Newer
Older
Paul Marshall
committed
# Blender EdgeTools
#
# This is a toolkit for edge manipulation based on several of mesh manipulation
# abilities of several CAD/CAE packages, notably CATIA's Geometric Workbench
# from which most of these tools have a functional basis based on the paradims
# that platform enables. These tools are a collection of scripts that I needed
# at some point, and so I will probably add and improve these as I continue to
# use and model with them.
#
# It might be good to eventually merge the tinyCAD VTX tools for unification
# purposes, and as these are edge-based tools, it would make sense. Or maybe
# merge this with tinyCAD instead?
#
# The GUI and Blender add-on structure shamelessly coded in imitation of the
# LoopTools addon.
#
# Examples:
# - "Ortho" inspired from CATIA's line creation tool which creates a line of a
# user specified length at a user specified angle to a curve at a chosen
# point. The user then selects the plane the line is to be created in.
# - "Shaft" is inspired from CATIA's tool of the same name. However, instead
# of a curve around an axis, this will instead shaft a line, a point, or
# a fixed radius about the selected axis.
# - "Slice" is from CATIA's ability to split a curve on a plane. When
# completed this be a Python equivalent with all the same basic
# functionality, though it will sadly be a little clumsier to use due
# to Blender's selection limitations.
#
Paul Marshall
committed
# Notes:
# - Buggy parts have been hidden behind bpy.app.debug. Run Blender in debug
# to expose those. Example: Shaft with more than two edges selected.
Paul Marshall
committed
# - Some functions have started to crash, despite working correctly before.
# What could be causing that? Blender bug? Or coding bug?
Paul Marshall
committed
#
# Paul "BrikBot" Marshall
# Created: January 28, 2012
Paul Marshall
committed
# Last Modified: October 6, 2012
Paul Marshall
committed
# Homepage (blog): http://post.darkarsenic.com/
# //blog.darkarsenic.com/
#
Paul Marshall
committed
# Coded in IDLE, tested in Blender 2.6.
Paul Marshall
committed
# Search for "@todo" to quickly find sections that need work.
#
# Remeber -
# Functional code comes before fast code. Once it works, then worry about
# making it faster/more efficient.
#
# ##### BEGIN GPL LICENSE BLOCK #####
#
# The Blender Edgetools is to bring CAD tools to Blender.
# Copyright (C) 2012 Paul Marshall
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# ^^ Maybe. . . . :P
bl_info = {
"name": "EdgeTools",
"author": "Paul Marshall",
"version": (0, 8),
"blender": (2, 68, 0),
"location": "View3D > Toolbar and View3D > Specials (W-key)",
"warning": "",
"description": "CAD style edge manipulation tools",
CoDEmanX
committed
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Modeling/EdgeTools",
"tracker_url": "",
Paul Marshall
committed
CoDEmanX
committed
Paul Marshall
committed
import bpy, bmesh, mathutils
Paul Marshall
committed
from math import acos, pi, radians, sqrt, tan
Paul Marshall
committed
from mathutils import Matrix, Vector
from mathutils.geometry import (distance_point_to_plane,
interpolate_bezier,
intersect_point_line,
intersect_line_line,
intersect_line_plane)
from bpy.props import (BoolProperty,
BoolVectorProperty,
IntProperty,
FloatProperty,
EnumProperty)
Paul Marshall
committed
integrated = False
Paul Marshall
committed
# Quick an dirty method for getting the sign of a number:
def sign(number):
return (number > 0) - (number < 0)
# is_parallel
#
# Checks to see if two lines are parallel
def is_parallel(v1, v2, v3, v4):
CoDEmanX
committed
result = intersect_line_line(v1, v2, v3, v4)
Paul Marshall
committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
return result == None
# is_axial
#
# This is for the special case where the edge is parallel to an axis. In this
# the projection onto the XY plane will fail so it will have to be handled
# differently. This tells us if and how:
def is_axial(v1, v2, error = 0.000002):
vector = v2 - v1
# Don't need to store, but is easier to read:
vec0 = vector[0] > -error and vector[0] < error
vec1 = vector[1] > -error and vector[1] < error
vec2 = vector[2] > -error and vector[2] < error
if (vec0 or vec1) and vec2:
return 'Z'
elif vec0 and vec1:
return 'Y'
return None
# is_same_co
#
# For some reason "Vector = Vector" does not seem to look at the actual
# coordinates. This provides a way to do so.
def is_same_co(v1, v2):
if len(v1) != len(v2):
return False
else:
for co1, co2 in zip(v1, v2):
if co1 != co2:
return False
return True
Paul Marshall
committed
# is_face_planar
#
# Tests a face to see if it is planar.
Paul Marshall
committed
def is_face_planar(face, error = 0.0005):
Paul Marshall
committed
for v in face.verts:
d = distance_point_to_plane(v.co, face.verts[0].co, face.normal)
Paul Marshall
committed
if bpy.app.debug:
print("Distance: " + str(d))
Paul Marshall
committed
if d < -error or d > error:
return False
return True
Paul Marshall
committed
# other_joined_edges
#
# Starts with an edge. Then scans for linked, selected edges and builds a
# list with them in "order", starting at one end and moving towards the other.
def order_joined_edges(edge, edges = [], direction = 1):
if len(edges) == 0:
edges.append(edge)
edges[0] = edge
if bpy.app.debug:
print(edge, end = ", ")
print(edges, end = ", ")
print(direction, end = "; ")
# Robustness check: direction cannot be zero
if direction == 0:
direction = 1
Paul Marshall
committed
newList = []
for e in edge.verts[0].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 1))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
newList.extend(order_joined_edges(e, edges, direction - 1))
# This will only matter at the first level:
direction = direction * -1
Paul Marshall
committed
for e in edge.verts[1].link_edges:
if e.select and edges.count(e) == 0:
if direction > 0:
edges.insert(0, e)
newList.extend(order_joined_edges(e, edges, direction + 2))
newList.extend(edges)
else:
edges.append(e)
newList.extend(edges)
Paul Marshall
committed
newList.extend(order_joined_edges(e, edges, direction))
if bpy.app.debug:
print(newList, end = ", ")
print(direction)
Paul Marshall
committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
return newList
# --------------- GEOMETRY CALCULATION METHODS --------------
# distance_point_line
#
# I don't know why the mathutils.geometry API does not already have this, but
# it is trivial to code using the structures already in place. Instead of
# returning a float, I also want to know the direction vector defining the
# distance. Distance can be found with "Vector.length".
def distance_point_line(pt, line_p1, line_p2):
int_co = intersect_point_line(pt, line_p1, line_p2)
distance_vector = int_co[0] - pt
return distance_vector
# interpolate_line_line
#
# This is an experiment into a cubic Hermite spline (c-spline) for connecting
# two edges with edges that obey the general equation.
# This will return a set of point coordinates (Vectors).
#
# A good, easy to read background on the mathematics can be found at:
# http://cubic.org/docs/hermite.htm
#
# Right now this is . . . less than functional :P
# @todo
# - C-Spline and Bezier curves do not end on p2_co as they are supposed to.
# - B-Spline just fails. Epically.
# - Add more methods as I come across them. Who said flexibility was bad?
def interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, segments, tension = 1,
typ = 'BEZIER', include_ends = False):
pieces = []
fraction = 1 / segments
# Form: p1, tangent 1, p2, tangent 2
if typ == 'HERMITE':
poly = [[2, -3, 0, 1], [1, -2, 1, 0],
[-2, 3, 0, 0], [1, -1, 0, 0]]
elif typ == 'BEZIER':
poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
[1, 0, 0, 0], [-3, 3, 0, 0]]
p1_dir = p1_dir + p1_co
p2_dir = -p2_dir + p2_co
elif typ == 'BSPLINE':
