Newer
Older
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
CoDEmanX
committed
"version": (1, 5),
"description": "Modeling and retopology tool.",
"wiki_url": "http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Bsurfaces_1.5",
CoDEmanX
committed
"tracker_url": "https://developer.blender.org/T26642",
CoDEmanX
committed
import mathutils
import operator
class VIEW3D_PT_tools_SURFSK_mesh(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
CoDEmanX
committed
CoDEmanX
committed
def draw(self, context):
layout = self.layout
CoDEmanX
committed
CoDEmanX
committed
row = layout.row()
row.separator()
col.operator("gpencil.surfsk_add_surface", text="Add Surface")
col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes")
col.prop(scn, "SURFSK_cyclic_cross")
col.prop(scn, "SURFSK_cyclic_follow")
col.prop(scn, "SURFSK_loops_on_strokes")
col.prop(scn, "SURFSK_automatic_join")
col.prop(scn, "SURFSK_keep_strokes")
CoDEmanX
committed
class VIEW3D_PT_tools_SURFSK_curve(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_context = "curve_edit"
bl_label = "Bsurfaces"
CoDEmanX
committed
@classmethod
def poll(cls, context):
return context.active_object
CoDEmanX
committed
def draw(self, context):
layout = self.layout
CoDEmanX
committed
scn = context.scene
ob = context.object
CoDEmanX
committed
col = layout.column(align=True)
row = layout.row()
row.separator()
col.operator("curve.surfsk_first_points", text="Set First Points")
col.operator("curve.switch_direction", text="Switch Direction")
col.operator("curve.surfsk_reorder_splines", text="Reorder Splines")
CoDEmanX
committed
#### Returns the type of strokes used.
def get_strokes_type(main_object):
strokes_type = ""
strokes_num = 0
CoDEmanX
committed
# Check if they are grease pencil
try:
#### Get the active grease pencil layer.
strokes_num = len(main_object.grease_pencil.layers.active.active_frame.strokes)
CoDEmanX
committed
if strokes_num > 0:
strokes_type = "GP_STROKES"
except:
pass
CoDEmanX
committed
# Check if they are curves, if there aren't grease pencil strokes.
if strokes_type == "":
if len(bpy.context.selected_objects) == 2:
for ob in bpy.context.selected_objects:
if ob != bpy.context.scene.objects.active and ob.type == "CURVE":
strokes_type = "EXTERNAL_CURVE"
strokes_num = len(ob.data.splines)
CoDEmanX
committed
# Check if there is any non-bezier spline.
for i in range(len(ob.data.splines)):
if ob.data.splines[i].type != "BEZIER":
strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES"
break
CoDEmanX
committed
elif ob != bpy.context.scene.objects.active and ob.type != "CURVE":
strokes_type = "EXTERNAL_NO_CURVE"
elif len(bpy.context.selected_objects) > 2:
strokes_type = "MORE_THAN_ONE_EXTERNAL"
CoDEmanX
committed
# Check if there is a single stroke without any selection in the object.
if strokes_num == 1 and main_object.data.total_vert_sel == 0:
if strokes_type == "EXTERNAL_CURVE":
strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION"
elif strokes_type == "GP_STROKES":
strokes_type = "SINGLE_GP_STROKE_NO_SELECTION"
CoDEmanX
committed
if strokes_num == 0 and main_object.data.total_vert_sel > 0:
strokes_type = "SELECTION_ALONE"
CoDEmanX
committed
if strokes_type == "":
strokes_type = "NO_STROKES"
CoDEmanX
committed
# Surface generator operator.
class GPENCIL_OT_SURFSK_add_surface(bpy.types.Operator):
bl_idname = "gpencil.surfsk_add_surface"
bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges."
