Skip to content
Snippets Groups Projects
import_pdb.py 49.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • Campbell Barton's avatar
    Campbell Barton committed
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    # ##### BEGIN GPL LICENSE BLOCK #####
    #
    #  This program is free software; you can redistribute it and/or
    #  modify it under the terms of the GNU General Public License
    #  as published by the Free Software Foundation; either version 2
    #  of the License, or (at your option) any later version.
    #
    #  This program is distributed in the hope that it will be useful,
    #  but WITHOUT ANY WARRANTY; without even the implied warranty of
    #  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    #  GNU General Public License for more details.
    #
    #  You should have received a copy of the GNU General Public License
    #  along with this program; if not, write to the Free Software Foundation,
    #  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
    #
    # ##### END GPL LICENSE BLOCK #####
    
    # 
    #
    #  Authors           : Clemens Barth (Blendphys@root-1.de), ...
    #
    #  Homepage(Wiki)    : http://development.root-1.de/Atomic_Blender.php
    #  Tracker           : http://projects.blender.org/tracker/index.php?func=detail&aid=29226&group_id=153&atid=467
    #
    #  Start of project              : 2011-08-31 by Clemens Barth
    #  First publication in Blender  : 2011-11-11
    #  Last modified                 : 2011-12-01
    #
    #  Acknowledgements: Thanks to ideasman, meta_androcto, truman, kilon, 
    #  dairin0d, PKHG, Valter, etc 
    #
    
    import bpy
    import io
    import sys
    import math
    import os
    from math import pi, cos, sin
    from mathutils import Vector, Matrix
    
    # These are variables, which contain the name of the PDB file and
    # the path of the PDB file.
    # They are used almost everywhere, which is the reason why they 
    # should stay global. First, they are empty and get 'filled' directly
    # after having chosen the PDB file (see 'class LoadPDB' further below).
    
    ATOM_PDB_FILEPATH = ""
    
    # Some string stuff for the console.
    ATOM_PDB_STRING = "Atomic Blender\n==================="
    
    
    # -----------------------------------------------------------------------------
    #                                                  Atom, stick and element data
    
    
    # This is a list that contains some data of all possible elements. The structure 
    # is as follows:
    #
    # 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54   means
    #
    # No., name, short name, color, radius (used), radius (covalent), radius (atomic),
    # 
    # charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all 
    # charge states for any atom are listed, if existing.
    # The list is fixed and cannot be changed ... (see below)
    