## Supposed poly matrix for a cubic b-spline:
## poly = [[-1, 3, -3, 1], [3, -6, 3, 0],
## [-3, 0, 3, 0], [1, 4, 1, 0]]
# My own invention to try to get something that somewhat acts right.
# This is semi-quadratic rather than fully cubic:
poly = [[0, -1, 0, 1], [1, -2, 1, 0],
[0, -1, 2, 0], [1, -1, 0, 0]]
if include_ends:
pieces.append(p1_co)
# Generate each point:
for i in range(segments - 1):
t = fraction * (i + 1)
if bpy.app.debug:
print(t)
s = [t ** 3, t ** 2, t, 1]
h00 = (poly[0][0] * s[0]) + (poly[0][1] * s[1]) + (poly[0][2] * s[2]) + (poly[0][3] * s[3])
h01 = (poly[1][0] * s[0]) + (poly[1][1] * s[1]) + (poly[1][2] * s[2]) + (poly[1][3] * s[3])
h10 = (poly[2][0] * s[0]) + (poly[2][1] * s[1]) + (poly[2][2] * s[2]) + (poly[2][3] * s[3])
h11 = (poly[3][0] * s[0]) + (poly[3][1] * s[1]) + (poly[3][2] * s[2]) + (poly[3][3] * s[3])
pieces.append((h00 * p1_co) + (h01 * p1_dir) + (h10 * p2_co) + (h11 * p2_dir))
if include_ends:
pieces.append(p2_co)
# Return:
if len(pieces) == 0:
return None
else:
if bpy.app.debug:
print(pieces)
return pieces
# intersect_line_face
#
# Calculates the coordinate of intersection of a line with a face. It returns
# the coordinate if one exists, otherwise None. It can only deal with tris or
# quads for a face. A quad does NOT have to be planar. Thus the following.
#
# Quad math and theory:
# A quad may not be planar. Therefore the treated definition of the surface is
# that the surface is composed of all lines bridging two other lines defined by
# the given four points. The lines do not "cross".
CoDEmanX
committed
#
Paul Marshall
committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# The two lines in 3-space can defined as:
# ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
# │x1│ │a11│ │b11│ │x2│ │a21│ │b21│
# │y1│ = (1-t1)│a12│ + t1│b12│, │y2│ = (1-t2)│a22│ + t2│b22│
# │z1│ │a13│ │b13│ │z2│ │a23│ │b23│
# └ ┘ └ ┘ └ ┘ └ ┘ └ ┘ └ ┘
# Therefore, the surface is the lines defined by every point alone the two
# lines with a same "t" value (t1 = t2). This is basically R = V1 + tQ, where
# Q = V2 - V1 therefore R = V1 + t(V2 - V1) -> R = (1 - t)V1 + tV2:
# ┌ ┐ ┌ ┐ ┌ ┐
# │x12│ │(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│
# │y12│ = (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│
# │z12│ │(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│
# └ ┘ └ ┘ └ ┘
# Now, the equation of our line can be likewise defined:
# ┌ ┐ ┌ ┐ ┌ ┐
# │x3│ │a31│ │b31│
# │y3│ = │a32│ + t3│b32│
# │z3│ │a33│ │b33│
# └ ┘ └ ┘ └ ┘
# Now we just have to find a valid solution for the two equations. This should
# be our point of intersection. Therefore, x12 = x3 -> x, y12 = y3 -> y,
# z12 = z3 -> z. Thus, to find that point we set the equation defining the
# surface as equal to the equation for the line:
# ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
# │(1-t)a11 + t * b11│ │(1-t)a21 + t * b21│ │a31│ │b31│
# (1 - t12)│(1-t)a12 + t * b12│ + t12│(1-t)a22 + t * b22│ = │a32│ + t3│b32│
# │(1-t)a13 + t * b13│ │(1-t)a23 + t * b23│ │a33│ │b33│
# └ ┘ └ ┘ └ ┘ └ ┘
# This leaves us with three equations, three unknowns. Solving the system by
# hand is practically impossible, but using Mathematica we are given an insane
# series of three equations (not reproduced here for the sake of space: see
# http://www.mediafire.com/file/cc6m6ba3sz2b96m/intersect_line_surface.nb and
# http://www.mediafire.com/file/0egbr5ahg14talm/intersect_line_surface2.nb for
# Mathematica computation).
#
Paul Marshall
committed
# Additionally, the resulting series of equations may result in a div by zero
# exception if the line in question if parallel to one of the axis or if the
# quad is planar and parallel to either the XY, XZ, or YZ planes. However, the
# system is still solvable but must be dealt with a little differently to avaid
# these special cases. Because the resulting equations are a little different,
# we have to code them differently. Hence the special cases.
#
Paul Marshall
committed
# Tri math and theory:
# A triangle must be planar (three points define a plane). Therefore we just
# have to make sure that the line intersects inside the triangle.
Paul Marshall
committed
#
# If the point is within the triangle, then the angle between the lines that
# connect the point to the each individual point of the triangle will be
# equal to 2 * PI. Otherwise, if the point is outside the triangle, then the
# sum of the angles will be less.
#
# @todo
# - Figure out how to deal with n-gons. How the heck is a face with 8 verts
# definied mathematically? How do I then find the intersection point of
# a line with said vert? How do I know if that point is "inside" all the
# verts? I have no clue, and haven't been able to find anything on it so
# far. Maybe if someone (actually reads this and) who knows could note?
Paul Marshall
committed
def intersect_line_face(edge, face, is_infinite = False, error = 0.000002):
int_co = None
# If we are dealing with a non-planar quad:
if len(face.verts) == 4 and not is_face_planar(face):
Paul Marshall
committed
edgeA = face.edges[0]
edgeB = None
flipB = False
Paul Marshall
committed
for i in range(len(face.edges)):
if face.edges[i].verts[0] not in edgeA.verts and face.edges[i].verts[1] not in edgeA.verts:
edgeB = face.edges[i]
break
Paul Marshall
committed
# I haven't figured out a way to mix this in with the above. Doing so might remove a
# few extra instructions from having to be executed saving a few clock cycles:
for i in range(len(face.edges)):
if face.edges[i] == edgeA or face.edges[i] == edgeB:
continue
if (edgeA.verts[0] in face.edges[i].verts and edgeB.verts[1] in face.edges[i].verts) or (edgeA.verts[1] in face.edges[i].verts and edgeB.verts[0] in face.edges[i].verts):