CoDEmanX
committed
edges_U = bpy.props.IntProperty(name = "Cross",
description = "Number of face-loops crossing the strokes.",
default = 1,
min = 1,
max = 200)
CoDEmanX
committed
edges_V = bpy.props.IntProperty(name = "Follow",
description = "Number of face-loops following the strokes.",
default = 1,
min = 1,
max = 200)
CoDEmanX
committed
cyclic_cross = bpy.props.BoolProperty(name = "Cyclic Cross",
description = "Make cyclic the face-loops crossing the strokes.",
default = False)
CoDEmanX
committed
cyclic_follow = bpy.props.BoolProperty(name = "Cyclic Follow",
description = "Make cyclic the face-loops following the strokes.",
default = False)
CoDEmanX
committed
loops_on_strokes = bpy.props.BoolProperty(name = "Loops on strokes",
description = "Make the loops match the paths of the strokes.",
default = False)
CoDEmanX
committed
automatic_join = bpy.props.BoolProperty(name = "Automatic join",
description = "Join automatically vertices of either surfaces generated by crosshatching, or from the borders of closed shapes.",
default = False)
CoDEmanX
committed
join_stretch_factor = bpy.props.FloatProperty(name = "Stretch",
description = "Amount of stretching or shrinking allowed for edges when joining vertices automatically.",
default = 1,
min = 0,
max = 3,
subtype = 'FACTOR')
CoDEmanX
committed
def draw(self, context):
layout = self.layout
CoDEmanX
committed
scn = context.scene
ob = context.object
CoDEmanX
committed
col = layout.column(align=True)
row = layout.row()
CoDEmanX
committed
if not self.is_fill_faces:
row.separator()
if not self.is_crosshatch:
if not self.selection_U_exists:
col.prop(self, "edges_U")
row.separator()
CoDEmanX
committed
if not self.selection_V_exists:
col.prop(self, "edges_V")
row.separator()
CoDEmanX
committed
CoDEmanX
committed
if not self.selection_U_exists:
if not ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)):
col.prop(self, "cyclic_cross")
CoDEmanX
committed
if not self.selection_V_exists:
if not ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)):
col.prop(self, "cyclic_follow")
CoDEmanX
committed
col.prop(self, "loops_on_strokes")
CoDEmanX
committed
col.prop(self, "automatic_join")
if self.automatic_join:
row.separator()
col.separator()
row.separator()
col.prop(self, "join_stretch_factor")
CoDEmanX
committed
#### Get an ordered list of a chain of vertices.
def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx, first_vert_idx, middle_vertex_idx, closing_vert_idx):
# Order selected vertices.
if closing_vert_idx != None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
CoDEmanX
committed
verts_ordered.append(ob.data.vertices[first_vert_idx])
prev_v = first_vert_idx
prev_ed = None
finish_while = False
while True:
edges_non_matched = 0
for i in all_selected_edges_idx:
if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and ob.data.edges[i].vertices[1] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]])
prev_v = ob.data.edges[i].vertices[1]
elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and ob.data.edges[i].vertices[0] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]])
prev_v = ob.data.edges[i].vertices[0]
prev_ed = ob.data.edges[i]
else:
edges_non_matched += 1
CoDEmanX
committed
if edges_non_matched == len(all_selected_edges_idx):
finish_while = True
CoDEmanX
committed
CoDEmanX
committed
if closing_vert_idx != None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
CoDEmanX
committed
verts_ordered.append(ob.data.vertices[middle_vertex_idx])
CoDEmanX
committed
CoDEmanX
committed
#### Calculates length of a chain of points.
CoDEmanX
committed
edges_lengths = []
edges_lengths_sum = 0
for i in range(0, len(verts_ordered)):
if i == 0:
prev_v_co = matrix * verts_ordered[i].co
v_co = matrix * verts_ordered[i].co
CoDEmanX
committed
v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]]
edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))
CoDEmanX
committed
edges_lengths.append(edge_length)
edges_lengths_sum += edge_length
CoDEmanX
committed
CoDEmanX
committed
return edges_lengths, edges_lengths_sum
CoDEmanX
committed
#### Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
edges_proportions = []
if use_boundaries:
verts_count = 1
for l in edges_lengths:
edges_proportions.append(l / edges_lengths_sum)
verts_count += 1
else:
verts_count = 1
for n in range(0, fixed_edges_num):
edges_proportions.append(1 / fixed_edges_num)
verts_count += 1
CoDEmanX
committed
CoDEmanX
committed
#### Calculates the angle between two pairs of points in space.
def orientation_difference(self, points_A_co, points_B_co): # each parameter should be a list with two elements, and each element should be a x,y,z coordinate.
