mesh_extrude_along_curve.py 6.88 KiB
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
bl_info = {
"name": "Extrude Along Curve",
"author": "Andrew Hale (TrumanBlending)",
"version": (0, 1),
"blender": (2, 63, 0),
"location": "",
"description": "Extrude a face along a Bezier Curve",
"warning": "",
'wiki_url': "",
'tracker_url': 'https://developer.blender.org/T32585',
"category": "Mesh"}
import bpy
import bmesh
from mathutils import Vector, Quaternion
from math import ceil, floor, pi
def eval_bez_tan(mat, points, t):
num = len(points)
t *= num - 1
upper = ceil(t)
lower = floor(t)
if upper == lower:
if upper == 0:
return (mat * (points[upper].handle_right - points[upper].co)).normalized()
elif upper == num - 1:
return (mat * (points[upper].co - points[upper].handle_left)).normalized()
else:
return (mat * (points[upper].co - points[upper].handle_left)).normalized()
else:
t -= lower
pupper = points[upper]
plower = points[lower]
tangent = -3 * (1 - t) ** 2 * plower.co + (-6 * (1 - t) * t + 3 * (1 - t) ** 2) * plower.handle_right + (-3 * t ** 2 + 3 * (1 - t) * 2 * t) * pupper.handle_left + 3 * t ** 2 * pupper.co
tangent = mat * tangent
tangent.normalize()
return tangent
def eval_bez(mat, points, t):
num = len(points)
t *= num - 1
upper = ceil(t)
lower = floor(t)
if upper == lower:
return mat * points[upper].co
else:
t -= lower
pupper = points[upper]
plower = points[lower]
pos = (1 - t) ** 3 * plower.co + 3 * (1 - t) ** 2 * t * plower.handle_right + 3 * (1 - t) * t ** 2 * pupper.handle_left + t ** 3 * pupper.co
return mat * pos
def curve_ob_enum(self, context):
obs = context.scene.objects
cuobs = [(str(i), ob.name, ob.name) for i, ob in enumerate(obs) if ob.type == 'CURVE']
curve_ob_enum.temp = cuobs
return cuobs
class ExtrudeAlongCurve(bpy.types.Operator):
bl_idname = "mesh.extrude_along_curve"
bl_label = "Extrude Along Curve"
bl_options = {'REGISTER', 'UNDO'}
resolution = bpy.props.IntProperty(name="Resolution", default=1, min=1, soft_max=100)
scale = bpy.props.FloatProperty(name="Scale", default=1.0, soft_min=0.0, soft_max=5.0)
rotation = bpy.props.FloatProperty(name="Rotation", default=0.0, soft_min=-2 * pi, soft_max=2 * pi, subtype='ANGLE')
splineidx = bpy.props.IntProperty(name="Spline Index", default=0, min=0)
snapto = bpy.props.BoolProperty(name="Snap To Face", default=True)
curveob = bpy.props.EnumProperty(name="Curve", items=curve_ob_enum)
@classmethod
def poll(self, context):
ob = context.active_object
for cuob in context.scene.objects:
if cuob.type == 'CURVE':
break
else:
return False
return (ob is not None) and (ob.type == 'MESH') and (context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
layout.prop(self, "curveob", text="", icon='CURVE_DATA')
layout.prop(self, "resolution")
layout.prop(self, "scale")
layout.prop(self, "rotation")
layout.prop(self, "splineidx")
layout.prop(self, "snapto")
def execute(self, context):
ob = bpy.context.active_object
me = ob.data
bm = bmesh.from_edit_mesh(me)
# Get the selected curve object and the required spline
cuob = context.scene.objects[int(self.curveob)]
cu = cuob.data
self.splineidx = min(self.splineidx, len(cu.splines) - 1)
p = cu.splines[self.splineidx].bezier_points
# Get the property values
res = self.resolution
scale = self.scale
rotation = self.rotation
dscale = (1 - scale) / res
drot = rotation / res
# Get the matrices to convert between spaces
cmat = ob.matrix_world.inverted() * cuob.matrix_world
ctanmat = cmat.to_3x3().inverted().transposed()
# The list of parameter values to evaluate the bezier curve at
tvals = [t / res for t in range(res + 1)]
# Get the first selected face, if none, cancel
for f in bm.faces:
if f.select:
break
else:
return {'CANCELLED'}
# Get the position vecs on the curve and tangent values
bezval = [eval_bez(cmat, p, t) for t in tvals]
beztan = [eval_bez_tan(ctanmat, p, t) for t in tvals]
bezquat = [0] * len(tvals)
# Using curve only
bezquat[0] = beztan[0].to_track_quat('Z', 'Y')
fquat = bezquat[0].inverted()
# Calculate the min twist orientations
for i in range(1, res + 1):
ang = beztan[i - 1].angle(beztan[i], 0.0)
if ang > 0.0:
axis = beztan[i - 1].cross(beztan[i])
q = Quaternion(axis, ang)
bezquat[i] = q * bezquat[i - 1]
else:
bezquat[i] = bezquat[i - 1].copy()
# Get the faces to be modified
fprev = f
# no = f.normal.copy()
faces = [f.copy() for i in range(res)]
# Offset if we need to snap to the face
offset = Vector() if not self.snapto else (f.calc_center_median() - bezval[0])
# For each of the faces created, set their vert positions and create side faces
for i, data in enumerate(zip(faces, bezval[1:], bezquat[1:])):
fn, pos, quat = data
cen = fn.calc_center_median()
rotquat = Quaternion((0, 0, 1), i * drot)
for v in fn.verts:
v.co = quat * rotquat * fquat * (v.co - cen) * (1 - (i + 1) * dscale) + pos + offset
for ll, ul in zip(fprev.loops, fn.loops):
ff = bm.faces.new((ll.vert, ll.link_loop_next.vert, ul.link_loop_next.vert, ul.vert))
ff.normal_update()
bm.faces.remove(fprev)
fprev = fn
me.calc_tessface()
me.calc_normals()
me.update()
return {'FINISHED'}
def register():
bpy.utils.register_module(__name__)
def unregister():
bpy.utils.unregister_module(__name__)
if __name__ == "__main__":
register()