flipB = True
break
Paul Marshall
committed
# Define calculation coefficient constants:
# "xx1" is the x coordinate, "xx2" is the y coordinate, and "xx3" is the z
# coordinate.
a11, a12, a13 = edgeA.verts[0].co[0], edgeA.verts[0].co[1], edgeA.verts[0].co[2]
b11, b12, b13 = edgeA.verts[1].co[0], edgeA.verts[1].co[1], edgeA.verts[1].co[2]
if flipB:
a21, a22, a23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
b21, b22, b23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
else:
a21, a22, a23 = edgeB.verts[0].co[0], edgeB.verts[0].co[1], edgeB.verts[0].co[2]
b21, b22, b23 = edgeB.verts[1].co[0], edgeB.verts[1].co[1], edgeB.verts[1].co[2]
a31, a32, a33 = edge.verts[0].co[0], edge.verts[0].co[1], edge.verts[0].co[2]
b31, b32, b33 = edge.verts[1].co[0], edge.verts[1].co[1], edge.verts[1].co[2]
Paul Marshall
committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# There are a bunch of duplicate "sub-calculations" inside the resulting
# equations for t, t12, and t3. Calculate them once and store them to
# reduce computational time:
m01 = a13 * a22 * a31
m02 = a12 * a23 * a31
m03 = a13 * a21 * a32
m04 = a11 * a23 * a32
m05 = a12 * a21 * a33
m06 = a11 * a22 * a33
m07 = a23 * a32 * b11
m08 = a22 * a33 * b11
m09 = a23 * a31 * b12
m10 = a21 * a33 * b12
m11 = a22 * a31 * b13
m12 = a21 * a32 * b13
m13 = a13 * a32 * b21
m14 = a12 * a33 * b21
m15 = a13 * a31 * b22
m16 = a11 * a33 * b22
m17 = a12 * a31 * b23
m18 = a11 * a32 * b23
m19 = a13 * a22 * b31
m20 = a12 * a23 * b31
m21 = a13 * a32 * b31
m22 = a23 * a32 * b31
m23 = a12 * a33 * b31
m24 = a22 * a33 * b31
m25 = a23 * b12 * b31
m26 = a33 * b12 * b31
m27 = a22 * b13 * b31
m28 = a32 * b13 * b31
m29 = a13 * b22 * b31
m30 = a33 * b22 * b31
m31 = a12 * b23 * b31
m32 = a32 * b23 * b31
m33 = a13 * a21 * b32
m34 = a11 * a23 * b32
m35 = a13 * a31 * b32
m36 = a23 * a31 * b32
m37 = a11 * a33 * b32
m38 = a21 * a33 * b32
m39 = a23 * b11 * b32
m40 = a33 * b11 * b32
m41 = a21 * b13 * b32
m42 = a31 * b13 * b32
m43 = a13 * b21 * b32
m44 = a33 * b21 * b32
m45 = a11 * b23 * b32
m46 = a31 * b23 * b32
m47 = a12 * a21 * b33
m48 = a11 * a22 * b33
m49 = a12 * a31 * b33
m50 = a22 * a31 * b33
m51 = a11 * a32 * b33
m52 = a21 * a32 * b33
m53 = a22 * b11 * b33
m54 = a32 * b11 * b33
m55 = a21 * b12 * b33
m56 = a31 * b12 * b33
m57 = a12 * b21 * b33
m58 = a32 * b21 * b33
m59 = a11 * b22 * b33
m60 = a31 * b22 * b33
m61 = a33 * b12 * b21
m62 = a32 * b13 * b21
m63 = a33 * b11 * b22
m64 = a31 * b13 * b22
m65 = a32 * b11 * b23
m66 = a31 * b12 * b23
m67 = b13 * b22 * b31
m68 = b12 * b23 * b31
m69 = b13 * b21 * b32
m70 = b11 * b23 * b32
m71 = b12 * b21 * b33
m72 = b11 * b22 * b33
n01 = m01 - m02 - m03 + m04 + m05 - m06
n02 = -m07 + m08 + m09 - m10 - m11 + m12 + m13 - m14 - m15 + m16 + m17 - m18 - m25 + m27 + m29 - m31 + m39 - m41 - m43 + m45 - m53 + m55 + m57 - m59
n03 = -m19 + m20 + m33 - m34 - m47 + m48
n04 = m21 - m22 - m23 + m24 - m35 + m36 + m37 - m38 + m49 - m50 - m51 + m52
n05 = m26 - m28 - m30 + m32 - m40 + m42 + m44 - m46 + m54 - m56 - m58 + m60
n06 = m61 - m62 - m63 + m64 + m65 - m66 - m67 + m68 + m69 - m70 - m71 + m72
n07 = 2 * n01 + n02 + 2 * n03 + n04 + n05
n08 = n01 + n02 + n03 + n06
Paul Marshall
committed
# Calculate t, t12, and t3:
t = (n07 - sqrt(pow(-n07, 2) - 4 * (n01 + n03 + n04) * n08)) / (2 * n08)
Paul Marshall
committed
# t12 can be greatly simplified by defining it with t in it:
Paul Marshall
committed
# If block used to help prevent any div by zero error.
t12 = 0
Paul Marshall
committed
if a31 == b31:
# The line is parallel to the z-axis:
if a32 == b32:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is parallel to the y-axis:
elif a33 == b33:
t12 = ((a11 - a31) + (b11 - a11) * t) / ((a21 - a11) + (a11 - a21 - b11 + b21) * t)
# The line is along the y/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a32 + a12 * (1 - t) + b12 * t) + (a32 - b32) * (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) * ((a22 - a12) * (1 - t) + (b22 - b12) * t) + (a32 - b32) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
elif a32 == b32:
# The line is parallel to the x-axis:
if a33 == b33:
t12 = ((a12 - a32) + (b12 - a12) * t) / ((a22 - a12) + (a12 - a22 - b12 + b22) * t)
# The line is along the x/z-axis but is not parallel to either:
else:
t12 = -(-(a33 - b33) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a33 + a13 * (1 - t) + b13 * t)) / (-(a33 - b33) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) + (a31 - b31) * ((a23 - a13) * (1 - t) + (b23 - b13) * t))
# The line is along the x/y-axis but is not parallel to either:
else:
t12 = -(-(a32 - b32) * (-a31 + a11 * (1 - t) + b11 * t) + (a31 - b31) * (-a32 + a12 * (1 - t) + b12 * t)) / (-(a32 - b32) * ((a21 - a11) * (1 - t) + (b21 - b11) * t) + (a31 - b31) * ((a22 - a21) * (1 - t) + (b22 - b12) * t))
Paul Marshall
committed
# Likewise, t3 is greatly simplified by defining it in terms of t and t12:
Paul Marshall
committed
# If block used to prevent a div by zero error.
t3 = 0
if a31 != b31:
t3 = (-a11 + a31 + (a11 - b11) * t + (a11 - a21) * t12 + (a21 - a11 + b11 - b21) * t * t12) / (a31 - b31)
elif a32 != b32:
t3 = (-a12 + a32 + (a12 - b12) * t + (a12 - a22) * t12 + (a22 - a12 + b12 - b22) * t * t12) / (a32 - b32)
elif a33 != b33:
t3 = (-a13 + a33 + (a13 - b13) * t + (a13 - a23) * t12 + (a23 - a13 + b13 - b23) * t * t12) / (a33 - b33)
else:
print("The second edge is a zero-length edge")
Paul Marshall
committed
return None
Paul Marshall
committed
# Calculate the point of intersection:
x = (1 - t3) * a31 + t3 * b31
y = (1 - t3) * a32 + t3 * b32
z = (1 - t3) * a33 + t3 * b33
Paul Marshall
committed
int_co = Vector((x, y, z))
CoDEmanX
committed
if bpy.app.debug:
print(int_co)
Paul Marshall
committed
# If the line does not intersect the quad, we return "None":
Paul Marshall
committed
if (t < -1 or t > 1 or t12 < -1 or t12 > 1) and not is_infinite:
Paul Marshall
committed
int_co = None
Paul Marshall
committed
elif len(face.verts) == 3:
p1, p2, p3 = face.verts[0].co, face.verts[1].co, face.verts[2].co
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co, p1, face.normal)
Paul Marshall
committed
# Only check if the triangle is not being treated as an infinite plane:
Paul Marshall
committed
# Math based from http://paulbourke.net/geometry/linefacet/
Paul Marshall
committed
if int_co != None and not is_infinite:
Paul Marshall
committed
pA = p1 - int_co
pB = p2 - int_co
pC = p3 - int_co
Paul Marshall
committed
# These must be unit vectors, else we risk a domain error:
pA.length = 1
pB.length = 1
pC.length = 1
Paul Marshall
committed
aAB = acos(pA.dot(pB))
aBC = acos(pB.dot(pC))
aCA = acos(pC.dot(pA))
sumA = aAB + aBC + aCA
Paul Marshall
committed
# If the point is outside the triangle:
Paul Marshall
committed
if (sumA > (pi + error) and sumA < (pi - error)):
Paul Marshall
committed
int_co = None
# This is the default case where we either have a planar quad or an n-gon.
else:
int_co = intersect_line_plane(edge.verts[0].co, edge.verts[1].co,
face.verts[0].co, face.normal)
Paul Marshall
committed
return int_co
Paul Marshall
committed
# project_point_plane
#
# Projects a point onto a plane. Returns a tuple of the projection vector
# and the projected coordinate.
def project_point_plane(pt, plane_co, plane_no):
proj_co = intersect_line_plane(pt, pt + plane_no, plane_co, plane_no)
proj_ve = proj_co - pt
return (proj_ve, proj_co)
CoDEmanX
committed
Paul Marshall
committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# ------------ FILLET/CHAMPHER HELPER METHODS -------------
# get_next_edge
#
# The following is used to return edges that might be possible edges for
# propagation. If an edge is connected to the end vert, but is also a part
# of the on of the faces that the current edge composes, then it is a
# "corner edge" and is not valid as a propagation edge. If the edge is
# part of two faces that a in the same plane, then we cannot fillet/chamfer
# it because there is no angle between them.
def get_next_edge(edge, vert):
invalidEdges = [e for f in edge.link_faces for e in f.edges if e != edge]
invalidEdges.append(edge)
if bpy.app.debug:
print(invalidEdges)
newEdge = [e for e in vert.link_edges if e not in invalidEdges and not is_planar_edge(e)]
if len(newEdge) == 0:
return None
elif len(newEdge) == 1:
return newEdge[0]
else:
return newEdge
def is_planar_edge(edge, error = 0.000002):
angle = edge.calc_face_angle()
return (angle < error and angle > -error) or (angle < (180 + error) and angle > (180 - error))