vec_A = points_A_co[0] - points_A_co[1]
vec_B = points_B_co[0] - points_B_co[1]
CoDEmanX
committed
CoDEmanX
committed
if angle > 0.5 * math.pi:
angle = abs(angle - math.pi)
CoDEmanX
committed
CoDEmanX
committed
#### Calculate the which vert of verts_idx list is the nearest one to the point_co coordinates, and the distance.
def shortest_distance(self, object, point_co, verts_idx):
matrix = object.matrix_world
CoDEmanX
committed
for i in range(0, len(verts_idx)):
dist = (point_co - matrix * object.data.vertices[verts_idx[i]].co).length
if i == 0:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
CoDEmanX
committed
if dist < prev_dist:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
CoDEmanX
committed
return nearest_vert_idx, shortest_dist
CoDEmanX
committed
#### Returns the index of the opposite vert tip in a chain, given a vert tip index as parameter, and a multidimentional list with all pairs of tips.
def opposite_tip(self, vert_tip_idx, all_chains_tips_idx):
opposite_vert_tip_idx = None
for i in range(0, len(all_chains_tips_idx)):
if vert_tip_idx == all_chains_tips_idx[i][0]:
opposite_vert_tip_idx = all_chains_tips_idx[i][1]
if vert_tip_idx == all_chains_tips_idx[i][1]:
opposite_vert_tip_idx = all_chains_tips_idx[i][0]
CoDEmanX
committed
CoDEmanX
committed
#### Simplifies a spline and returns the new points coordinates.
def simplify_spline(self, spline_coords, segments_num):
simplified_spline = []
points_between_segments = round(len(spline_coords) / segments_num)
CoDEmanX
committed
simplified_spline.append(spline_coords[0])
for i in range(1, segments_num):
simplified_spline.append(spline_coords[i * points_between_segments])
CoDEmanX
committed
simplified_spline.append(spline_coords[len(spline_coords) - 1])
CoDEmanX
committed
CoDEmanX
committed
#### Cleans up the scene and gets it the same it was at the beginning, in case the script is interrupted in the middle of the execution.
def cleanup_on_interruption(self):
# If the original strokes curve comes from conversion from grease pencil and wasn't made by hand, delete it.
if not self.using_external_curves:
try:
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.original_curve.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name]
CoDEmanX
committed
bpy.ops.object.delete()
except:
pass
CoDEmanX
committed
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.data.objects[self.original_curve.name].select = True
bpy.data.objects[self.main_object.name].select = True
bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
CoDEmanX
committed
bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
CoDEmanX
committed
#### Returns a list with the coords of the points distributed over the splines passed to this method according to the proportions parameter.
def distribute_pts(self, surface_splines, proportions):
# Calculate the length of each final surface spline.
surface_splines_lengths = []
surface_splines_parsed = []
for sp_idx in range(0, len(surface_splines)):
# Calculate spline length
surface_splines_lengths.append(0)
for i in range(0, len(surface_splines[sp_idx].bezier_points)):
if i == 0:
prev_p = surface_splines[sp_idx].bezier_points[i]
else:
p = surface_splines[sp_idx].bezier_points[i]
CoDEmanX
committed
edge_length = (prev_p.co - p.co).length
CoDEmanX
committed
surface_splines_lengths[sp_idx] += edge_length
CoDEmanX
committed
CoDEmanX
committed
# Calculate vertex positions with appropriate edge proportions, and ordered, for each spline.
for sp_idx in range(0, len(surface_splines)):
surface_splines_parsed.append([])
surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co)
CoDEmanX
committed
prev_p_co = surface_splines[sp_idx].bezier_points[0].co
p_idx = 0
for prop_idx in range(len(proportions) - 1):
target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx]
CoDEmanX
committed
CoDEmanX
committed
finish_while = False
while True:
p_co = surface_splines[sp_idx].bezier_points[p_idx].co
CoDEmanX
committed
new_dist = (prev_p_co - p_co).length
CoDEmanX
committed
potential_segment_length = partial_segment_length + new_dist # The new distance that could have the partial segment if it is still shorter than the target length.