    ATOM_PDB_ELEMENTS_DEFAULT = (
    ( 1,      "Hydrogen",        "H", (  1.0,   1.0,   1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
    ( 2,        "Helium",       "He", ( 0.85,   1.0,   1.0), 0.93, 0.93, 0.49 ),
    ( 3,       "Lithium",       "Li", (  0.8,  0.50,   1.0), 1.23, 1.23, 2.05 ,  1 , 0.68 ),
    ( 4,     "Beryllium",       "Be", ( 0.76,   1.0,   0.0), 0.90, 0.90, 1.40 ,  1 , 0.44 ,  2 , 0.35 ),
    ( 5,         "Boron",        "B", (  1.0,  0.70,  0.70), 0.82, 0.82, 1.17 ,  1 , 0.35 ,  3 , 0.23 ),
    ( 6,        "Carbon",        "C", ( 0.56,  0.56,  0.56), 0.77, 0.77, 0.91 , -4 , 2.60 ,  4 , 0.16 ),
    ( 7,      "Nitrogen",        "N", ( 0.18,  0.31,  0.97), 0.75, 0.75, 0.75 , -3 , 1.71 ,  1 , 0.25 ,  3 , 0.16 ,  5 , 0.13 ),
    ( 8,        "Oxygen",        "O", (  1.0,  0.05,  0.05), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 ,  1 , 0.22 ,  6 , 0.09 ),
    ( 9,      "Fluorine",        "F", ( 0.56,  0.87,  0.31), 0.72, 0.72, 0.57 , -1 , 1.33 ,  7 , 0.08 ),
    (10,          "Neon",       "Ne", ( 0.70,  0.89,  0.96), 0.71, 0.71, 0.51 ,  1 , 1.12 ),
    (11,        "Sodium",       "Na", ( 0.67,  0.36,  0.94), 1.54, 1.54, 2.23 ,  1 , 0.97 ),
    (12,     "Magnesium",       "Mg", ( 0.54,   1.0,   0.0), 1.36, 1.36, 1.72 ,  1 , 0.82 ,  2 , 0.66 ),
    (13,     "Aluminium",       "Al", ( 0.74,  0.65,  0.65), 1.18, 1.18, 1.82 ,  3 , 0.51 ),
    (14,       "Silicon",       "Si", ( 0.94,  0.78,  0.62), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 ,  1 , 0.65 ,  4 , 0.42 ),
    (15,    "Phosphorus",        "P", (  1.0,  0.50,   0.0), 1.06, 1.06, 1.23 , -3 , 2.12 ,  3 , 0.44 ,  5 , 0.35 ),
    (16,        "Sulfur",        "S", (  1.0,   1.0,  0.18), 1.02, 1.02, 1.09 , -2 , 1.84 ,  2 , 2.19 ,  4 , 0.37 ,  6 , 0.30 ),
    (17,      "Chlorine",       "Cl", ( 0.12,  0.94,  0.12), 0.99, 0.99, 0.97 , -1 , 1.81 ,  5 , 0.34 ,  7 , 0.27 ),
    (18,         "Argon",       "Ar", ( 0.50,  0.81,  0.89), 0.98, 0.98, 0.88 ,  1 , 1.54 ),
    (19,     "Potassium",        "K", ( 0.56,  0.25,  0.83), 2.03, 2.03, 2.77 ,  1 , 0.81 ),
    (20,       "Calcium",       "Ca", ( 0.23,   1.0,   0.0), 1.74, 1.74, 2.23 ,  1 , 1.18 ,  2 , 0.99 ),
    (21,      "Scandium",       "Sc", ( 0.90,  0.90,  0.90), 1.44, 1.44, 2.09 ,  3 , 0.73 ),
    (22,      "Titanium",       "Ti", ( 0.74,  0.76,  0.78), 1.32, 1.32, 2.00 ,  1 , 0.96 ,  2 , 0.94 ,  3 , 0.76 ,  4 , 0.68 ),
    (23,      "Vanadium",        "V", ( 0.65,  0.65,  0.67), 1.22, 1.22, 1.92 ,  2 , 0.88 ,  3 , 0.74 ,  4 , 0.63 ,  5 , 0.59 ),
    (24,      "Chromium",       "Cr", ( 0.54,   0.6,  0.78), 1.18, 1.18, 1.85 ,  1 , 0.81 ,  2 , 0.89 ,  3 , 0.63 ,  6 , 0.52 ),
    (25,     "Manganese",       "Mn", ( 0.61,  0.47,  0.78), 1.17, 1.17, 1.79 ,  2 , 0.80 ,  3 , 0.66 ,  4 , 0.60 ,  7 , 0.46 ),
    (26,          "Iron",       "Fe", ( 0.87,   0.4,   0.2), 1.17, 1.17, 1.72 ,  2 , 0.74 ,  3 , 0.64 ),
    (27,        "Cobalt",       "Co", ( 0.94,  0.56,  0.62), 1.16, 1.16, 1.67 ,  2 , 0.72 ,  3 , 0.63 ),
    (28,        "Nickel",       "Ni", ( 0.31,  0.81,  0.31), 1.15, 1.15, 1.62 ,  2 , 0.69 ),
    (29,        "Copper",       "Cu", ( 0.78,  0.50,   0.2), 1.17, 1.17, 1.57 ,  1 , 0.96 ,  2 , 0.72 ),
    (30,          "Zinc",       "Zn", ( 0.49,  0.50,  0.69), 1.25, 1.25, 1.53 ,  1 , 0.88 ,  2 , 0.74 ),
    (31,       "Gallium",       "Ga", ( 0.76,  0.56,  0.56), 1.26, 1.26, 1.81 ,  1 , 0.81 ,  3 , 0.62 ),
    (32,     "Germanium",       "Ge", (  0.4,  0.56,  0.56), 1.22, 1.22, 1.52 , -4 , 2.72 ,  2 , 0.73 ,  4 , 0.53 ),
    (33,       "Arsenic",       "As", ( 0.74,  0.50,  0.89), 1.20, 1.20, 1.33 , -3 , 2.22 ,  3 , 0.58 ,  5 , 0.46 ),
    (34,      "Selenium",       "Se", (  1.0,  0.63,   0.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 ,  1 , 0.66 ,  4 , 0.50 ,  6 , 0.42 ),
    (35,       "Bromine",       "Br", ( 0.65,  0.16,  0.16), 1.14, 1.14, 1.12 , -1 , 1.96 ,  5 , 0.47 ,  7 , 0.39 ),
    (36,       "Krypton",       "Kr", ( 0.36,  0.72,  0.81), 1.31, 1.31, 1.24 ),
    (37,      "Rubidium",       "Rb", ( 0.43,  0.18,  0.69), 2.16, 2.16, 2.98 ,  1 , 1.47 ),
    (38,     "Strontium",       "Sr", (  0.0,   1.0,   0.0), 1.91, 1.91, 2.45 ,  2 , 1.12 ),
    (39,       "Yttrium",        "Y", ( 0.58,   1.0,   1.0), 1.62, 1.62, 2.27 ,  3 , 0.89 ),
    (40,     "Zirconium",       "Zr", ( 0.58,  0.87,  0.87), 1.45, 1.45, 2.16 ,  1 , 1.09 ,  4 , 0.79 ),
    (41,       "Niobium",       "Nb", ( 0.45,  0.76,  0.78), 1.34, 1.34, 2.08 ,  1 , 1.00 ,  4 , 0.74 ,  5 , 0.69 ),
    (42,    "Molybdenum",       "Mo", ( 0.32,  0.70,  0.70), 1.30, 1.30, 2.01 ,  1 , 0.93 ,  4 , 0.70 ,  6 , 0.62 ),
    (43,    "Technetium",       "Tc", ( 0.23,  0.61,  0.61), 1.27, 1.27, 1.95 ,  7 , 0.97 ),
    (44,     "Ruthenium",       "Ru", ( 0.14,  0.56,  0.56), 1.25, 1.25, 1.89 ,  4 , 0.67 ),
    (45,       "Rhodium",       "Rh", ( 0.03,  0.49,  0.54), 1.25, 1.25, 1.83 ,  3 , 0.68 ),
    (46,     "Palladium",       "Pd", (  0.0,  0.41,  0.52), 1.28, 1.28, 1.79 ,  2 , 0.80 ,  4 , 0.65 ),
    (47,        "Silver",       "Ag", ( 0.75,  0.75,  0.75), 1.34, 1.34, 1.75 ,  1 , 1.26 ,  2 , 0.89 ),
    (48,       "Cadmium",       "Cd", (  1.0,  0.85,  0.56), 1.48, 1.48, 1.71 ,  1 , 1.14 ,  2 , 0.97 ),
    (49,        "Indium",       "In", ( 0.65,  0.45,  0.45), 1.44, 1.44, 2.00 ,  3 , 0.81 ),
    (50,           "Tin",       "Sn", (  0.4,  0.50,  0.50), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 ,  2 , 0.93 ,  4 , 0.71 ),