# fillet_axis
#
# Calculates the base geometry data for the fillet. This assumes that the faces
# are planar:
Paul Marshall
committed
#
# @todo
# - Redesign so that the faces do not have to be planar
#
# There seems to be issues some of the vector math right now. Will need to be
# debuged.
Paul Marshall
committed
def fillet_axis(edge, radius):
vectors = [None, None, None, None]
CoDEmanX
committed
Paul Marshall
committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
origin = Vector((0, 0, 0))
axis = edge.verts[1].co - edge.verts[0].co
# Get the "adjacency" base vectors for face 0:
for e in edge.link_faces[0].edges:
if e == edge:
continue
if e.verts[0] == edge.verts[0]:
vectors[0] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[0]:
vectors[0] = e.verts[0].co - e.verts[1].co
elif e.verts[0] == edge.verts[1]:
vectors[1] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[1]:
vectors[1] = e.verts[0].co - e.verts[1].co
# Get the "adjacency" base vectors for face 1:
for e in edge.link_faces[1].edges:
if e == edge:
continue
if e.verts[0] == edge.verts[0]:
vectors[2] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[0]:
vectors[2] = e.verts[0].co - e.verts[1].co
elif e.verts[0] == edge.verts[1]:
vectors[3] = e.verts[1].co - e.verts[0].co
elif e.verts[1] == edge.verts[1]:
vectors[3] = e.verts[0].co - e.verts[1].co
# Get the normal for face 0 and face 1:
norm1 = edge.link_faces[0].normal
norm2 = edge.link_faces[1].normal
CoDEmanX
committed
Paul Marshall
committed
# We need to find the angle between the two faces, then bisect it:
theda = (pi - edge.calc_face_angle()) / 2
CoDEmanX
committed
Paul Marshall
committed
# We are dealing with a triangle here, and we will need the length
# of its adjacent side. The opposite is the radius:
adj_len = radius / tan(theda)
# Vectors can be thought of as being at the origin, and we need to make sure
# that the base vectors are planar with the "normal" definied by the edge to
# be filleted. Then we set the length of the vector and shift it into a
# coordinate:
for i in range(len(vectors)):
vectors[i] = project_point_plane(vectors[i], origin, axis)[1]
vectors[i].length = adj_len
vectors[i] = vectors[i] + edge.verts[i % 2].co
CoDEmanX
committed
Paul Marshall
committed
# Compute fillet axis end points:
v1 = intersect_line_line(vectors[0], vectors[0] + norm1, vectors[2], vectors[2] + norm2)[0]
v2 = intersect_line_line(vectors[1], vectors[1] + norm1, vectors[3], vectors[3] + norm2)[0]
return [v1, v2]
def fillet_point(t, face1, face2):
return
Paul Marshall
committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
# ------------------- EDGE TOOL METHODS -------------------
# Extends an "edge" in two directions:
# - Requires two vertices to be selected. They do not have to form an edge.
# - Extends "length" in both directions
class Extend(bpy.types.Operator):
bl_idname = "mesh.edgetools_extend"
bl_label = "Extend"
bl_description = "Extend the selected edges of vertice pair."
bl_options = {'REGISTER', 'UNDO'}
di1 = BoolProperty(name = "Forwards",
description = "Extend the edge forwards",
default = True)
di2 = BoolProperty(name = "Backwards",
description = "Extend the edge backwards",
default = False)
length = FloatProperty(name = "Length",
description = "Length to extend the edge",
min = 0.0, max = 1024.0,
default = 1.0)
def draw(self, context):
layout = self.layout
layout.prop(self, "di1")
layout.prop(self, "di2")
layout.prop(self, "length")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
edges = [e for e in bEdges if e.select]
verts = [v for v in bVerts if v.select]
if len(edges) > 0:
for e in edges:
vector = e.verts[0].co - e.verts[1].co
vector.length = self.length
CoDEmanX
committed
Paul Marshall
committed
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
else:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = e.verts[0].co + vector
newE = bEdges.new((e.verts[0], v))
else:
v.co = e.verts[1].co - vector
newE = bEdges.new((e.verts[1], v))
else:
vector = verts[0].co - verts[1].co
vector.length = self.length
if self.di1:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
else:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
if self.di2:
v = bVerts.new()
if (vector[0] + vector[1] + vector[2]) < 0:
v.co = verts[0].co + vector
e = bEdges.new((verts[0], v))
else:
v.co = verts[1].co - vector
e = bEdges.new((verts[1], v))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Creates a series of edges between two edges using spline interpolation.
# This basically just exposes existing functionality in addition to some
# other common methods: Hermite (c-spline), Bezier, and b-spline. These
# alternates I coded myself after some extensive research into spline
# theory.
#
# @todo Figure out what's wrong with the Blender bezier interpolation.
class Spline(bpy.types.Operator):
bl_idname = "mesh.edgetools_spline"
bl_label = "Spline"
bl_description = "Create a spline interplopation between two edges"
bl_options = {'REGISTER', 'UNDO'}
CoDEmanX
committed
Paul Marshall
committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
alg = EnumProperty(name = "Spline Algorithm",
items = [('Blender', 'Blender', 'Interpolation provided through \"mathutils.geometry\"'),
('Hermite', 'C-Spline', 'C-spline interpolation'),
('Bezier', 'Bézier', 'Bézier interpolation'),
('B-Spline', 'B-Spline', 'B-Spline interpolation')],
default = 'Bezier')
segments = IntProperty(name = "Segments",
description = "Number of segments to use in the interpolation",
min = 2, max = 4096,
soft_max = 1024,
default = 32)
flip1 = BoolProperty(name = "Flip Edge",
description = "Flip the direction of the spline on edge 1",
default = False)
flip2 = BoolProperty(name = "Flip Edge",
description = "Flip the direction of the spline on edge 2",
default = False)
ten1 = FloatProperty(name = "Tension",
description = "Tension on edge 1",
min = -4096.0, max = 4096.0,
soft_min = -8.0, soft_max = 8.0,
default = 1.0)
ten2 = FloatProperty(name = "Tension",
description = "Tension on edge 2",
min = -4096.0, max = 4096.0,
soft_min = -8.0, soft_max = 8.0,
default = 1.0)
def draw(self, context):
layout = self.layout
layout.prop(self, "alg")
layout.prop(self, "segments")
layout.label("Edge 1:")
layout.prop(self, "ten1")
layout.prop(self, "flip1")
layout.label("Edge 2:")
layout.prop(self, "ten2")
layout.prop(self, "flip2")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bEdges = bm.edges
bVerts = bm.verts
CoDEmanX
committed
Paul Marshall
committed
seg = self.segments
edges = [e for e in bEdges if e.select]
verts = [edges[v // 2].verts[v % 2] for v in range(4)]
if self.flip1:
v1 = verts[1]
p1_co = verts[1].co
p1_dir = verts[1].co - verts[0].co
else:
v1 = verts[0]
p1_co = verts[0].co
p1_dir = verts[0].co - verts[1].co
if self.ten1 < 0:
p1_dir = -1 * p1_dir
p1_dir.length = -self.ten1
else:
p1_dir.length = self.ten1
if self.flip2:
v2 = verts[3]
p2_co = verts[3].co
p2_dir = verts[2].co - verts[3].co
else:
v2 = verts[2]
p2_co = verts[2].co
CoDEmanX
committed
p2_dir = verts[3].co - verts[2].co
Paul Marshall
committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
if self.ten2 < 0:
p2_dir = -1 * p2_dir
p2_dir.length = -self.ten2
else:
p2_dir.length = self.ten2
# Get the interploted coordinates:
if self.alg == 'Blender':
pieces = interpolate_bezier(p1_co, p1_dir, p2_dir, p2_co, self.segments)
elif self.alg == 'Hermite':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'HERMITE')
elif self.alg == 'Bezier':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BEZIER')
elif self.alg == 'B-Spline':
pieces = interpolate_line_line(p1_co, p1_dir, p2_co, p2_dir, self.segments, 1, 'BSPLINE')
verts = []
verts.append(v1)
# Add vertices and set the points:
for i in range(seg - 1):
v = bVerts.new()
v.co = pieces[i]
verts.append(v)
verts.append(v2)
# Connect vertices:
for i in range(seg):
e = bEdges.new((verts[i], verts[i + 1]))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Creates edges normal to planes defined between each of two edges and the