CoDEmanX
committed
if potential_segment_length < target_length: # If the potential is still shorter, keep adding.
partial_segment_length = potential_segment_length
CoDEmanX
committed
CoDEmanX
committed
elif potential_segment_length > target_length: # If the potential is longer than the target, calculate the target (a point between the last two points), and assign.
remaining_dist = target_length - partial_segment_length
vec = p_co - prev_p_co
vec.normalize()
intermediate_co = prev_p_co + (vec * remaining_dist)
CoDEmanX
committed
surface_splines_parsed[sp_idx].append(intermediate_co)
CoDEmanX
committed
partial_segment_length += remaining_dist
prev_p_co = intermediate_co
CoDEmanX
committed
CoDEmanX
committed
elif potential_segment_length == target_length: # If the potential is equal to the target, assign.
surface_splines_parsed[sp_idx].append(p_co)
CoDEmanX
committed
CoDEmanX
committed
CoDEmanX
committed
CoDEmanX
committed
# last point of the spline
surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co)
CoDEmanX
committed
CoDEmanX
committed
#### Counts the number of faces that belong to each edge.
def edge_face_count(self, ob):
ed_keys_count_dict = {}
CoDEmanX
committed
for face in ob.data.polygons:
for ed_keys in face.edge_keys:
if not ed_keys in ed_keys_count_dict:
ed_keys_count_dict[ed_keys] = 1
else:
ed_keys_count_dict[ed_keys] += 1
CoDEmanX
committed
edge_face_count = []
for i in range(len(ob.data.edges)):
edge_face_count.append(0)
CoDEmanX
committed
for i in range(len(ob.data.edges)):
ed = ob.data.edges[i]
CoDEmanX
committed
v1 = ed.vertices[0]
v2 = ed.vertices[1]
CoDEmanX
committed
if (v1, v2) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v1, v2)]
elif (v2, v1) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v2, v1)]
CoDEmanX
committed
CoDEmanX
committed
#### Fills with faces all the selected vertices which form empty triangles or quads.
def fill_with_faces(self, object):
all_selected_verts_count = self.main_object_selected_verts_count
CoDEmanX
committed
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
CoDEmanX
committed
#### Calculate average length of selected edges.
all_selected_verts = []
original_sel_edges_count = 0
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
coords = []
coords.append(object.data.vertices[ed.vertices[0]].co)
coords.append(object.data.vertices[ed.vertices[1]].co)
CoDEmanX
committed
CoDEmanX
committed
if not ed.vertices[0] in all_selected_verts:
all_selected_verts.append(ed.vertices[0])
CoDEmanX
committed
if not ed.vertices[1] in all_selected_verts:
all_selected_verts.append(ed.vertices[1])
CoDEmanX
committed
CoDEmanX
committed
#### Check if there is any edge selected. If not, interrupt the script.
if original_sel_edges_count == 0 and all_selected_verts_count > 0:
return 0
CoDEmanX
committed
#### Get all edges connected to selected verts.
all_edges_around_sel_verts = []
edges_connected_to_sel_verts = {}
verts_connected_to_every_vert = {}
for ed_idx in range(len(object.data.edges)):
ed = object.data.edges[ed_idx]
include_edge = False
CoDEmanX
committed
if ed.vertices[0] in all_selected_verts:
if not ed.vertices[0] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[0]] = []
CoDEmanX
committed
edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx)
include_edge = True
CoDEmanX
committed
if ed.vertices[1] in all_selected_verts:
if not ed.vertices[1] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[1]] = []
CoDEmanX
committed
edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx)
include_edge = True
CoDEmanX
committed
if include_edge == True:
all_edges_around_sel_verts.append(ed_idx)
CoDEmanX
committed
# Get all connected verts to each vert.
if not ed.vertices[0] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[0]] = []
CoDEmanX
committed
if not ed.vertices[1] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[1]] = []
CoDEmanX
committed
verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1])
verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0])
CoDEmanX
committed
#### Get all verts connected to faces.
all_verts_part_of_faces = []
all_edges_faces_count = []
all_edges_faces_count += self.edge_face_count(object)