    (51,      "Antimony",       "Sb", ( 0.61,  0.38,  0.70), 1.40, 1.40, 1.53 , -3 , 2.45 ,  3 , 0.76 ,  5 , 0.62 ),
    (52,     "Tellurium",       "Te", ( 0.83,  0.47,   0.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 ,  1 , 0.82 ,  4 , 0.70 ,  6 , 0.56 ),
    (53,        "Iodine",        "I", ( 0.58,   0.0,  0.58), 1.33, 1.33, 1.32 , -1 , 2.20 ,  5 , 0.62 ,  7 , 0.50 ),
    (54,         "Xenon",       "Xe", ( 0.25,  0.61,  0.69), 1.31, 1.31, 1.24 ),
    (55,       "Caesium",       "Cs", ( 0.34,  0.09,  0.56), 2.35, 2.35, 3.35 ,  1 , 1.67 ),
    (56,        "Barium",       "Ba", (  0.0,  0.78,   0.0), 1.98, 1.98, 2.78 ,  1 , 1.53 ,  2 , 1.34 ),
    (57,     "Lanthanum",       "La", ( 0.43,  0.83,   1.0), 1.69, 1.69, 2.74 ,  1 , 1.39 ,  3 , 1.06 ),
    (58,        "Cerium",       "Ce", (  1.0,   1.0,  0.78), 1.65, 1.65, 2.70 ,  1 , 1.27 ,  3 , 1.03 ,  4 , 0.92 ),
    (59,  "Praseodymium",       "Pr", ( 0.85,   1.0,  0.78), 1.65, 1.65, 2.67 ,  3 , 1.01 ,  4 , 0.90 ),
    (60,     "Neodymium",       "Nd", ( 0.78,   1.0,  0.78), 1.64, 1.64, 2.64 ,  3 , 0.99 ),
    (61,    "Promethium",       "Pm", ( 0.63,   1.0,  0.78), 1.63, 1.63, 2.62 ,  3 , 0.97 ),
    (62,      "Samarium",       "Sm", ( 0.56,   1.0,  0.78), 1.62, 1.62, 2.59 ,  3 , 0.96 ),
    (63,      "Europium",       "Eu", ( 0.38,   1.0,  0.78), 1.85, 1.85, 2.56 ,  2 , 1.09 ,  3 , 0.95 ),
    (64,    "Gadolinium",       "Gd", ( 0.27,   1.0,  0.78), 1.61, 1.61, 2.54 ,  3 , 0.93 ),
    (65,       "Terbium",       "Tb", ( 0.18,   1.0,  0.78), 1.59, 1.59, 2.51 ,  3 , 0.92 ,  4 , 0.84 ),
    (66,    "Dysprosium",       "Dy", ( 0.12,   1.0,  0.78), 1.59, 1.59, 2.49 ,  3 , 0.90 ),
    (67,       "Holmium",       "Ho", (  0.0,   1.0,  0.61), 1.58, 1.58, 2.47 ,  3 , 0.89 ),
    (68,        "Erbium",       "Er", (  0.0,  0.90,  0.45), 1.57, 1.57, 2.45 ,  3 , 0.88 ),
    (69,       "Thulium",       "Tm", (  0.0,  0.83,  0.32), 1.56, 1.56, 2.42 ,  3 , 0.87 ),
    (70,     "Ytterbium",       "Yb", (  0.0,  0.74,  0.21), 1.74, 1.74, 2.40 ,  2 , 0.93 ,  3 , 0.85 ),
    (71,      "Lutetium",       "Lu", (  0.0,  0.67,  0.14), 1.56, 1.56, 2.25 ,  3 , 0.85 ),
    (72,       "Hafnium",       "Hf", ( 0.30,  0.76,   1.0), 1.44, 1.44, 2.16 ,  4 , 0.78 ),
    (73,      "Tantalum",       "Ta", ( 0.30,  0.65,   1.0), 1.34, 1.34, 2.09 ,  5 , 0.68 ),
    (74,      "Tungsten",        "W", ( 0.12,  0.58,  0.83), 1.30, 1.30, 2.02 ,  4 , 0.70 ,  6 , 0.62 ),
    (75,       "Rhenium",       "Re", ( 0.14,  0.49,  0.67), 1.28, 1.28, 1.97 ,  4 , 0.72 ,  7 , 0.56 ),
    (76,        "Osmium",       "Os", ( 0.14,   0.4,  0.58), 1.26, 1.26, 1.92 ,  4 , 0.88 ,  6 , 0.69 ),
    (77,       "Iridium",       "Ir", ( 0.09,  0.32,  0.52), 1.27, 1.27, 1.87 ,  4 , 0.68 ),
    (78,     "Platinium",       "Pt", ( 0.81,  0.81,  0.87), 1.30, 1.30, 1.83 ,  2 , 0.80 ,  4 , 0.65 ),
    (79,          "Gold",       "Au", (  1.0,  0.81,  0.13), 1.34, 1.34, 1.79 ,  1 , 1.37 ,  3 , 0.85 ),
    (80,       "Mercury",       "Hg", ( 0.72,  0.72,  0.81), 1.49, 1.49, 1.76 ,  1 , 1.27 ,  2 , 1.10 ),
    (81,      "Thallium",       "Tl", ( 0.65,  0.32,  0.30), 1.48, 1.48, 2.08 ,  1 , 1.47 ,  3 , 0.95 ),
    (82,          "Lead",       "Pb", ( 0.34,  0.34,  0.38), 1.47, 1.47, 1.81 ,  2 , 1.20 ,  4 , 0.84 ),
    (83,       "Bismuth",       "Bi", ( 0.61,  0.30,  0.70), 1.46, 1.46, 1.63 ,  1 , 0.98 ,  3 , 0.96 ,  5 , 0.74 ),
    (84,      "Polonium",       "Po", ( 0.67,  0.36,   0.0), 1.46, 1.46, 1.53 ,  6 , 0.67 ),
    (85,      "Astatine",       "At", ( 0.45,  0.30,  0.27), 1.45, 1.45, 1.43 , -3 , 2.22 ,  3 , 0.85 ,  5 , 0.46 ),
    (86,         "Radon",       "Rn", ( 0.25,  0.50,  0.58), 1.00, 1.00, 1.34 ),
    (87,      "Francium",       "Fr", ( 0.25,   0.0,   0.4), 1.00, 1.00, 1.00 ,  1 , 1.80 ),
    (88,        "Radium",       "Ra", (  0.0,  0.49,   0.0), 1.00, 1.00, 1.00 ,  2 , 1.43 ),
    (89,      "Actinium",       "Ac", ( 0.43,  0.67,  0.98), 1.00, 1.00, 1.00 ,  3 , 1.18 ),
    (90,       "Thorium",       "Th", (  0.0,  0.72,   1.0), 1.65, 1.65, 1.00 ,  4 , 1.02 ),
    (91,  "Protactinium",       "Pa", (  0.0,  0.63,   1.0), 1.00, 1.00, 1.00 ,  3 , 1.13 ,  4 , 0.98 ,  5 , 0.89 ),
    (92,       "Uranium",        "U", (  0.0,  0.56,   1.0), 1.42, 1.42, 1.00 ,  4 , 0.97 ,  6 , 0.80 ),
    (93,     "Neptunium",       "Np", (  0.0,  0.50,   1.0), 1.00, 1.00, 1.00 ,  3 , 1.10 ,  4 , 0.95 ,  7 , 0.71 ),
    (94,     "Plutonium",       "Pu", (  0.0,  0.41,   1.0), 1.00, 1.00, 1.00 ,  3 , 1.08 ,  4 , 0.93 ),
    (95,     "Americium",       "Am", ( 0.32,  0.36,  0.94), 1.00, 1.00, 1.00 ,  3 , 1.07 ,  4 , 0.92 ),
    (96,        "Curium",       "Cm", ( 0.47,  0.36,  0.89), 1.00, 1.00, 1.00 ),
    (97,     "Berkelium",       "Bk", ( 0.54,  0.30,  0.89), 1.00, 1.00, 1.00 ),
    (98,   "Californium",       "Cf", ( 0.63,  0.21,  0.83), 1.00, 1.00, 1.00 ),
    (99,   "Einsteinium",       "Es", ( 0.70,  0.12,  0.83), 1.00, 1.00, 1.00 ),
    (100,       "Fermium",       "Fm", ( 0.70,  0.12,  0.72), 1.00, 1.00, 1.00 ),
    (101,   "Mendelevium",       "Md", ( 0.70,  0.05,  0.65), 1.00, 1.00, 1.00 ),
    (102,      "Nobelium",       "No", ( 0.74,  0.05,  0.52), 1.00, 1.00, 1.00 ),
    (103,    "Lawrencium",       "Lr", ( 0.78,   0.0,   0.4), 1.00, 1.00, 1.00 ),
    (104,       "Vacancy",      "Vac", (  0.5,   0.5,   0.5), 1.00, 1.00, 1.00),
    (105,       "Default",  "Default", (  1.0,   1.0,   1.0), 1.00, 1.00, 1.00),
    (106,         "Stick",    "Stick", (  0.5,   0.5,   0.5), 1.00, 1.00, 1.00),
    )
    
