) < min(r, r1)/10: rmax = r + r1
if (r + r1) > rmax and (r + r1) / 2 < rmin: rmax = (r + r1)
elif (r + r1) > rmax and (r + r1) / 2 >= rmin: rmax = (r + r1) * rmin / (((r + r1) / 2)- ((r + r1) / 2) - rmin)
rmax = abs(rmax)
circle[i] = co
#np_print('rmin', rmin)
#np_print('rmax', rmax)
fac = (rmin * 2) / rmax
return fac
def rotate_graphic(graphic, q):
# rotating the graphic to the angle of chosen normal:
if q != None:
for i, co in enumerate(graphic):
if type(co) == tuple:
vco = Vector(co)
else: vco = co
if vco != None:
vco = q * vco
graphic[i] = vco
return graphic
def translate_graphic(graphic, vectorloc):
# translating graphic to the chosen point in scene:
m = copy.deepcopy(graphic[0])
for i, co in enumerate(graphic):
#np_print('co', co)
if type(co) == tuple:
vco = Vector(co)
else: vco = co
if vco != None:
vco = vco + vectorloc
graphic[i] = vco
return graphic
def get_angle_from_iso_planar(centerloc, normal, proj):
np_print('normal', normal)
np_print('centerloc', centerloc)
np_print('proj', proj)
isohipse = mathutils.geometry.intersect_plane_plane(centerloc, normal, centerloc, Vector((0.0, 0.0, 1.0)))
np_print('isohipse', isohipse)
if isohipse == (None, None):
isohipse = (centerloc, (centerloc + Vector((1.0, 0.0, 0.0))))
hor = True
else:
isohipse = (isohipse[0], isohipse[0] - isohipse[1])
hor = False
np_print('isohipse', isohipse)
vco1 = isohipse[1] - isohipse[0]
vco2 = proj - centerloc
np_print('vco1', vco1)
np_print('vco2', vco2)
if hor:
if proj[1] < centerloc[1]: isoang = 360 - degrees(vco1.angle(vco2))
else: isoang = degrees(vco1.angle(vco2))
else:
if proj[2] < centerloc[2]: isoang = 360 - degrees(vco1.angle(vco2))
else: isoang = degrees(vco1.angle(vco2))
return isoang, isohipse
'''
Return the intersection between two planes
Parameters:
plane_a_co (mathutils.Vector) – Point on the first plane
plane_a_no (mathutils.Vector) – Normal of the first plane
plane_b_co (mathutils.Vector) – Point on the second plane
plane_b_no (mathutils.Vector) – Normal of the second plane
Returns:
The line of the intersection represented as a point and a vector
Return type:
tuple pair of mathutils.Vector or None if the intersection can’t be calculated
'''
def get_angle_vector_from_vector(centerloc, startloc, endloc):
np_print('centerloc', centerloc)
np_print('startloc', startloc)
np_print('endloc', endloc)
vco1 = endloc - centerloc
vco2 = startloc - centerloc
np_print('vco1', vco1)
np_print('vco2', vco2)
alpha = degrees(vco1.angle(vco2))
return alpha
def get_eul_z_angle_dif_in_rotated_system(eul_0, eul_1, n):
np_print('eul_0 =', eul_0)
np_print('eul_1 =', eul_1)
v = Vector ((0.0, 0.0, 1.0))
if n[2] < 0:
n = Vector((-n[0], -n[1], -n[2]))
n_dif_quat = n.rotation_difference(v)
np_print('n_dif_quat =', n_dif_quat)
n_dif_eul = n_dif_quat.to_euler()
np_print('n_dif_eul =', n_dif_eul)
a = copy.deepcopy(eul_0)
np_print('a =', a)
b = copy.deepcopy(eul_1)
np_print('b =', b)
a.rotate(n_dif_eul)
b.rotate(n_dif_eul)
np_print('a =', a)
np_print('b =', b)
a_z = degrees(a.z)
b_z = degrees(b.z)
np_print('a_z =', a_z)
np_print('b_z =', b_z)
alpha_real = a_z - b_z
else:
n_dif_quat = n.rotation_difference(v)
np_print('n_dif_quat =', n_dif_quat)
n_dif_eul = n_dif_quat.to_euler()
np_print('n_dif_eul =', n_dif_eul)
a = copy.deepcopy(eul_0)
np_print('a =', a)