CoDEmanX
committed
# Get only the selected edges that have faces attached.
count_faces_of_edges_around_sel_verts = {}
selected_verts_with_faces = []
for ed_idx in all_edges_around_sel_verts:
count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx]
CoDEmanX
committed
if all_edges_faces_count[ed_idx] > 0:
ed = object.data.edges[ed_idx]
CoDEmanX
committed
if not ed.vertices[0] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[0])
CoDEmanX
committed
if not ed.vertices[1] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[1])
CoDEmanX
committed
all_verts_part_of_faces.append(ed.vertices[0])
all_verts_part_of_faces.append(ed.vertices[1])
CoDEmanX
committed
CoDEmanX
committed
#### Discard unneeded verts from calculations.
participating_verts = []
movable_verts = []
for v_idx in all_selected_verts:
vert_has_edges_with_one_face = False
CoDEmanX
committed
for ed_idx in edges_connected_to_sel_verts[v_idx]: # Check if the actual vert has at least one edge connected to only one face.
if count_faces_of_edges_around_sel_verts[ed_idx] == 1:
vert_has_edges_with_one_face = True
CoDEmanX
committed
# If the vert has two or less edges connected and the vert is not part of any face. Or the vert is part of any face and at least one of the connected edges has only one face attached to it.
if (len(edges_connected_to_sel_verts[v_idx]) == 2 and not v_idx in all_verts_part_of_faces) or len(edges_connected_to_sel_verts[v_idx]) == 1 or (v_idx in all_verts_part_of_faces and vert_has_edges_with_one_face):
participating_verts.append(v_idx)
CoDEmanX
committed
if not v_idx in all_verts_part_of_faces:
movable_verts.append(v_idx)
CoDEmanX
committed
#### Remove from movable verts list those that are part of closed geometry (ie: triangles, quads)
for mv_idx in movable_verts:
freeze_vert = False
mv_connected_verts = verts_connected_to_every_vert[mv_idx]
CoDEmanX
committed
for actual_v_idx in all_selected_verts:
count_shared_neighbors = 0
checked_verts = []
CoDEmanX
committed
for mv_conn_v_idx in mv_connected_verts:
if mv_idx != actual_v_idx:
if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and not mv_conn_v_idx in checked_verts:
count_shared_neighbors += 1
checked_verts.append(mv_conn_v_idx)
CoDEmanX
committed
if actual_v_idx in mv_connected_verts:
freeze_vert = True
break
CoDEmanX
committed
if count_shared_neighbors == 2:
freeze_vert = True
break
CoDEmanX
committed
CoDEmanX
committed
if freeze_vert:
movable_verts.remove(mv_idx)
CoDEmanX
committed
#### Calculate merge distance for participating verts.
shortest_edge_length = None
for ed in object.data.edges:
if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts:
v1 = object.data.vertices[ed.vertices[0]]
v2 = object.data.vertices[ed.vertices[1]]
CoDEmanX
committed
CoDEmanX
committed
if shortest_edge_length == None:
shortest_edge_length = length
else:
if length < shortest_edge_length:
shortest_edge_length = length
CoDEmanX
committed
if shortest_edge_length != None:
edges_merge_distance = shortest_edge_length * 0.5
else:
edges_merge_distance = 0
CoDEmanX
committed
#### Get together the verts near enough. They will be merged later.
remaining_verts = []
remaining_verts += participating_verts
for v1_idx in participating_verts:
if v1_idx in remaining_verts and v1_idx in movable_verts:
verts_to_merge = []
coords_verts_to_merge = {}
CoDEmanX
committed
CoDEmanX
committed
v1_co = object.data.vertices[v1_idx].co
coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2])
CoDEmanX
committed
for v2_idx in remaining_verts:
if v1_idx != v2_idx:
v2_co = object.data.vertices[v2_idx].co
CoDEmanX
committed
CoDEmanX
committed
if dist <= edges_merge_distance: # Add the verts which are near enough.
