Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
import bpy
import time
import copy
from mathutils import *
from math import pi,sin,degrees,radians,atan2,copysign,cos,acos
from random import random,uniform,seed,choice,getstate,setstate
from bpy.props import *
from collections import deque
# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0,0,1))
yAxis = Vector((0,1,0))
xAxis = Vector((1,0,0))
# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
def __init__(self,spline,curvature,curvatureV,segments,maxSegs,segLength,childStems,stemRadStart,stemRadEnd,splineNum):
self.spline = spline
self.p = spline.bezier_points[-1]
self.curv = curvature
self.curvV = curvatureV
self.seg = segments
self.segMax = maxSegs
self.segL = segLength
self.children = childStems
self.radS = stemRadStart
self.radE = stemRadEnd
self.splN = splineNum
# This method determines the quaternion of the end of the spline
def quat(self):
if len(self.spline.bezier_points) == 1:
return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z','Y')
else:
return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z','Y')
# Determine the declination
def dec(self):
tempVec = zAxis.copy()
tempVec.rotate(self.quat())
return zAxis.angle(tempVec)
# Update the end of the spline and increment the segment count
def updateEnd(self):
self.p = self.spline.bezier_points[-1]
self.seg += 1
# Determine the spread angle for a split
def spreadAng(self):
return radians(choice([-1,1])*(20 + 0.75*(30 + abs(degrees(self.dec()) - 90))*random()**2))
# Determine the splitting angle for a split
def splitAngle(self,splitAng,splitAngV):
return max(0,splitAng+uniform(-splitAngV,splitAngV)-self.dec())
# This is used to change the the curvature per segment of the spline
def curvAdd(self,curvD):
self.curv += curvD
# This class contains the data for a point where a new branch will sprout
class childPoint:
def __init__(self,coords,quat,radiusPar,offset,lengthPar,parBone):
self.co = coords
self.quat = quat
self.radiusPar = radiusPar
self.offset = offset
self.lengthPar = lengthPar
self.parBone = parBone
# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape,ratio,pruneWidthPeak=0.0,prunePowerHigh=0.0,prunePowerLow=0.0):
if shape == 0:
return 0.2 + 0.8*ratio
elif shape == 1:
return 0.2 + 0.8*sin(pi*ratio)
elif shape == 2:
return 0.2 + 0.8*sin(0.5*pi*ratio)
elif shape == 3:
return 1.0
elif shape == 4:
return 0.5 + 0.5*ratio
elif shape == 5:
if ratio <= 0.7:
return ratio/0.7
else:
return (1.0 - ratio)/0.3
elif shape == 6:
return 1.0 - 0.8*ratio
elif shape == 7:
if ratio <= 0.7:
return 0.5 + 0.5*ratio/0.7
else:
return 0.5 + 0.5*(1.0 - ratio)/0.3
elif shape == 8:
if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
return ((ratio/(1 - pruneWidthPeak))**prunePowerHigh)
elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
return (((1 - ratio)/pruneWidthPeak)**prunePowerLow)
else:
return 0.0
# This function determines the actual number of splits at a given point using the global error
def splits(n):
global splitError
nEff = round(n + splitError,0)
splitError -= (nEff - n)
return int(nEff)
# Determine the declination from a given quaternion
def declination(quat):
tempVec = zAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return degrees(acos(tempVec.z))
# Determine the length of a child stem
def lengthChild(lMax,offset,lPar,shape=False,lBase=None):
if shape:
return lPar*lMax*shapeRatio(shape,(lPar - offset)/(lPar - lBase))
else:
return lMax*(lPar - 0.6*offset)
# Find the actual downAngle taking into account the special case
def downAngle(downAng,downAngV,lPar=None,offset=None,lBase=None):
if downAngV < 0:
return downAng + (uniform(-downAngV,downAngV)*(1 - 2*shapeRatio(0,(lPar - offset)/(lPar - lBase))))
else:
return downAng + uniform(-downAngV,downAngV)
# Returns the rotation matrix equivalent to i rotations by 2*pi/(n+1)
def splitRotMat(n,i):
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Returns the split angle