# normal or the plane defined by those two edges.
# - Select two edges. The must form a plane.
# - On running the script, eight edges will be created. Delete the
# extras that you don't need.
# - The length of those edges is defined by the variable "length"
#
# @todo Change method from a cross product to a rotation matrix to make the
# angle part work.
Paul Marshall
committed
# --- todo completed 2/4/2012, but still needs work ---
Paul Marshall
committed
# @todo Figure out a way to make +/- predictable
# - Maybe use angel between edges and vector direction definition?
# --- TODO COMPLETED ON 2/9/2012 ---
class Ortho(bpy.types.Operator):
bl_idname = "mesh.edgetools_ortho"
Paul Marshall
committed
bl_label = "Angle Off Edge"
Paul Marshall
committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
bl_description = ""
bl_options = {'REGISTER', 'UNDO'}
vert1 = BoolProperty(name = "Vertice 1",
description = "Enable edge creation for vertice 1.",
default = True)
vert2 = BoolProperty(name = "Vertice 2",
description = "Enable edge creation for vertice 2.",
default = True)
vert3 = BoolProperty(name = "Vertice 3",
description = "Enable edge creation for vertice 3.",
default = True)
vert4 = BoolProperty(name = "Vertice 4",
description = "Enable edge creation for vertice 4.",
default = True)
pos = BoolProperty(name = "+",
description = "Enable positive direction edges.",
default = True)
neg = BoolProperty(name = "-",
description = "Enable negitive direction edges.",
default = True)
angle = FloatProperty(name = "Angle",
description = "Angle off of the originating edge",
min = 0.0, max = 180.0,
default = 90.0)
length = FloatProperty(name = "Length",
description = "Length of created edges.",
min = 0.0, max = 1024.0,
default = 1.0)
# For when only one edge is selected (Possible feature to be testd):
plane = EnumProperty(name = "Plane",
items = [("XY", "X-Y Plane", "Use the X-Y plane as the plane of creation"),
("XZ", "X-Z Plane", "Use the X-Z plane as the plane of creation"),
("YZ", "Y-Z Plane", "Use the Y-Z plane as the plane of creation")],
default = "XY")
def draw(self, context):
layout = self.layout
layout.prop(self, "vert1")
layout.prop(self, "vert2")
layout.prop(self, "vert3")
layout.prop(self, "vert4")
row = layout.row(align = False)
row.alignment = 'EXPAND'
row.prop(self, "pos")
row.prop(self, "neg")
layout.prop(self, "angle")
layout.prop(self, "length")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bVerts = bm.verts
bEdges = bm.edges
edges = [e for e in bEdges if e.select]
vectors = []
# Until I can figure out a better way of handeling it:
if len(edges) < 2:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"You must select two edges.")
Paul Marshall
committed
return {'CANCELLED'}
verts = [edges[0].verts[0],
edges[0].verts[1],
edges[1].verts[0],
edges[1].verts[1]]
cos = intersect_line_line(verts[0].co, verts[1].co, verts[2].co, verts[3].co)
# If the two edges are parallel:
if cos == None:
self.report({'WARNING'},
"Selected lines are parallel: results may be unpredictable.")
Paul Marshall
committed
vectors.append(verts[0].co - verts[1].co)
vectors.append(verts[0].co - verts[2].co)
vectors.append(vectors[0].cross(vectors[1]))
vectors.append(vectors[2].cross(vectors[0]))
vectors.append(-vectors[3])
else:
# Warn the user if they have not chosen two planar edges:
if not is_same_co(cos[0], cos[1]):
self.report({'WARNING'},
"Selected lines are not planar: results may be unpredictable.")
Paul Marshall
committed
# This makes the +/- behavior predictable:
if (verts[0].co - cos[0]).length < (verts[1].co - cos[0]).length:
verts[0], verts[1] = verts[1], verts[0]
if (verts[2].co - cos[0]).length < (verts[3].co - cos[0]).length:
verts[2], verts[3] = verts[3], verts[2]
vectors.append(verts[0].co - verts[1].co)
vectors.append(verts[2].co - verts[3].co)
CoDEmanX
committed
Paul Marshall
committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
# Normal of the plane formed by vector1 and vector2:
vectors.append(vectors[0].cross(vectors[1]))
# Possible directions:
vectors.append(vectors[2].cross(vectors[0]))
vectors.append(vectors[1].cross(vectors[2]))
# Set the length:
vectors[3].length = self.length
vectors[4].length = self.length
# Perform any additional rotations:
matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
vectors.append(matrix * -vectors[3]) # vectors[5]
matrix = Matrix.Rotation(radians(90 - self.angle), 3, vectors[2])
vectors.append(matrix * vectors[4]) # vectors[6]
vectors.append(matrix * vectors[3]) # vectors[7]
matrix = Matrix.Rotation(radians(90 + self.angle), 3, vectors[2])
vectors.append(matrix * -vectors[4]) # vectors[8]
# Perform extrusions and displacements:
# There will be a total of 8 extrusions. One for each vert of each edge.
# It looks like an extrusion will add the new vert to the end of the verts
# list and leave the rest in the same location.
# ----------- EDIT -----------
Paul Marshall
committed
# It looks like I might be able to do this within "bpy.data" with the ".add"
Paul Marshall
committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
# function.
# ------- BMESH UPDATE -------
# BMesh uses ".new()"
for v in range(len(verts)):
vert = verts[v]
if (v == 0 and self.vert1) or (v == 1 and self.vert2) or (v == 2 and self.vert3) or (v == 3 and self.vert4):
if self.pos:
new = bVerts.new()
new.co = vert.co - vectors[5 + (v // 2) + ((v % 2) * 2)]
bEdges.new((vert, new))
if self.neg:
new = bVerts.new()
new.co = vert.co + vectors[5 + (v // 2) + ((v % 2) * 2)]
bEdges.new((vert, new))
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Usage:
# Select an edge and a point or an edge and specify the radius (default is 1 BU)
# You can select two edges but it might be unpredicatble which edge it revolves
# around so you might have to play with the switch.
class Shaft(bpy.types.Operator):
bl_idname = "mesh.edgetools_shaft"
bl_label = "Shaft"
bl_description = "Create a shaft mesh around an axis"
bl_options = {'REGISTER', 'UNDO'}
# Selection defaults:
Paul Marshall
committed
shaftType = 0
# For tracking if the user has changed selection:
last_edge = IntProperty(name = "Last Edge",
description = "Tracks if user has changed selected edge",
min = 0, max = 1,
default = 0)
last_flip = False
CoDEmanX
committed
Paul Marshall
committed
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
edge = IntProperty(name = "Edge",
description = "Edge to shaft around.",
min = 0, max = 1,
default = 0)
flip = BoolProperty(name = "Flip Second Edge",
description = "Flip the percieved direction of the second edge.",
default = False)
radius = FloatProperty(name = "Radius",
description = "Shaft Radius",
min = 0.0, max = 1024.0,
default = 1.0)
start = FloatProperty(name = "Starting Angle",
description = "Angle to start the shaft at.",
min = -360.0, max = 360.0,
default = 0.0)
finish = FloatProperty(name = "Ending Angle",
description = "Angle to end the shaft at.",
min = -360.0, max = 360.0,
default = 360.0)
segments = IntProperty(name = "Shaft Segments",
description = "Number of sgements to use in the shaft.",
min = 1, max = 4096,
soft_max = 512,
default = 32)
def draw(self, context):
layout = self.layout
if self.shaftType == 0:
layout.prop(self, "edge")
layout.prop(self, "flip")
elif self.shaftType == 3:
layout.prop(self, "radius")
layout.prop(self, "segments")
layout.prop(self, "start")
layout.prop(self, "finish")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
# Make sure these get reset each time we run:
self.last_edge = 0
self.edge = 0
Paul Marshall
committed
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
active = None
edges = []
verts = []
# Pre-caclulated values:
Paul Marshall
committed
rotRange = [radians(self.start), radians(self.finish)]
rads = radians((self.finish - self.start) / self.segments)
numV = self.segments + 1
numE = self.segments
edges = [e for e in bEdges if e.select]
# Robustness check: there should at least be one edge selected
if len(edges) < 1:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"At least one edge must be selected.")