verts_to_merge.append(v2_idx)
CoDEmanX
committed
coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2])
CoDEmanX
committed
for vm_idx in verts_to_merge:
remaining_verts.remove(vm_idx)
CoDEmanX
committed
if len(verts_to_merge) > 1:
# Calculate middle point of the verts to merge.
sum_x_co = 0
sum_y_co = 0
sum_z_co = 0
movable_verts_to_merge_count = 0
for i in range(len(verts_to_merge)):
if verts_to_merge[i] in movable_verts:
v_co = object.data.vertices[verts_to_merge[i]].co
CoDEmanX
committed
sum_x_co += v_co[0]
sum_y_co += v_co[1]
sum_z_co += v_co[2]
CoDEmanX
committed
movable_verts_to_merge_count += 1
CoDEmanX
committed
middle_point_co = [sum_x_co / movable_verts_to_merge_count, sum_y_co / movable_verts_to_merge_count, sum_z_co / movable_verts_to_merge_count]
CoDEmanX
committed
# Check if any vert to be merged is not movable.
shortest_dist = None
are_verts_not_movable = False
verts_not_movable = []
for v_merge_idx in verts_to_merge:
if v_merge_idx in participating_verts and not v_merge_idx in movable_verts:
are_verts_not_movable = True
verts_not_movable.append(v_merge_idx)
CoDEmanX
committed
if are_verts_not_movable:
# Get the vert connected to faces, that is nearest to the middle point of the movable verts.
shortest_dist = None
for vcf_idx in verts_not_movable:
dist = abs((object.data.vertices[vcf_idx].co - mathutils.Vector(middle_point_co)).length)
CoDEmanX
committed
if shortest_dist == None:
shortest_dist = dist
nearest_vert_idx = vcf_idx
else:
if dist < shortest_dist:
shortest_dist = dist
nearest_vert_idx = vcf_idx
CoDEmanX
committed
coords = object.data.vertices[nearest_vert_idx].co
CoDEmanX
committed
target_point_co = [coords[0], coords[1], coords[2]]
else:
target_point_co = middle_point_co
CoDEmanX
committed
# Move verts to merge to the middle position.
for v_merge_idx in verts_to_merge:
if v_merge_idx in movable_verts: # Only move the verts that are not part of faces.
object.data.vertices[v_merge_idx].co[0] = target_point_co[0]
object.data.vertices[v_merge_idx].co[1] = target_point_co[1]
object.data.vertices[v_merge_idx].co[2] = target_point_co[2]
CoDEmanX
committed
#### Perform "Remove Doubles" to weld all the disconnected verts
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.remove_doubles(threshold=0.0001)
CoDEmanX
committed
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
CoDEmanX
committed
#### Get all the definitive selected edges, after weldding.
selected_edges = []
edges_per_vert = {} # Number of faces of each selected edge.
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
selected_edges.append(ed.index)
CoDEmanX
committed
# Save all the edges that belong to each vertex.
if not ed.vertices[0] in edges_per_vert:
edges_per_vert[ed.vertices[0]] = []
CoDEmanX
committed
if not ed.vertices[1] in edges_per_vert:
edges_per_vert[ed.vertices[1]] = []
CoDEmanX
committed
edges_per_vert[ed.vertices[0]].append(ed.index)
edges_per_vert[ed.vertices[1]].append(ed.index)
CoDEmanX
committed
# Check if all the edges connected to each vert have two faces attached to them. To discard them later and make calculations faster.
a = []
a += self.edge_face_count(object)
tuple(a)
verts_surrounded_by_faces = {}
for v_idx in edges_per_vert:
edges = edges_per_vert[v_idx]
CoDEmanX
committed
edges_with_two_faces_count = 0
for ed_idx in edges_per_vert[v_idx]:
if a[ed_idx] == 2:
edges_with_two_faces_count += 1
CoDEmanX
committed
if edges_with_two_faces_count == len(edges_per_vert[v_idx]):
verts_surrounded_by_faces[v_idx] = True
else:
verts_surrounded_by_faces[v_idx] = False
CoDEmanX
committed
#### Get all the selected vertices.
selected_verts_idx = []
for v in object.data.vertices:
if v.select:
selected_verts_idx.append(v.index)
CoDEmanX
committed
#### Get all the faces of the object.
all_object_faces_verts_idx = []
for face in object.data.polygons:
face_verts = []
face_verts.append(face.vertices[0])
face_verts.append(face.vertices[1])
face_verts.append(face.vertices[2])
CoDEmanX
committed
if len(face.vertices) == 4:
face_verts.append(face.vertices[3])
CoDEmanX
committed
all_object_faces_verts_idx.append(face_verts)