b = copy.deepcopy(eul_1)
np_print('b =', b)
a.rotate(n_dif_eul)
b.rotate(n_dif_eul)
np_print('a =', a)
np_print('b =', b)
a_z = degrees(a.z)
b_z = degrees(b.z)
np_print('a_z =', a_z)
np_print('b_z =', b_z)
alpha_real = a_z - b_z
alpha_real = -alpha_real
return alpha_real
def get_eul_z_angle_diff_in_rotated_system(eul_0, eul_1, eul_zero, ro_hor):
np_print('eul_0 =', eul_0)
np_print('eul_1 =', eul_1)
np_print('eul_zero =', eul_zero)
a = copy.deepcopy(eul_0)
b = copy.deepcopy(eul_1)
zero = copy.deepcopy(eul_zero)
np_print('a =', a)
np_print('b =', b)
np_print('zero =', zero)
a.x = -a.x
a.y = -a.y
a.z = -a.z
eul_0.rotate(a)
#b.rotate(-ro_hor)
b.rotate(a)
np_print('a =', a)
np_print('eul_0 =', eul_0)
np_print('b =', b)
b_z = degrees(round((b.z), 4))
np_print('b_z =', b_z)
alpha_real = b_z
return alpha_real
def get_eul_z_angle_difff_in_rotated_system(eul_0, eul_1, n):
np_print('eul_0 =', eul_0)
np_print('eul_1 =', eul_1)
eul_delta = Euler(((eul_1.x - eul_0.x), (eul_1.y - eul_0.y), (eul_1.z - eul_0.z)), 'XYZ')
np_print('eul_delta =', eul_delta)
np_print('n =', n)
v = Vector ((0.0, 0.0, 1.0))
n_dif_quat = n.rotation_difference(v)
np_print('n_dif_quat =', n_dif_quat)
n_dif_eul = n_dif_quat.to_euler()
np_print('n_dif_eul =', n_dif_eul)
eul_delta.rotate(n_dif_eul)
np_print('eul_delta', eul_delta)
alpha_real = degrees(eul_delta.z)
np_print('alpha_real', alpha_real)
return alpha_real
def get_eul_z_angle_diffff_in_rotated_system(eul_0, eul_1, n):
np_print('eul_0 =', eul_0)
np_print('eul_1 =', eul_1)
np_print('n =', n)
v = Vector ((0.0, 0.0, 1.0))
n_dif_quat = n.rotation_difference(v)
np_print('n_dif_quat =', n_dif_quat)
a = copy.deepcopy(eul_0)
b = copy.deepcopy(eul_1)
a.rotate(n_dif_quat)
b.rotate(n_dif_quat)
np_print('eul_0 =', a)
np_print('eul_1 =', b)
alpha_real = degrees(b.z - a.z )
'''
if int(b.y) == -3 and b.z > 0:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -6 and b.z > 0:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -0 and b.z > 3:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -3 and b.z < 0:
alpha_real = alpha_real + (180*int(b.z / 1.55))
elif int(b.y) == -6 and b.z < 0:
alpha_real = alpha_real + (180*int(b.z / 1.55))
elif int(b.y) == -0 and b.z < -3:
alpha_real = alpha_real + (180*int(b.z / 1.55))
'''
np_print('alpha_real', alpha_real)
return alpha_real
def get_eul_z_angle_difffff_in_rotated_system(eul_0, eul_1, n):
np_print('n =', n)
c = copy.deepcopy(eul_0)
d = copy.deepcopy(eul_1)
np_print('------- eul_0 =', eul_0)
np_print('------- eul_0 =', round(degrees(eul_0.x),2), round(degrees(eul_0.y),2), round(degrees(eul_0.z),2))
np_print('------- eul_1 =', round(degrees(eul_1.x),2), round(degrees(eul_1.y),2), round(degrees(eul_1.z),2))
v = Vector ((0.0, 0.0, 1.0))
if n[2] > 0:
m = copy.deepcopy(n)
if abs(n[0]) == 0.0000: m[0] = 0.001
if abs(n[1]) == 0.0000: m[1] = 0.001
elif n[2] < 0:
m = copy.deepcopy(-n)
if abs(n[0]) == 0.0000: m[0] = 0.001
if abs(n[1]) == 0.0000: m[1] = 0.001
else:
if abs(n[0]) == 0.0000: m = Vector ((0.001, n[1], 0.001))
elif abs(n[1]) == 0.0000: m = Vector ((n[0], 0.001, 0.001))
else: m = Vector ((n[0], n[1], 0.001))
np_print('................m =', m)
if abs(eul_0.x) == 0: c.x = 0.001
if abs(eul_0.y) == 0: c.y = 0.001
if abs(eul_0.z) == 0: c.z = 0.001
if round(eul_0.x, 4) == 1.5708: c.x = 1.5700