    # This list here contains all data of the elements and will be used during 
    # runtime. It is a list of classes. 
    # During executing Atomic Blender, the list will be initialized with the fixed
    # data from above via the class structure below (CLASS_atom_pdb_Elements). We
    # have then one fixed list (above), which will never be changed, and a list of
    # classes with same data. The latter can be modified via loading a separate 
    # custom data file.  
    ATOM_PDB_ELEMENTS = []
    
    # This is the class, which stores the properties for one element.
    class CLASS_atom_pdb_Elements:
        def __init__(self, number, name,short_name, color, radii, radii_ionic):
            self.number = number
            self.name = name
            self.short_name = short_name
            self.color = color
            self.radii = radii
            self.radii_ionic = radii_ionic
                     
    # This is the class, which stores the properties of one atom.      
    class CLASS_atom_pdb_atom:
        def __init__(self, element, name, location, radius, color, material):
            self.element = element
            self.name = name
            self.location = location
            self.radius = radius
            self.color = color
            self.material = material
            
    # This is the class, which stores the two atoms of one stick.      
    class CLASS_atom_pdb_stick:
        def __init__(self, atom1, atom2):
            self.atom1 = atom1
            self.atom2 = atom2       
    
    
    # -----------------------------------------------------------------------------
    #                                                          Some small routines
    
    
    # Routine which produces a cylinder. All is somewhat easy to undertsand. 
    def DEF_atom_pdb_build_stick(radius, length, sectors):
            
        vertices = []
        faces    = []
    
        dphi = 2.0 * pi/(float(sectors)-1)
    
        # Vertices
        vertices_top    = [Vector((0,0,length / 2.0))]
        vertices_bottom = [Vector((0,0,-length / 2.0))]
        for i in range(sectors-1):
            x = radius * cos( dphi * i )
            y = radius * sin( dphi * i )
            z =  length / 2.0  
            vertex = Vector((x,y,z))
            vertices_top.append(vertex)
            z = -length / 2.0
            vertex = Vector((x,y,z))
            vertices_bottom.append(vertex)
        vertices = vertices_top + vertices_bottom
    
        # Top facets
        for i in range(sectors-1):
            if i == sectors-2:
                face_top = [0,sectors-1,1]
                face_bottom = [sectors,2*sectors-1,sectors+1]
            else:
                face_top    = [0]
                face_bottom = [sectors]
                for j in range(2):
                    face_top.append(i+j+1)
                    face_bottom.append(i+j+1+sectors)
            faces.append(face_top)
            faces.append(face_bottom)
    
        # Side facets   
        for i in range(sectors-1):
            if i == sectors-2:
                faces.append(  [i+1, 1, 1+sectors, i+1+sectors] ) 
            else:
                faces.append(  [i+1, i+2, i+2+sectors, i+1+sectors] ) 
    
        # Build the mesh
        cylinder = bpy.data.meshes.new("Sticks_Cylinder")
        cylinder.from_pydata(vertices, [], faces)
        cylinder.update()
        new_cylinder = bpy.data.objects.new("Sticks_Cylinder", cylinder)
        bpy.context.scene.objects.link(new_cylinder)
        
        return new_cylinder
    
    
    # This function measures the distance between two objects (atoms), 
    # which are active.
    def DEF_atom_pdb_distance():
    
        if len(bpy.context.selected_bases) > 1:
            object_1 = bpy.context.selected_objects[0]
            object_2 = bpy.context.selected_objects[1]
        else:
            return "N.A."
    