CoDEmanX
committed
#### Deselect all vertices.
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
CoDEmanX
committed
#### Make a dictionary with the verts related to each vert.
related_key_verts = {}
for ed_idx in selected_edges:
ed = object.data.edges[ed_idx]
CoDEmanX
committed
if not verts_surrounded_by_faces[ed.vertices[0]]:
if not ed.vertices[0] in related_key_verts:
related_key_verts[ed.vertices[0]] = []
CoDEmanX
committed
if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
related_key_verts[ed.vertices[0]].append(ed.vertices[1])
CoDEmanX
committed
if not verts_surrounded_by_faces[ed.vertices[1]]:
if not ed.vertices[1] in related_key_verts:
related_key_verts[ed.vertices[1]] = []
CoDEmanX
committed
if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
related_key_verts[ed.vertices[1]].append(ed.vertices[0])
CoDEmanX
committed
#### Get groups of verts forming each face.
CoDEmanX
committed
faces_verts_idx = []
for v1 in related_key_verts: # verts-1 ....
for v2 in related_key_verts: # verts-2
if v1 != v2:
related_verts_in_common = []
v2_in_rel_v1 = False
v1_in_rel_v2 = False
for rel_v1 in related_key_verts[v1]:
if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
related_verts_in_common.append(rel_v1)
CoDEmanX
committed
if v2 in related_key_verts[v1]:
v2_in_rel_v1 = True
CoDEmanX
committed
if v1 in related_key_verts[v2]:
v1_in_rel_v2 = True
CoDEmanX
committed
repeated_face = False
# If two verts have two related verts in common, they form a quad.
if len(related_verts_in_common) == 2:
# Check if the face is already saved.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
CoDEmanX
committed
for f_verts in all_faces_to_check_idx:
repeated_verts = 0
CoDEmanX
committed
if len(f_verts) == 4:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
if related_verts_in_common[1] in f_verts: repeated_verts += 1
CoDEmanX
committed
if repeated_verts == len(f_verts):
repeated_face = True
break
CoDEmanX
committed
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])
CoDEmanX
committed
elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
# Check if the face is already saved.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
CoDEmanX
committed
for f_verts in all_faces_to_check_idx:
repeated_verts = 0
CoDEmanX
committed
if len(f_verts) == 3:
if v1 in f_verts: repeated_verts += 1
if v2 in f_verts: repeated_verts += 1
if related_verts_in_common[0] in f_verts: repeated_verts += 1
CoDEmanX
committed
if repeated_verts == len(f_verts):
repeated_face = True
break
CoDEmanX
committed
if not repeated_face:
faces_verts_idx.append([v1, related_verts_in_common[0], v2])
CoDEmanX
committed
#### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
for i in range(len(faces_verts_idx)):
for t in range(len(all_faces_to_check_idx)):
if i != t:
verts_in_common = 0
CoDEmanX
committed
if len(faces_verts_idx[i]) == 4 and len(all_faces_to_check_idx[t]) == 3:
for v_idx in all_faces_to_check_idx[t]:
if v_idx in faces_verts_idx[i]:
verts_in_common += 1
CoDEmanX
committed
if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
if not i in faces_to_not_include_idx:
faces_to_not_include_idx.append(i)
CoDEmanX
committed
#### Build faces discarding the ones in faces_to_not_include.
me = object.data
bm = bmesh.new()
bm.from_mesh(me)
CoDEmanX
committed
num_faces_created = 0
for i in range(len(faces_verts_idx)):
if not i in faces_to_not_include_idx:
bm.faces.new([ bm.verts[v] for v in faces_verts_idx[i] ])
CoDEmanX
committed
CoDEmanX
committed
CoDEmanX
committed
for v_idx in selected_verts_idx:
self.main_object.data.vertices[v_idx].select = True
CoDEmanX
committed
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.normals_make_consistent(inside=False)
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
CoDEmanX
committed
CoDEmanX
committed
#### Crosshatch skinning.
def crosshatch_surface_invoke(self, ob_original_splines):
self.is_crosshatch = False
self.crosshatch_merge_distance = 0
CoDEmanX
committed
objects_to_delete = [] # duplicated strokes to be deleted.
CoDEmanX
committed
# If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
self.modifiers_prev_viewport_state = []