def angleSplit(splitAng,splitAngV,quat):
return max(0,splitAng+uniform(-splitAngV,splitAngV)-declination(quat))
# Returns number of stems a stem will sprout
def stems(stemsMax,lPar,offset,lChild=False,lChildMax=None):
if lChild:
return stemsMax*(0.2 + 0.8*(lChild/lPar)/lChildMax)
else:
return stemsMax*(1.0 - 0.5*offset/lPar)
# Returns the spreading angle
def spreadAng(dec):
return radians(choice([-1,1])*(20 + 0.75*(30 + abs(dec - 90))*random()**2))
# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp,quat,curveRes):
tempVec = yAxis.copy()
tempVec.rotate(quat)
tempVec.normalize()
return attractUp*radians(declination(quat))*abs(tempVec.z)/curveRes
# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1,h1,h2,p2,t):
return ((1-t)**3)*p1 + (3*t*(1-t)**2)*h1 + (3*(t**2)*(1-t))*h2 + (t**3)*p2
# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1,h1,h2,p2,t):
return ((-3*(1-t)**2)*p1 + (-6*t*(1-t) + 3*(1-t)**2)*h1 + (-3*(t**2) + 6*t*(1-t))*h2 + (3*t**2)*p2).normalized()
# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList,numChild):
numPoints = sum([len(n.spline.bezier_points) for n in stemList])
numSplines = len(stemList)
numSegs = numPoints - numSplines
numPerSeg = numChild/numSegs
numMain = round(numPerSeg*stemList[0].segMax,0)
return [(a+1)/(numMain) for a in range(int(numMain))]
# Find the coordinates, quaternion and radius for each t on the stem
def interpStem(stem,tVals,lPar,parRad):
tempList = deque()
addpoint = tempList.append
checkVal = (stem.segMax - len(stem.spline.bezier_points) + 1)/stem.segMax
points = stem.spline.bezier_points
numPoints = len(stem.spline.bezier_points)
# Loop through all the parametric values to be determined
for t in tVals:
if (t >= checkVal) and (t < 1.0):
scaledT = (t-checkVal)/(tVals[-1]-checkVal)
length = (numPoints-1)*t#scaledT
index = int(length)
if scaledT == 1.0:
coord = points[-1].co
quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z','Y')
radius = parRad#points[-2].radius
else:
tTemp = length - index
coord = evalBez(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp)
quat = (evalBezTan(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp)).to_track_quat('Z','Y')
radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
addpoint(childPoint(coord,quat,(parRad, radius),t*lPar,lPar,'bone'+(str(stem.splN).rjust(3,'0'))+'.'+(str(index).rjust(3,'0'))))
return tempList
# Convert a list of degrees to radians
def toRad(list):
return [radians(a) for a in list]
# This is the function which extends (or grows) a given stem.
def growSpline(stem,numSplit,splitAng,splitAngV,splineList,attractUp,hType,splineToBone):
# First find the current direction of the stem
dir = stem.quat()
# If the stem splits, we need to add new splines etc
if numSplit > 0:
# Get the curve data
cuData = stem.spline.id_data.name
cu = bpy.data.curves[cuData]
# Now for each split add the new spline and adjust the growth direction
for i in range(numSplit):
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
(newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (stem.p.co,'VECTOR','VECTOR')
newPoint.radius = stem.radS*(1 - stem.seg/stem.segMax) + stem.radE*(stem.seg/stem.segMax)
# Here we make the new "sprouting" stems diverge from the current direction
angle = stem.splitAngle(splitAng,splitAngV)
divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')#CurveUP should go after curve is applied
dirVec = zAxis.copy()
dirVec.rotate(divRotMat)
dirVec.rotate(splitRotMat(numSplit,i+1))
dirVec.rotate(dir)
# if attractUp != 0.0: # Shouldn't have a special case as this will mess with random number generation
divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
dirVec = zAxis.copy()
dirVec.rotate(divRotMat)
dirVec.rotate(splitRotMat(numSplit,i+1))
dirVec.rotate(dir)
#Different version of the commented code above. We could use the inbuilt vector rotations but given this is a special case, it can be quicker to initialise the vector to the correct value.