        dv = object_2.location - object_1.location
        return str(dv.length) 
    
    
    # Routine to modify the radii via the type: 
    #                                          pre-defined, atomic or van der Waals
    # Explanations here are also valid for the next 3 DEFs.
    def DEF_atom_pdb_radius_type(rtype,how):
    
        if how == "ALL_IN_LAYER":
            
            # Note all layers that are active.
            layers = []
            for i in range(20):
                if bpy.context.scene.layers[i] == True:
                    layers.append(i)
                    
            # Put all objects, which are in the layers, into a list.        
            change_objects = []        
            for obj in bpy.context.scene.objects:
                for layer in layers:
                    if obj.layers[layer] == True:
                        change_objects.append(obj)     
        
            # Consider all objects, which are in the list 'change_objects'.
            for obj in change_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        for element in ATOM_PDB_ELEMENTS:      
                            if element.name in obj.name:
                                obj.children[0].scale = (element.radii[int(rtype)],
                                                         element.radii[int(rtype)],
                                                         element.radii[int(rtype)])
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        for element in ATOM_PDB_ELEMENTS:       
                            if element.name in obj.name:
                                obj.scale = (element.radii[int(rtype)],
                                             element.radii[int(rtype)],
                                             element.radii[int(rtype)])
    
        if how == "ALL_ACTIVE":
            for obj in bpy.context.selected_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        for element in ATOM_PDB_ELEMENTS:        
                            if element.name in obj.name:
                                obj.children[0].scale = (element.radii[int(rtype)],
                                                         element.radii[int(rtype)],
                                                         element.radii[int(rtype)])
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        for element in ATOM_PDB_ELEMENTS:          
                            if element.name in obj.name:
                                obj.scale = (element.radii[int(rtype)],
                                             element.radii[int(rtype)],
                                             element.radii[int(rtype)])
      
    
    # Routine to modify the radii in picometer of a specific type of atom
    def DEF_atom_pdb_radius_pm(atomname, radius_pm, how):
                    
        if how == "ALL_IN_LAYER":
        
            layers = []
            for i in range(20):
                if bpy.context.scene.layers[i] == True:
                    layers.append(i)
                    
            change_objects = []        
            for obj in bpy.context.scene.objects:
                for layer in layers:
                    if obj.layers[layer] == True:
                        change_objects.append(obj)    
        
            for obj in change_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        if atomname in obj.name:
                            obj.children[0].scale = (radius_pm/100,
                                                     radius_pm/100,
                                                     radius_pm/100)
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        if atomname in obj.name:
                            obj.scale = (radius_pm/100,
                                         radius_pm/100,
                                         radius_pm/100)
    
        if how == "ALL_ACTIVE":
            for obj in bpy.context.selected_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        if atomname in obj.name:
                            obj.children[0].scale = (radius_pm/100,
                                                     radius_pm/100,
                                                     radius_pm/100)      
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        if atomname in obj.name:
                            obj.scale = (radius_pm/100,
                                         radius_pm/100,
                                         radius_pm/100)
    
    
    # Routine to scale the radii of all atoms
    def DEF_atom_pdb_radius_all(scale, how):
                   
        if how == "ALL_IN_LAYER":
        
            layers = []
            for i in range(20):
                if bpy.context.scene.layers[i] == True:
                    layers.append(i)
                    
            change_objects = []        
            for obj in bpy.context.scene.objects:
                for layer in layers:
                    if obj.layers[layer] == True:
                        change_objects.append(obj)
                    
        
            for obj in change_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        if "Stick" not in obj.name:
                            obj.children[0].scale *= scale         
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        if "Stick" not in obj.name:
                            obj.scale *= scale 
    
        if how == "ALL_ACTIVE":
            for obj in bpy.context.selected_objects:
                if len(obj.children) != 0:
                    if obj.children[0].type == "SURFACE" or obj.children[0].type  == "MESH":
                        if "Stick" not in obj.name:
                            obj.children[0].scale *= scale         
                else:
                    if obj.type == "SURFACE" or obj.type == "MESH":
                        if "Stick" not in obj.name:
                            obj.scale *= scale 
    
    
    # This reads a custom data file.
    def DEF_atom_pdb_custom_datafile(path_datafile):
    
        if path_datafile == "":
            return False
    
        path_datafile = bpy.path.abspath(path_datafile)
    
        if os.path.isfile(path_datafile) == False:
            return False
           
        # The whole list gets deleted! We build it new.    
        ATOM_PDB_ELEMENTS[:] = []
    
        # Read the data file, which contains all data 
        # (atom name, radii, colors, etc.)
        data_file_p = io.open(path_datafile, "r")
    
        for line in data_file_p:
    
            if "Atom" in line:
    
                line = data_file_p.readline()
            
                # Number
                line = data_file_p.readline()
                number = line[19:-1]
                # Name
                line = data_file_p.readline()
                name = line[19:-1]
                # Short name
                line = data_file_p.readline()
                short_name = line[19:-1]
                # Color
                line = data_file_p.readline()
                color_value = line[19:-1].split(',')
                color = [float(color_value[0]),
                         float(color_value[1]),
                         float(color_value[2])]
                # Used radius
                line = data_file_p.readline()
                radius_used = float(line[19:-1])
                # Atomic radius
                line = data_file_p.readline()
                radius_atomic = float(line[19:-1])
                # Van der Waals radius
                line = data_file_p.readline()
                radius_vdW = float(line[19:-1])
                
                radii = [radius_used,radius_atomic,radius_vdW]
                radii_ionic = []
                
                element = CLASS_atom_pdb_Elements(number,name,short_name,color,
                                                  radii, radii_ionic)  
                