return {'CANCELLED'}
Paul Marshall
committed
# If two edges are selected:
Paul Marshall
committed
if len(edges) == 2:
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
# default:
edge = [0, 1]
vert = [0, 1]
# Edge selection:
#
# By default, we want to shaft around the last selected edge (it
# will be the active edge). We know we are using the default if
# the user has not changed which edge is being shafted around (as
# is tracked by self.last_edge). When they are not the same, then
# the user has changed selection.
#
# We then need to make sure that the active object really is an edge
# (robustness check).
#
# Finally, if the active edge is not the inital one, we flip them
# and have the GUI reflect that.
if self.last_edge == self.edge:
if isinstance(bm.select_history.active, bmesh.types.BMEdge):
if bm.select_history.active != edges[edge[0]]:
self.last_edge, self.edge = edge[1], edge[1]
edge = [edge[1], edge[0]]
else:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"Active geometry is not an edge.")
return {'CANCELLED'}
elif self.edge == 1:
edge = [1, 0]
CoDEmanX
committed
verts.append(edges[edge[0]].verts[0])
verts.append(edges[edge[0]].verts[1])
Paul Marshall
committed
if self.flip:
verts = [1, 0]
verts.append(edges[edge[1]].verts[vert[0]])
verts.append(edges[edge[1]].verts[vert[1]])
Paul Marshall
committed
self.shaftType = 0
# If there is more than one edge selected:
Paul Marshall
committed
# There are some issues with it ATM, so don't expose is it to normal users
# @todo Fix edge connection ordering issue
elif len(edges) > 2 and bpy.app.debug:
Paul Marshall
committed
if isinstance(bm.select_history.active, bmesh.types.BMEdge):
active = bm.select_history.active
edges.remove(active)
# Get all the verts:
# edges = order_joined_edges(edges[0])
Paul Marshall
committed
verts = []
for e in edges:
if verts.count(e.verts[0]) == 0:
verts.append(e.verts[0])
if verts.count(e.verts[1]) == 0:
verts.append(e.verts[1])
else:
Paul Marshall
committed
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"Active geometry is not an edge.")
Paul Marshall
committed
return {'CANCELLED'}
self.shaftType = 1
else:
verts.append(edges[0].verts[0])
verts.append(edges[0].verts[1])
Paul Marshall
committed
for v in bVerts:
if v.select and verts.count(v) == 0:
verts.append(v)
v.select = False
if len(verts) == 2:
self.shaftType = 3
else:
self.shaftType = 2
# The vector denoting the axis of rotation:
if self.shaftType == 1:
axis = active.verts[1].co - active.verts[0].co
else:
axis = verts[1].co - verts[0].co
Paul Marshall
committed
# We will need a series of rotation matrices. We could use one which
# would be faster but also might cause propagation of error.
## matrices = []
## for i in range(numV):
## matrices.append(Matrix.Rotation((rads * i) + rotRange[0], 3, axis))
matrices = [Matrix.Rotation((rads * i) + rotRange[0], 3, axis) for i in range(numV)]
Paul Marshall
committed
# New vertice coordinates:
verts_out = []
# If two edges were selected:
# - If the lines are not parallel, then it will create a cone-like shaft
if self.shaftType == 0:
for i in range(len(verts) - 2):
init_vec = distance_point_line(verts[i + 2].co, verts[0].co, verts[1].co)
co = init_vec + verts[i + 2].co
# These will be rotated about the orgin so will need to be shifted:
Paul Marshall
committed
for j in range(numV):
verts_out.append(co - (matrices[j] * init_vec))
elif self.shaftType == 1:
for i in verts:
init_vec = distance_point_line(i.co, active.verts[0].co, active.verts[1].co)
co = init_vec + i.co
# These will be rotated about the orgin so will need to be shifted:
Paul Marshall
committed
for j in range(numV):
verts_out.append(co - (matrices[j] * init_vec))
CoDEmanX
committed
# Else if a line and a point was selected:
Paul Marshall
committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
elif self.shaftType == 2:
init_vec = distance_point_line(verts[2].co, verts[0].co, verts[1].co)
# These will be rotated about the orgin so will need to be shifted:
verts_out = [(verts[i].co - (matrices[j] * init_vec)) for i in range(2) for j in range(numV)]
# Else the above are not possible, so we will just use the edge:
# - The vector defined by the edge is the normal of the plane for the shaft
# - The shaft will have radius "radius".
else:
if is_axial(verts[0].co, verts[1].co) == None:
proj = (verts[1].co - verts[0].co)
proj[2] = 0
norm = proj.cross(verts[1].co - verts[0].co)
vec = norm.cross(verts[1].co - verts[0].co)
vec.length = self.radius
elif is_axial(verts[0].co, verts[1].co) == 'Z':
vec = verts[0].co + Vector((0, 0, self.radius))
else:
vec = verts[0].co + Vector((0, self.radius, 0))
init_vec = distance_point_line(vec, verts[0].co, verts[1].co)
# These will be rotated about the orgin so will need to be shifted:
verts_out = [(verts[i].co - (matrices[j] * init_vec)) for i in range(2) for j in range(numV)]
# We should have the coordinates for a bunch of new verts. Now add the verts
# and build the edges and then the faces.
newVerts = []
if self.shaftType == 1:
# Vertices:
for i in range(numV * len(verts)):
new = bVerts.new()
new.co = verts_out[i]
new.select = True
newVerts.append(new)
# Edges:
for i in range(numE):
for j in range(len(verts)):
e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * j) + 1]))
e.select = True
for i in range(numV):
for j in range(len(verts) - 1):
e = bEdges.new((newVerts[i + (numV * j)], newVerts[i + (numV * (j + 1))]))
e.select = True
# Faces:
Paul Marshall
committed
# There is a problem with this right now
## for i in range(len(edges)):
## for j in range(numE):
## f = bFaces.new((newVerts[i], newVerts[i + 1],
## newVerts[i + (numV * j) + 1], newVerts[i + (numV * j)]))
## f.normal_update()
Paul Marshall
committed
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
else:
# Vertices:
for i in range(numV * 2):
new = bVerts.new()
new.co = verts_out[i]
new.select = True
newVerts.append(new)
# Edges:
for i in range(numE):
e = bEdges.new((newVerts[i], newVerts[i + 1]))
e.select = True
e = bEdges.new((newVerts[i + numV], newVerts[i + numV + 1]))
e.select = True
for i in range(numV):
e = bEdges.new((newVerts[i], newVerts[i + numV]))
e.select = True
# Faces:
for i in range(numE):
f = bFaces.new((newVerts[i], newVerts[i + 1],
newVerts[i + numV + 1], newVerts[i + numV]))
f.normal_update()
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# "Slices" edges crossing a plane defined by a face.
Paul Marshall
committed
# @todo Selecting a face as the cutting plane will cause Blender to crash when
# using "Rip".
Paul Marshall
committed
class Slice(bpy.types.Operator):
bl_idname = "mesh.edgetools_slice"
bl_label = "Slice"
bl_description = "Cuts edges at the plane defined by a selected face."
bl_options = {'REGISTER', 'UNDO'}
Paul Marshall
committed
make_copy = BoolProperty(name = "Make Copy",
description = "Make new vertices at intersection points instead of spliting the edge",
default = False)
rip = BoolProperty(name = "Rip",
description = "Split into two edges that DO NOT share an intersection vertice.",
default = False)
Paul Marshall
committed
pos = BoolProperty(name = "Positive",
description = "Remove the portion on the side of the face normal",
default = False)
neg = BoolProperty(name = "Negative",
description = "Remove the portion on the side opposite of the face normal",
default = False)
def draw(self, context):
layout = self.layout
Paul Marshall
committed
layout.prop(self, "make_copy")
if not self.make_copy:
layout.prop(self, "rip")
layout.label("Remove Side:")
layout.prop(self, "pos")
layout.prop(self, "neg")
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
CoDEmanX
committed
Paul Marshall
committed
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
# For easy access to verts, edges, and faces:
bVerts = bm.verts
bEdges = bm.edges
bFaces = bm.faces
Paul Marshall
committed
face = None
Paul Marshall
committed
normal = None
# Find the selected face. This will provide the plane to project onto:
Paul Marshall
committed
# - First check to use the active face. This allows users to just
# select a bunch of faces with the last being the cutting plane.
# This is try and make the tool act more like a built-in Blender
# function.
# - If that fails, then use the first found selected face in the BMesh
# face list.
if isinstance(bm.select_history.active, bmesh.types.BMFace):
face = bm.select_history.active
normal = bm.select_history.active.normal
bm.select_history.active.select = False
else:
for f in bFaces:
if f.select:
face = f
normal = f.normal
f.select = False
break
Paul Marshall
committed
Paul Marshall
committed
# If we don't find a selected face, we have problem. Exit:
Paul Marshall
committed
if face == None:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'},
"You must select a face as the cutting plane.")