# angle = stem.splitAngle(splitAng,splitAngV)
# curveUpAng = curveUp(attractUp,dir,stem.segMax)
# angleX = angle + stem.curv + uniform(-stem.curvV,stem.curvV) - curveUpAng
# angleZ = 2*i*pi/(numSplit+1)
# dirVec = Vector((sin(angleX)*sin(angleZ), -sin(angleX)*cos(angleZ), cos(angleX)))
# dirVec.rotate(dir)
# Spread the stem out in a random fashion
spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z')
dirVec.rotate(spreadMat)
# Introduce upward curvature
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z','Y'))
curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis)
dirVec.rotate(upRotMat)
# Make the growth vec the length of a stem segment
dirVec.normalize()
dirVec *= stem.segL
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
# Add the new point and adjust its coords, handles and radius
newSpline.bezier_points.add()
newPoint = newSpline.bezier_points[-1]
Andrew Hale
committed
(newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType)
newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
# If this isn't the last point on a stem, then we need to add it to the list of stems to continue growing
if stem.seg != stem.segMax:
splineList.append(stemSpline(newSpline,stem.curv-angle/(stem.segMax-stem.seg),stem.curvV,stem.seg+1,stem.segMax,stem.segL,stem.children,stem.radS,stem.radE,len(cu.splines)-1))
splineToBone.append('bone'+(str(stem.splN)).rjust(3,'0')+'.'+(str(len(stem.spline.bezier_points)-2)).rjust(3,'0'))
# The original spline also needs to keep growing so adjust its direction too
angle = stem.splitAngle(splitAng,splitAngV)
divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
dirVec = zAxis.copy()
dirVec.rotate(divRotMat)
dirVec.rotate(dir)
spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z')
dirVec.rotate(spreadMat)
else:
# If there are no splits then generate the growth direction without accounting for spreading of stems
dirVec = zAxis.copy()
#curveUpAng = curveUp(attractUp,dir,stem.segMax)
divRotMat = Matrix.Rotation(stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
dirVec.rotate(divRotMat)
#dirVec = Vector((0,-sin(stem.curv - curveUpAng),cos(stem.curv - curveUpAng)))
dirVec.rotate(dir)
upRotAxis = xAxis.copy()
upRotAxis.rotate(dirVec.to_track_quat('Z','Y'))
curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax)
upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis)
dirVec.rotate(upRotMat)
dirVec.normalize()
dirVec *= stem.segL
Andrew Hale
committed
# Get the end point position
end_co = stem.p.co.copy()
stem.spline.bezier_points.add()
newPoint = stem.spline.bezier_points[-1]
Andrew Hale
committed
(newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType)
newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
# There are some cases where a point cannot have handles as VECTOR straight away, set these now.
if numSplit != 0:
tempPoint = stem.spline.bezier_points[-2]
(tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR')
if len(stem.spline.bezier_points) == 2:
tempPoint = stem.spline.bezier_points[0]
(tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR')
# Update the last point in the spline to be the newly added one
stem.updateEnd()
#return splineList
def genLeafMesh(leafScale,leafScaleX,loc,quat,index,downAngle,downAngleV,rotate,rotateV,oldRot,bend,leaves, leafShape):
if leafShape == 'hex':
verts = [Vector((0,0,0)),Vector((0.5,0,1/3)),Vector((0.5,0,2/3)),Vector((0,0,1)),Vector((-0.5,0,2/3)),Vector((-0.5,0,1/3))]
edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,0],[0,3]]
faces = [[0,1,2,3],[0,3,4,5]]
elif leafShape == 'rect':
verts = [Vector((1,0,0)),Vector((1,0,1)),Vector((-1,0,1)),Vector((-1,0,0))]
edges = [[0,1],[1,2],[2,3],[3,0]]
faces = [[0,1,2,3],]
#faces = [[0,1,5],[1,2,4,5],[2,3,4]]
vertsList = []
facesList = []
# If the special -ve flag is used we need a different rotation of the leaf geometry
if leaves < 0:
oldRot += rotate/(abs(leaves)-1)
else:
oldRot += rotate+uniform(-rotateV,rotateV)
downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV,downAngleV),3,'X')
rotMat = Matrix.Rotation(oldRot,3,'Z')
normal = yAxis.copy()
#dirVec = zAxis.copy()
orientationVec = zAxis.copy()
# If the bending of the leaves is used we need to rotated them differently
if (bend != 0.0) and (leaves >= 0):
# normal.rotate(downRotMat)
# orientationVec.rotate(downRotMat)
#
# normal.rotate(rotMat)
# orientationVec.rotate(rotMat)
normal.rotate(quat)