                ATOM_PDB_ELEMENTS.append(element)  
    
        data_file_p.close()
       
        return True
    
    
    # -----------------------------------------------------------------------------
    #                                                            The main routine
    
    
    def DEF_atom_pdb_main(use_mesh,Ball_azimuth,Ball_zenith,
                   Ball_radius_factor,radiustype,Ball_distance_factor,
                   use_stick,Stick_sectors,Stick_diameter,put_to_center,
                   use_camera,use_lamp,path_datafile):
        
        # The list of all atoms as read from the PDB file.
        all_atoms  = []
        
        # The list of all sticks.
        all_sticks = []
       
        # List of materials
        atom_material_list = []
    
        # A list of ALL objects which are loaded (needed for selecting the loaded
        # structure. 
        atom_object_list = []
    
    
        # ------------------------------------------------------------------------
        # INITIALIZE THE ELEMENT LIST
    
        ATOM_PDB_ELEMENTS[:] = []
    
        for item in ATOM_PDB_ELEMENTS_DEFAULT:
        
            # All three radii into a list
            radii = [item[4],item[5],item[6]]
            # The handling of the ionic radii will be done later. So far, it is an
            # empty list.
            radii_ionic = []  
    
            li = CLASS_atom_pdb_Elements(item[0],item[1],item[2],item[3],
                                         radii,radii_ionic)                                 
            ATOM_PDB_ELEMENTS.append(li)
    
    
        # ------------------------------------------------------------------------
        # READING DATA OF ATOMS
    
    
        if DEF_atom_pdb_custom_datafile(path_datafile):
            print("Custom data file is loaded.")
    
        # Open the file ...
        ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
    
        #Go to the line, in which "ATOM" or "HETATM" appears.
        for line in ATOM_PDB_FILEPATH_p:
            split_list = line.split(' ')
            if "ATOM" in split_list[0]:
                break
            if "HETATM" in split_list[0]:
                break
                
        j = 0
        # This is in fact an endless 'while loop', ...
        while j > -1:
    
            # ... the loop is broken here (EOF) ...
            if line == "":
                break  
    
            # If there is a "TER" we need to put empty entries into the lists
            # in order to not destroy the order of atom numbers and same numbers
            # used for sticks. "TER? What is that?" TER indicates the end of a 
            # list of ATOM/HETATM records for a chain.
            if "TER" in line:
                short_name = "TER"
                name = "TER"
                radius = 0.0
                color = [0,0,0]
                location = Vector((0,0,0))  
                # Append the TER into the list. Material remains empty so far.
                all_atoms.append(CLASS_atom_pdb_atom(short_name, 
                                                     name, 
                                                     location, 
                                                     radius, 
                                                     color,[])) 
            # If 'ATOM or 'HETATM' appears in the line then do ...
            elif "ATOM" in line or "HETATM" in line:
    
                # What follows is due to deviations which appear from PDB to
                # PDB file. It is very special. PLEASE, DO NOT CHANGE! From here ...
                short_name = line[13:14]
                if short_name.isupper() == True:
                    if line[14:15].islower() == True:
                        short_name = short_name + line[14:15]  
                else:            
                    short_name = line[12:13]
                    if short_name.isupper() == True:
                        if line[13:14].islower() == True:
                            short_name = short_name + line[13:14] 
                # ... to here.
                   
                # Go through all elements and find the element of the current atom.   
                FLAG_FOUND = False
                for element in ATOM_PDB_ELEMENTS:
                    if str.upper(short_name) == str.upper(element.short_name):
                        # Give the atom its proper names, color and radius:
                        short_name = str.upper(element.short_name)
                        name = element.name
                        # int(radiustype) => type of radius: 
                        # pre-defined (0), atomic (1) or van der Waals (2)
                        radius = float(element.radii[int(radiustype)])
                        color = element.color
                        FLAG_FOUND = True
                        break
    
                # Is it a vacancy or an 'unknown atom' ?       
                if FLAG_FOUND == False:
                    # Give this atom also a name. If it is an 'X' then it is a 
                    # vacancy. Otherwise ...
                    if "X" in short_name:
                        short_name = "VAC"
                        name = "Vacancy"
                        radius = float(ATOM_PDB_ELEMENTS[-3].radii[int(radiustype)])
                        color = ATOM_PDB_ELEMENTS[-3].color
                    # ... take what is written in the PDB file. These are somewhat
                    # unknown atoms. This should never happen, the element list is 
                    # almost complete. However, we do this due to security reasons.
                    else:
                        short_name = str.upper(short_name)
                        name = str.upper(short_name)
                        radius = float(ATOM_PDB_ELEMENTS[-2].radii[int(radiustype)])
                        color = ATOM_PDB_ELEMENTS[-2].color        
            
                # x,y and z are at fixed positions in the PDB file.
                x = float(line[30:38].rsplit()[0])
                y = float(line[38:46].rsplit()[0])
                z = float(line[46:55].rsplit()[0])
               
                location = Vector((x,y,z))   
            
                j += 1       
    
                # Append the atom to the list. Material remains empty so far.
                all_atoms.append(CLASS_atom_pdb_atom(short_name, 
                                                 name, 
                                                 location, 
                                                 radius, 
                                                 color,[]))                  
                           
            line = ATOM_PDB_FILEPATH_p.readline()
            line = line[:-1]
    
        ATOM_PDB_FILEPATH_p.close()
        # From above it can be clearly seen that j is now the number of all atoms.
        Number_of_total_atoms = j
    
    
        # ------------------------------------------------------------------------
        # MATERIAL PROPERTIES FOR ATOMS
    
    
        # The list that contains info about all types of atoms is created
        # here. It is used for building the material properties for 
        # instance (see below).      
        atom_all_types_list = []
        
        for atom in all_atoms:
            FLAG_FOUND = False
            for atom_type in atom_all_types_list:
                # If the atom name is already in the list, FLAG on 'True'. 
                if atom_type[0] == atom.name:
                    FLAG_FOUND = True
                    break
            # No name in the current list has been found? => New entry.
            if FLAG_FOUND == False:
                # Stored are: Atom label (e.g. 'Na'), the corresponding atom
                # name (e.g. 'Sodium') and its color.
                atom_all_types_list.append([atom.name, atom.element, atom.color])
    
        # The list of materials is built. 
        # Note that all atoms of one type (e.g. all hydrogens) get only ONE 
        # material! This is good because then, by activating one atom in the 
        # Blender scene and changing the color of this atom, one changes the color 
        # of ALL atoms of the same type at the same time.
       