Paul Marshall
committed
return {'CANCELLED'}
Paul Marshall
committed
# Warn the user if they are using an n-gon. We can work with it, but it
# might lead to some odd results.
elif len(face.verts) > 4 and not is_face_planar(face):
self.report({'WARNING'},
"Selected face is an n-gon. Results may be unpredictable.")
Paul Marshall
committed
Paul Marshall
committed
# @todo DEBUG TRACKER - DELETE WHEN FINISHED:
dbg = 0
if bpy.app.debug:
print(len(bEdges))
# Iterate over the edges:
Paul Marshall
committed
for e in bEdges:
Paul Marshall
committed
# @todo DEBUG TRACKER - DELETE WHEN FINISHED:
if bpy.app.debug:
print(dbg)
dbg = dbg + 1
Paul Marshall
committed
# Get the end verts on the edge:
Paul Marshall
committed
v1 = e.verts[0]
v2 = e.verts[1]
CoDEmanX
committed
Paul Marshall
committed
# Make sure that verts are not a part of the cutting plane:
Paul Marshall
committed
if e.select and (v1 not in face.verts and v2 not in face.verts):
if len(face.verts) < 5: # Not an n-gon
intersection = intersect_line_face(e, face, True)
else:
intersection = intersect_line_plane(v1.co, v2.co, face.verts[0].co, normal)
Paul Marshall
committed
# More debug info - I think this can stay.
if bpy.app.debug:
print("Intersection", end = ': ')
print(intersection)
# If an intersection exists find the distance of each of the end
# points from the plane, with "positive" being in the direction
# of the cutting plane's normal. If the points are on opposite
# side of the plane, then it intersects and we need to cut it.
Paul Marshall
committed
if intersection != None:
Paul Marshall
committed
d1 = distance_point_to_plane(v1.co, face.verts[0].co, normal)
d2 = distance_point_to_plane(v2.co, face.verts[0].co, normal)
Paul Marshall
committed
# If they have different signs, then the edge crosses the
# cutting plane:
Paul Marshall
committed
if abs(d1 + d2) < abs(d1 - d2):
# Make the first vertice the positive vertice:
if d1 < d2:
v2, v1 = v1, v2
Paul Marshall
committed
if self.make_copy:
new = bVerts.new()
new.co = intersection
Paul Marshall
committed
new.select = True
Paul Marshall
committed
elif self.rip:
newV1 = bVerts.new()
newV1.co = intersection
Paul Marshall
committed
if bpy.app.debug:
print("newV1 created", end = '; ')
Paul Marshall
committed
newV2 = bVerts.new()
newV2.co = intersection
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("newV2 created", end = '; ')
Paul Marshall
committed
newE1 = bEdges.new((v1, newV1))
newE2 = bEdges.new((v2, newV2))
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("new edges created", end = '; ')
Paul Marshall
committed
bEdges.remove(e)
Paul Marshall
committed
Paul Marshall
committed
if bpy.app.debug:
Paul Marshall
committed
print("old edge removed.")
print("We're done with this edge.")
Paul Marshall
committed
else:
new = list(bmesh.utils.edge_split(e, v1, 0.5))
new[1].co = intersection
e.select = False
new[0].select = False
if self.pos:
Paul Marshall
committed
bEdges.remove(new[0])
Paul Marshall
committed
if self.neg:
Paul Marshall
committed
bEdges.remove(e)
Paul Marshall
committed
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
Paul Marshall
committed
# This projects the selected edges onto the selected plane. This projects both
# points on the selected edge.
Paul Marshall
committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
class Project(bpy.types.Operator):
bl_idname = "mesh.edgetools_project"
bl_label = "Project"
bl_description = "Projects the selected vertices/edges onto the selected plane."
bl_options = {'REGISTER', 'UNDO'}
make_copy = BoolProperty(name = "Make Copy",
description = "Make a duplicate of the vertices instead of moving it",
default = False)
def draw(self, context):
layout = self.layout
layout.prop(self, "make_copy")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
fVerts = []
# Find the selected face. This will provide the plane to project onto:
Paul Marshall
committed
# @todo Check first for an active face
Paul Marshall
committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
for f in bFaces:
if f.select:
for v in f.verts:
fVerts.append(v)
normal = f.normal
f.select = False
break
for v in bVerts:
if v.select:
if v in fVerts:
v.select = False
continue
d = distance_point_to_plane(v.co, fVerts[0].co, normal)
if self.make_copy:
temp = v
v = bVerts.new()
v.co = temp.co
vector = normal
vector.length = abs(d)
v.co = v.co - (vector * sign(d))
v.select = False
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Project_End is for projecting/extending an edge to meet a plane.
# This is used be selecting a face to define the plane then all the edges.
# The add-on will then move the vertices in the edge that is closest to the
# plane to the coordinates of the intersection of the edge and the plane.
class Project_End(bpy.types.Operator):
bl_idname = "mesh.edgetools_project_end"
bl_label = "Project (End Point)"
bl_description = "Projects the vertice of the selected edges closest to a plane onto that plane."
bl_options = {'REGISTER', 'UNDO'}
make_copy = BoolProperty(name = "Make Copy",
description = "Make a duplicate of the vertice instead of moving it",
default = False)
keep_length = BoolProperty(name = "Keep Edge Length",
description = "Maintain edge lengths",
default = False)
use_force = BoolProperty(name = "Use opposite vertices",
description = "Force the usage of the vertices at the other end of the edge",
default = False)
use_normal = BoolProperty(name = "Project along normal",
description = "Use the plane's normal as the projection direction",
default = False)
def draw(self, context):
layout = self.layout
## layout.prop(self, "keep_length")
if not self.keep_length:
layout.prop(self, "use_normal")
## else:
## self.report({'ERROR_INVALID_INPUT'}, "Maintaining edge length not yet supported")
## self.report({'WARNING'}, "Projection may result in unexpected geometry")
layout.prop(self, "make_copy")
layout.prop(self, "use_force")
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
fVerts = []
# Find the selected face. This will provide the plane to project onto:
for f in bFaces:
if f.select:
for v in f.verts:
fVerts.append(v)
normal = f.normal
f.select = False
break
for e in bEdges:
if e.select:
v1 = e.verts[0]
v2 = e.verts[1]
if v1 in fVerts or v2 in fVerts:
e.select = False
continue
intersection = intersect_line_plane(v1.co, v2.co, fVerts[0].co, normal)
if intersection != None:
# Use abs because we don't care what side of plane we're on:
d1 = distance_point_to_plane(v1.co, fVerts[0].co, normal)
d2 = distance_point_to_plane(v2.co, fVerts[0].co, normal)
# If d1 is closer than we use v1 as our vertice:
# "xor" with 'use_force':
if (abs(d1) < abs(d2)) is not self.use_force:
if self.make_copy:
v1 = bVerts.new()
v1.co = e.verts[0].co
if self.keep_length:
v1.co = intersection
elif self.use_normal:
vector = normal
vector.length = abs(d1)
v1.co = v1.co - (vector * sign(d1))
else:
v1.co = intersection
else:
if self.make_copy:
v2 = bVerts.new()
v2.co = e.verts[1].co
if self.keep_length:
v2.co = intersection
elif self.use_normal:
vector = normal
vector.length = abs(d2)
v2.co = v2.co - (vector * sign(d2))
else:
v2.co = intersection
e.select = False
bm.to_mesh(context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
# Edge Fillet
#
# Blender currently does not have a CAD-style edge-based fillet function. This
# is my atempt to create one. It should take advantage of BMesh and the ngon
# capabilities for non-destructive modeling, if possible. This very well may
# not result in nice quads and it will be up to the artist to clean up the mesh
# back into quads if necessary.
#
# Assumptions:
# - Faces are planar. This should, however, do a check an warn otherwise.
#
# Developement Process:
# Because this will eventaully prove to be a great big jumble of code and
# various functionality, this is to provide an outline for the developement
# and functionality wanted at each milestone.
# 1) intersect_line_face: function to find the intersection point, if it
# exists, at which a line intersects a face. The face does not have to
# be planar, and can be an ngon. This will allow for a point to be placed
# on the actual mesh-face for non-planar faces.
# 2) Minimal propagation, single edge: Filleting of a single edge without
# propagation of the fillet along "tangent" edges.
# 3) Minimal propagation, multiple edges: Perform said fillet along/on
# multiple edges.
# 4) "Tangency" detection code: because we have a mesh based geometry, this
# have to make an educated guess at what is actually supposed to be
# treated as tangent and what constitutes a sharp edge. This should
# respect edges marked as sharp (does not propagate passed an
# intersecting edge that is marked as sharp).
# 5) Tangent propagation, single edge: Filleting of a single edge using the
# above tangency detection code to continue the fillet to adjacent
# "tangent" edges.
# 6) Tangent propagation, multiple edges: Same as above, but with multiple
# edges selected. If multiple edges were selected along the same
# tangency path, only one edge will be filleted. The others must be
# ignored/discarded.
class Fillet(bpy.types.Operator):
bl_idname = "mesh.edgetools_fillet"
bl_label = "Edge Fillet"
bl_description = "Fillet the selected edges."
bl_options = {'REGISTER', 'UNDO'}
radius = FloatProperty(name = "Radius",
description = "Radius of the edge fillet",
Paul Marshall
committed
min = 0.00001, max = 1024.0,
Paul Marshall
committed
default = 0.5)
prop = EnumProperty(name = "Propagation",
items = [("m", "Minimal", "Minimal edge propagation"),
("t", "Tangential", "Tangential edge propagation")],
default = "m")
prop_fac = FloatProperty(name = "Propagation Factor",
description = "Corner detection sensitivity factor for tangential propagation",
min = 0.0, max = 100.0,
default = 25.0)
deg_seg = FloatProperty(name = "Degrees/Section",
description = "Approximate degrees per section",
min = 0.00001, max = 180.0,
default = 10.0)
Paul Marshall
committed
res = IntProperty(name = "Resolution",
description = "Resolution of the fillet",
Paul Marshall
committed
min = 1, max = 1024,
Paul Marshall
committed
default = 8)
def draw(self, context):
layout = self.layout
layout.prop(self, "radius")
layout.prop(self, "prop")
if self.prop == "t":
layout.prop(self, "prop_fac")
layout.prop(self, "deg_seg")
Paul Marshall
committed
layout.prop(self, "res")
CoDEmanX
committed
Paul Marshall
committed
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
# Robustness check: this does not support n-gons (at least for now)
# because I have no idea how to handle them righ now. If there is
# an n-gon in the mesh, warn the user that results may be nuts because
# of it.
#
# I'm not going to cause it to exit if there are n-gons, as they may
# not be encountered.
# @todo I would like this to be a confirmation dialoge of some sort
# @todo I would REALLY like this to just handle n-gons. . . .
for f in bFaces:
if len(face.verts) > 4:
self.report({'WARNING'},
"Mesh contains n-gons which are not supported. Operation may fail.")
break
Paul Marshall
committed
# Get the selected edges:
# Robustness check: boundary and wire edges are not fillet-able.
Paul Marshall
committed
edges = [e for e in bEdges if e.select and not e.is_boundary and not e.is_wire]
for e in edges:
Paul Marshall
committed
axis_points = fillet_axis(e, self.radius)
CoDEmanX
committed
Paul Marshall
committed
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
Paul Marshall
committed
return {'FINISHED'}
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
# For testing the mess that is "intersect_line_face" for possible math errors.
# This will NOT be directly exposed to end users: it will always require running
# Blender in debug mode.
# So far no errors have been found. Thanks to anyone who tests and reports bugs!
class Intersect_Line_Face(bpy.types.Operator):
bl_idname = "mesh.edgetools_ilf"
bl_label = "ILF TEST"
bl_description = "TEST ONLY: INTERSECT_LINE_FACE"
bl_options = {'REGISTER', 'UNDO'}
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def invoke(self, context, event):
return self.execute(context)
def execute(self, context):
# Make sure we really are in debug mode:
if not bpy.app.debug:
self.report({'ERROR_INVALID_INPUT'},
"This is for debugging only: you should not be able to run this!")
return {'CANCELLED'}
CoDEmanX
committed
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
bpy.ops.object.editmode_toggle()
bm = bmesh.new()
bm.from_mesh(bpy.context.active_object.data)
bm.normal_update()
bFaces = bm.faces
bEdges = bm.edges
bVerts = bm.verts
face = None
for f in bFaces:
if f.select:
face = f
break
edge = None
for e in bEdges:
if e.select and not e in face.edges:
edge = e
break
point = intersect_line_face(edge, face, True)
if point != None:
new = bVerts.new()
new.co = point
else:
bpy.ops.object.editmode_toggle()
self.report({'ERROR_INVALID_INPUT'}, "point was \"None\"")
return {'CANCELLED'}
bm.to_mesh(bpy.context.active_object.data)
bpy.ops.object.editmode_toggle()
return {'FINISHED'}
Paul Marshall
committed
class VIEW3D_MT_edit_mesh_edgetools(bpy.types.Menu):
bl_label = "EdgeTools"
CoDEmanX
committed
Paul Marshall
committed
def draw(self, context):
Paul Marshall
committed
global integrated
Paul Marshall
committed
layout = self.layout
CoDEmanX
committed
Paul Marshall
committed
layout.operator("mesh.edgetools_extend")
layout.operator("mesh.edgetools_spline")
layout.operator("mesh.edgetools_ortho")
layout.operator("mesh.edgetools_shaft")
layout.operator("mesh.edgetools_slice")
layout.operator("mesh.edgetools_project")
layout.operator("mesh.edgetools_project_end")
if bpy.app.debug:
## Not ready for prime-time yet:
layout.operator("mesh.edgetools_fillet")
## For internal testing ONLY:
layout.operator("mesh.edgetools_ilf")
Paul Marshall
committed
# If TinyCAD VTX exists, add it to the menu.
# @todo This does not work.
if integrated and bpy.app.debug:
layout.operator(EdgeIntersections.bl_idname, text="Edges V Intersection").mode = -1
layout.operator(EdgeIntersections.bl_idname, text="Edges T Intersection").mode = 0
layout.operator(EdgeIntersections.bl_idname, text="Edges X Intersection").mode = 1
Paul Marshall
committed
def menu_func(self, context):
self.layout.menu("VIEW3D_MT_edit_mesh_edgetools")
self.layout.separator()
# define classes for registration
classes = [VIEW3D_MT_edit_mesh_edgetools,
Extend,
Spline,
Ortho,
Shaft,
Slice,
Project,
Paul Marshall
committed
Project_End,
Fillet,
Intersect_Line_Face]
Paul Marshall
committed
# registering and menu integration
def register():
Paul Marshall
committed
global integrated
Paul Marshall
committed
for c in classes:
bpy.utils.register_class(c)
Paul Marshall
committed
# I would like this script to integrate the TinyCAD VTX menu options into
# the edge tools menu if it exists. This should make the UI a little nicer
# for users.
# @todo Remove TinyCAD VTX menu entries and add them too EdgeTool's menu
import inspect, os.path
path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
if os.path.isfile(path + "\mesh_edge_intersection_tools.py"):
print("EdgeTools UI integration test - TinyCAD VTX Found")
integrated = True
CoDEmanX
committed
Paul Marshall
committed
bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
# unregistering and removing menus
def unregister():
for c in classes:
bpy.utils.unregister_class(c)
Paul Marshall
committed
Paul Marshall
committed
bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
if __name__ == "__main__":
register()