if round(eul_0.y, 4) == 1.5708: c.y = 1.5700
if round(eul_0.z, 4) == 1.5708: c.z = 1.5700
if round(eul_0.x, 4) == -1.5708: c.x = -1.5700
if round(eul_0.y, 4) == -1.5708: c.y = -1.5700
if round(eul_0.z, 4) == -1.5708: c.z = -1.5700
np_print('------- eul_0 =', c)
n_dif_quat = m.rotation_difference(v)
n_dif_eul = n_dif_quat.to_euler()
np_print('``````` n_dif_eul =', round(degrees(n_dif_eul.x),2), round(degrees(n_dif_eul.y),2), round(degrees(n_dif_eul.z),2))
a = copy.deepcopy(c)
b = copy.deepcopy(d)
a.rotate(n_dif_eul)
b.rotate(n_dif_eul)
np_print('>>>>>>> eul_0 =', round(degrees(a.x),2), round(degrees(a.y),2), round(degrees(a.z),2))
np_print('>>>>>>> eul_1 =', round(degrees(b.x),2), round(degrees(b.y),2), round(degrees(b.z),2))
np_print('------- eul_1 =', b)
'''
if int(b.y) == -3 and b.z > 0:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -6 and b.z > 0:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -0 and b.z > 3:
alpha_real = alpha_real - (180*int(b.z / 1.55))
elif int(b.y) == -3 and b.z < 0:
alpha_real = alpha_real + (180*int(b.z / 1.55))
elif int(b.y) == -6 and b.z < 0:
alpha_real = alpha_real + (180*int(b.z / 1.55))
elif int(b.y) == -0 and b.z < -3:
alpha_real = alpha_real + (180*int(b.z / 1.55))
'''
alpha_real = degrees(b.z - a.z )
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
if n[2] < 0: alpha_real = - alpha_real
np_print('alpha_real', alpha_real)
return alpha_real
def get_eul_z_angle_diffffff_in_rotated_system(eul_0, eul_1, n): # v6?
np_print('n =', n)
c = eul_0.copy()
d = eul_1.copy()
np_print('------- eul_0 =', eul_0)
np_print('------- eul_0 =', round(degrees(eul_0.x),6), round(degrees(eul_0.y),6), round(degrees(eul_0.z),6))
np_print('------- eul_1 =', round(degrees(eul_1.x),6), round(degrees(eul_1.y),6), round(degrees(eul_1.z),6))
v = Vector ((0.0, 0.0, 1.0))
if n[2] > 0:
m = n.copy()
if abs(n[0]) == 0.0: m[0] = 0.000001
if abs(n[1]) == 0.0: m[1] = 0.000001
elif n[2] < 0:
m = -n.copy()
if abs(n[0]) == 0.0: m[0] = 0.000001
if abs(n[1]) == 0.0: m[1] = 0.000001
else:
if abs(n[0]) == 0.0: m = Vector ((0.000001, n[1], 0.000001))
elif abs(n[1]) == 0.0: m = Vector ((n[0], 0.000001, 0.000001))
else: m = Vector ((n[0], n[1], 0.000001))
np_print('................m =', m)
if abs(eul_0.x) == 0: c.x = 0.000001
if abs(eul_0.y) == 0: c.y = 0.000001
if abs(eul_0.z) == 0: c.z = 0.000001
# 90 deg == 1.5707963268 rad
if round(eul_0.x, 6) == 1.570796: c.x = 1.5708
if round(eul_0.y, 6) == 1.570796: c.y = 1.5708
if round(eul_0.z, 6) == 1.570796: c.z = 1.5708
if round(eul_0.x, 6) == -1.570796: c.x = -1.5708
if round(eul_0.y, 6) == -1.570796: c.y = -1.5708
if round(eul_0.z, 6) == -1.570796: c.z = -1.5708
np_print('------- eul_0 =', c)
n_dif_quat = m.rotation_difference(v)
n_dif_eul = n_dif_quat.to_euler()
np_print('``````` n_dif_eul =', round(degrees(n_dif_eul.x),6), round(degrees(n_dif_eul.y),6), round(degrees(n_dif_eul.z),6))
a = c.copy()
b = d.copy()
a.rotate(n_dif_eul)
b.rotate(n_dif_eul)
np_print('>>>>>>> eul_0 =', round(degrees(a.x),6), round(degrees(a.y),6), round(degrees(a.z),6))
np_print('>>>>>>> eul_1 =', round(degrees(b.x),6), round(degrees(b.y),6), round(degrees(b.z),6))
np_print('------- eul_1 =', b)
alpha_real = degrees(b.z - a.z )
if n[2] < 0: alpha_real = - alpha_real
np_print('alpha_real', alpha_real)