        # Create first a new list of materials for each type of atom 
        # (e.g. hydrogen)
        for atom_type in atom_all_types_list:  
            material = bpy.data.materials.new(atom_type[1])
            material.name = atom_type[0]
            material.diffuse_color = atom_type[2]
            atom_material_list.append(material)
       
        # Now, we go through all atoms and give them a material. For all atoms ...   
        for atom in all_atoms:
            # ... and all materials ...
            for material in atom_material_list:
                # ... select the correct material for the current atom via 
                # comparison of names ...
                if atom.name in material.name:
                    # ... and give the atom its material properties. 
                    # However, before we check, if it is a vacancy, because then it
                    # gets some additional preparation. The vacancy is represented
                    # by a transparent cube.
                    if atom.name == "Vacancy":
                        material.transparency_method = 'Z_TRANSPARENCY'
                        material.alpha = 1.3
                        material.raytrace_transparency.fresnel = 1.6
                        material.raytrace_transparency.fresnel_factor = 1.6                   
                        material.use_transparency = True      
                    # The atom gets its properties.
                    atom.material = material   
    
    
        # ------------------------------------------------------------------------
        # READING DATA OF STICKS
        
    
        # Open the PDB file again such that the file pointer is in the first
        # line ... . Stupid, I know ... ;-)
        ATOM_PDB_FILEPATH_p = io.open(ATOM_PDB_FILEPATH, "r")
    
        split_list = line.split(' ')
    
        # Go to the first entry
        if "CONECT" not in split_list[0]:
            for line in ATOM_PDB_FILEPATH_p:
                split_list = line.split(' ')
                if "CONECT" in split_list[0]:
                    break
      
        Number_of_sticks = 0
        sticks_double = 0
        j = 0
        # This is in fact an endless while loop, ...    
        while j > -1:
     
            # ... which is broken here (EOF) ...
            if line == "":
                break  
            # ... or here, when no 'CONECT' appears anymore.
            if "CONECT" not in line:
                break
                   
            # The strings of the atom numbers do have a clear position in the file 
            # (From 7 to 12, from 13 to 18 and so on.) and one needs to consider 
            # this. One could also use the split function but then one gets into 
            # trouble if there are many atoms: For instance, it may happen that one 
            # has
            #                   CONECT 11111  22244444
            #
            # In Fact it means that atom No. 11111 has a connection with atom 
            # No. 222 but also with atom No. 44444. The split function would give 
            # me only two numbers (11111 and 22244444), which is wrong. 
      
            # Cut spaces from the right and 'CONECT' at the beginning
            line = line.rstrip()    
            line = line[6:]
            # Amount of loops
            length = len(line)
            loops  = int(length/5)
           
            # List of atoms
            atom_list = []
            for i in range(loops):
                number = line[5*i:5*(i+1)].rsplit()
                if number != []:    
                    if number[0].isdigit() == True:
                        atom_number = int(number[0])
                        atom_list.append(atom_number)
       
            # The first atom is connected with all the others in the list.
            atom1 = atom_list[0]
            
            # For all the other atoms in the list do:
            for each_atom in atom_list[1:]:
          
                # The second, third, ... partner atom
                atom2 = each_atom
    
                # Note that in a PDB file, sticks of one atom pair can appear a
                # couple of times. (Only god knows why ...) 
                # So, does a stick between the considered atoms already exist?
                FLAG_BAR = False
                for k in range(Number_of_sticks):
                    if ((all_sticks[k].atom1 == atom1 and all_sticks[k].atom2 == atom2) or 
                        (all_sticks[k].atom2 == atom1 and all_sticks[k].atom1 == atom2)):
                        sticks_double += 1
                        # If yes, then FLAG on 'True'.
                        FLAG_BAR       = True
                        break
    
                # If the stick is not yet registered (FLAG_BAR == False), then 
                # register it!
                if FLAG_BAR == False:
                    all_sticks.append(CLASS_atom_pdb_stick(atom1,atom2))
                    Number_of_sticks += 1   
                    j += 1
    
            line = ATOM_PDB_FILEPATH_p.readline()
            line = line.rstrip()
    
        ATOM_PDB_FILEPATH_p.close()
        # So far, all atoms and sticks have been registered.
    
    
        # ------------------------------------------------------------------------
        # TRANSLATION OF THE STRUCTURE TO THE ORIGIN
    
    
        # It may happen that the structure in a PDB file already has an offset
        # If chosen, the structure is first put into the center of the scene
        # (the offset is substracted).
        
        if put_to_center == True:
    
            sum_vec = Vector((0.0,0.0,0.0)) 
    
            # Sum of all atom coordinates
            sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
    
            # Then the average is taken
            sum_vec = sum_vec / Number_of_total_atoms
    
            # After, for each atom the center of gravity is substracted
            for atom in all_atoms:
                atom.location -= sum_vec
        
    
        # ------------------------------------------------------------------------
        # SCALING 
    
        
        # Take all atoms and adjust their radii and scale the distances.
        for atom in all_atoms:
            atom.location *= Ball_distance_factor
        
          
        # ------------------------------------------------------------------------
        # DETERMINATION OF SOME GEOMETRIC PROPERTIES
        
    
        # In the following, some geometric properties of the whole object are 
        # determined: center, size, etc. 
        sum_vec = Vector((0.0,0.0,0.0))
    
        # First the center is determined. All coordinates are summed up ...
        sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
        
        # ... and the average is taken. This gives the center of the object.
        object_center_vec = sum_vec / Number_of_total_atoms
    
        # Now, we determine the size.The farest atom from the object center is 
        # taken as a measure. The size is used to place well the camera and light
        # into the scene.    
        object_size_vec = [atom.location - object_center_vec for atom in all_atoms] 
        object_size = 0.0
        object_size = max(object_size_vec).length
    
    
        # ------------------------------------------------------------------------
        # CAMERA AND LAMP
      
        camera_factor = 15.0
    
        # If chosen a camera is put into the scene.
        if use_camera == True:
    
            # Assume that the object is put into the global origin. Then, the 
            # camera is moved in x and z direction, not in y. The object has its 
            # size at distance math.sqrt(object_size) from the origin. So, move the 
            # camera by this distance times a factor of camera_factor in x and z. 
            # Then add x, y and z of the origin of the object.   
            object_camera_vec = Vector((math.sqrt(object_size) * camera_factor, 
                                        0.0, 
                                        math.sqrt(object_size) * camera_factor))
            camera_xyz_vec = object_center_vec + object_camera_vec
    
            # Create the camera
            current_layers=bpy.context.scene.layers
            bpy.ops.object.camera_add(view_align=False, enter_editmode=False, 
                                   location=camera_xyz_vec, 
                                   rotation=(0.0, 0.0, 0.0), layers=current_layers)
            # Some properties of the camera are changed.
            camera = bpy.context.scene.objects.active
            camera.name = "A_camera"
            camera.data.name = "A_camera"
            camera.data.lens = 45
            camera.data.clip_end = 500.0
    
            # Here the camera is rotated such it looks towards the center of 
            # the object. The [0.0, 0.0, 1.0] vector along the z axis
            z_axis_vec             = Vector((0.0, 0.0, 1.0))
            # The angle between the last two vectors
            angle                  = object_camera_vec.angle(z_axis_vec, 0)
            # The cross-product of z_axis_vec and object_camera_vec
            axis_vec               = z_axis_vec.cross(object_camera_vec)
            # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
            # 4 is the size of the matrix.
            euler                  = Matrix.Rotation(angle, 4, axis_vec).to_euler()
            camera.rotation_euler  = euler
    
            # Rotate the camera around its axis by 90° such that we have a nice 
            # camera position and view onto the object.
            bpy.ops.transform.rotate(value=(90.0*2*math.pi/360.0,), 
                                     axis=object_camera_vec, 
                                     constraint_axis=(False, False, False), 
                                     constraint_orientation='GLOBAL', 
                                     mirror=False, proportional='DISABLED', 
                                     proportional_edit_falloff='SMOOTH', 
                                     proportional_size=1, snap=False, 
                                     snap_target='CLOSEST', snap_point=(0, 0, 0), 
                                     snap_align=False, snap_normal=(0, 0, 0), 
                                     release_confirm=False)
    
    
            # This does not work, I don't know why. 
            #
            #for area in bpy.context.screen.areas:
            #    if area.type == 'VIEW_3D':
            #        area.spaces[0].region_3d.view_perspective = 'CAMERA'
    
    
        # Here a lamp is put into the scene, if chosen.
        if use_lamp == True:
    
            # This is the distance from the object measured in terms of % 
            # of the camera distance. It is set onto 50% (1/2) distance.
            lamp_dl = math.sqrt(object_size) * 15 * 0.5
            # This is a factor to which extend the lamp shall go to the right
            # (from the camera  point of view).
            lamp_dy_right = lamp_dl * (3.0/4.0)
            
            # Create x, y and z for the lamp.
            object_lamp_vec = Vector((lamp_dl,lamp_dy_right,lamp_dl))
            lamp_xyz_vec = object_center_vec + object_lamp_vec 
    
            # Create the lamp
            current_layers=bpy.context.scene.layers
            bpy.ops.object.lamp_add (type = 'POINT', view_align=False, 
                                     location=lamp_xyz_vec, 
                                     rotation=(0.0, 0.0, 0.0), 
                                     layers=current_layers)
            # Some properties of the lamp are changed.
            lamp = bpy.context.scene.objects.active
            lamp.data.name = "A_lamp"
            lamp.name = "A_lamp"
            lamp.data.distance = 500.0 
            lamp.data.energy = 3.0 
            lamp.data.shadow_method = 'RAY_SHADOW'
    
            bpy.context.scene.world.light_settings.use_ambient_occlusion = True
            bpy.context.scene.world.light_settings.ao_factor = 0.2
            
            
        # ------------------------------------------------------------------------
        # SOME OUTPUT ON THE CONSOLE
       
       
        print()
        print()
        print()
        print(ATOM_PDB_STRING)
        print()
        print("Total number of atoms   : " + str(Number_of_total_atoms))
        print("Total number of sticks  : " + str(Number_of_sticks))
        print("Center of object        : ", object_center_vec)
        print("Size of object          : ", object_size)
        print()
    
    
        # ------------------------------------------------------------------------
        # SORTING THE ATOMS
    
    
        # Lists of atoms of one type are created. Example: 
        # draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ] 
        # data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]
         
        draw_all_atoms = []
    
        # Go through the list which contains all types of atoms. It is the list,
        # which has been created on the top during reading the PDB file. 
        # Example: atom_all_types_list = ["hydrogen", "carbon", ...]
        for atom_type in atom_all_types_list:
        
            # Don't draw 'TER atoms'.
            if atom_type[0] == "TER":
                continue
       
            # This is the draw list, which contains all atoms of one type (e.g. 
            # all hydrogens) ...
            draw_all_atoms_type = []  
          
            # Go through all atoms ...
            for atom in all_atoms:
                # ... select the atoms of the considered type via comparison ...
                if atom.name == atom_type[0]:
                    # ... and append them to the list 'draw_all_atoms_type'.
                    draw_all_atoms_type.append([atom.name, 
                                               atom.material, 
                                               atom.location,
                                               atom.radius])
        
            # Now append the atom list to the list of all types of atoms
            draw_all_atoms.append(draw_all_atoms_type)
    
    
        # ------------------------------------------------------------------------
        # DRAWING THE ATOMS
    
    
        # This is the number of all atoms which are put into the scene.
        number_loaded_atoms = 0 
        bpy.ops.object.select_all(action='DESELECT')