orientationVec.rotate(quat)
thetaPos = atan2(loc.y,loc.x)
thetaBend = thetaPos - atan2(normal.y,normal.x)
normal.rotate(rotateZ)
orientationVec.rotate(rotateZ)
phiBend = atan2((normal.xy).length,normal.z)
orientation = atan2(orientationVec.y,orientationVec.x)
rotateZOrien = Matrix.Rotation(orientation,3,'X')
rotateZOrien2 = Matrix.Rotation(-orientation,3,'X')
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
# For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
for v in verts:
v.z *= leafScale
v.x *= leafScaleX*leafScale
if leaves > 0:
v.rotate(downRotMat)
v.rotate(rotMat)
v.rotate(quat)
if (bend != 0.0) and (leaves > 0):
# Correct the rotation
v.rotate(rotateZ)
v.rotate(rotateZOrien)
v.rotate(rotateX)
v.rotate(rotateZOrien2)
#v.rotate(quat)
for v in verts:
v += loc
vertsList.append([v.x,v.y,v.z])
for f in faces:
facesList.append([f[0] + index,f[1] + index,f[2] + index,f[3] + index])
return vertsList,facesList,oldRot
def addTree(props):
Campbell Barton
committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
global splitError
#startTime = time.time()
# Set the seed for repeatable results
seed(props.seed)#
# Set all other variables
levels = props.levels#
length = props.length#
lengthV = props.lengthV#
branches = props.branches#
curveRes = props.curveRes#
curve = toRad(props.curve)#
curveV = toRad(props.curveV)#
curveBack = toRad(props.curveBack)#
baseSplits = props.baseSplits#
segSplits = props.segSplits#
splitAngle = toRad(props.splitAngle)#
splitAngleV = toRad(props.splitAngleV)#
scale = props.scale#
scaleV = props.scaleV#
attractUp = props.attractUp#
shape = int(props.shape)#
baseSize = props.baseSize
ratio = props.ratio
taper = props.taper#
ratioPower = props.ratioPower#
downAngle = toRad(props.downAngle)#
downAngleV = toRad(props.downAngleV)#
rotate = toRad(props.rotate)#
rotateV = toRad(props.rotateV)#
scale0 = props.scale0#
scaleV0 = props.scaleV0#
prune = props.prune#
pruneWidth = props.pruneWidth#
pruneWidthPeak = props.pruneWidthPeak#
prunePowerLow = props.prunePowerLow#
prunePowerHigh = props.prunePowerHigh#
pruneRatio = props.pruneRatio#
leafScale = props.leafScale#
leafScaleX = props.leafScaleX#
leafShape = props.leafShape
bend = props.bend#
leafDist = int(props.leafDist)#
bevelRes = props.bevelRes#
resU = props.resU#
useArm = props.useArm
frameRate = props.frameRate
windSpeed = props.windSpeed
windGust = props.windGust
armAnim = props.armAnim
leafObj = None
# Some effects can be turned ON and OFF, the necessary variables are changed here
if not props.bevel:
bevelDepth = 0.0
else:
bevelDepth = 1.0
Campbell Barton
committed
if not props.showLeaves:
leaves = 0
else:
leaves = props.leaves
Campbell Barton
committed
if props.handleType == '0':
handles = 'AUTO'
else:
handles = 'VECTOR'
for ob in bpy.data.objects:
ob.select = False
childP = []
stemList = []
# Initialise the tree object and curve and adjust the settings
cu = bpy.data.curves.new('tree','CURVE')
treeOb = bpy.data.objects.new('tree',cu)
bpy.context.scene.objects.link(treeOb)
treeOb.location=bpy.context.scene.cursor_location
Campbell Barton
committed
cu.dimensions = '3D'
cu.fill_mode = 'FULL'
cu.bevel_depth = bevelDepth
cu.bevel_resolution = bevelRes
# Fix the scale of the tree now
scaleVal = scale + uniform(-scaleV,scaleV)
# If pruning is turned on we need to draw the pruning envelope
if prune:
enHandle = 'VECTOR'
enNum = 128
enCu = bpy.data.curves.new('envelope','CURVE')
enOb = bpy.data.objects.new('envelope',enCu)
enOb.parent = treeOb
bpy.context.scene.objects.link(enOb)
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0,0,scaleVal))
(newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
# Set the coordinates by varying the z value, envelope will be aligned to the x-axis
for c in range(enNum):
newSpline.bezier_points.add()
Campbell Barton
committed
ratioVal = (c+1)/(enNum)
zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal
newPoint.co = Vector((scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),0,zVal))
(newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
Campbell Barton
committed
newSpline = enCu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0,0,scaleVal))
(newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
# Create a second envelope but this time on the y-axis
for c in range(enNum):
newSpline.bezier_points.add()
Campbell Barton
committed
ratioVal = (c+1)/(enNum)
zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal
newPoint.co = Vector((0,scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),zVal))
(newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
Campbell Barton
committed
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
leafVerts = []
leafFaces = []
levelCount = []
splineToBone = deque([''])
addsplinetobone = splineToBone.append
# Each of the levels needed by the user we grow all the splines
for n in range(levels):
storeN = n
stemList = deque()
addstem = stemList.append
# If n is used as an index to access parameters for the tree it must be at most 3 or it will reference outside the array index
n = min(3,n)
vertAtt = attractUp
splitError = 0.0
# If this is the first level of growth (the trunk) then we need some special work to begin the tree
if n == 0:
vertAtt = 0.0
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
newPoint.co = Vector((0,0,0))
newPoint.handle_right = Vector((0,0,1))
newPoint.handle_left = Vector((0,0,-1))
#(newPoint.handle_right_type,newPoint.handle_left_type) = ('VECTOR','VECTOR')
branchL = (scaleVal)*(length[0] + uniform(-lengthV[0],lengthV[0]))
childStems = branches[1]
startRad = branchL*ratio*(scale0 + uniform(-scaleV0,scaleV0))
endRad = startRad*(1 - taper[0])
newPoint.radius = startRad
addstem(stemSpline(newSpline,curve[0]/curveRes[0],curveV[0]/curveRes[0],0,curveRes[0],branchL/curveRes[0],childStems,startRad,endRad,0))
# If this isn't the trunk then we may have multiple stem to intialise
else:
# Store the old rotation to allow new stems to be rotated away from the previous one.
oldRotate = 0
# For each of the points defined in the list of stem starting points we need to grow a stem.
for p in childP:
# Add a spline and set the coordinate of the first point.
newSpline = cu.splines.new('BEZIER')
cu.resolution_u = resU
newPoint = newSpline.bezier_points[-1]
Campbell Barton
committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
newPoint.co = p.co
tempPos = zAxis.copy()
# If the -ve flag for downAngle is used we need a special formula to find it
if downAngleV[n] < 0.0:
downV = downAngleV[n]*(1 - 2*shapeRatio(0,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal)))
random()
# Otherwise just find a random value
else:
downV = uniform(-downAngleV[n],downAngleV[n])
downRotMat = Matrix.Rotation(downAngle[n]+downV,3,'X')
tempPos.rotate(downRotMat)
# If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction.
if rotate[n] < 0.0:
oldRotate = -copysign(rotate[n] + uniform(-rotateV[n],rotateV[n]),oldRotate)
# Otherwise just generate a random number in the specified range
else:
oldRotate += rotate[n]+uniform(-rotateV[n],rotateV[n])
# Rotate the direction of growth and set the new point coordinates
rotMat = Matrix.Rotation(oldRotate,3,'Z')
tempPos.rotate(rotMat)
tempPos.rotate(p.quat)
newPoint.handle_right = p.co + tempPos
# If this is the first level of branching then upward attraction has no effect and a special formula is used to find branch length and the number of child stems
if n == 1:
vertAtt = 0.0
lMax = length[1] + uniform(-lengthV[1],lengthV[1])
branchL = p.lengthPar*lMax*shapeRatio(shape,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal))
childStems = branches[2]*(0.2 + 0.8*(branchL/p.lengthPar)/lMax)
elif storeN <= levels - 2:
branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset)
childStems = branches[min(3,n+1)]*(1.0 - 0.5*p.offset/p.lengthPar)
# If this is the last level before leaves then we need to generate the child points differently
else:
branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset)
if leaves < 0:
childStems = False
else:
childStems = leaves*shapeRatio(leafDist,p.offset/p.lengthPar)
# Determine the starting and ending radii of the stem using the tapering of the stem
startRad = min(p.radiusPar[0]*((branchL/p.lengthPar)**ratioPower), p.radiusPar[1])
endRad = startRad*(1 - taper[n])
Campbell Barton
committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
# If curveBack is used then the curviness of the stem is different for the first half
if curveBack[n] == 0:
curveVal = curve[n]/curveRes[n]
else:
curveVal = 2*curve[n]/curveRes[n]
# Add the new stem to list of stems to grow and define which bone it will be parented to
addstem(stemSpline(newSpline,curveVal,curveV[n]/curveRes[n],0,curveRes[n],branchL/curveRes[n],childStems,startRad,endRad,len(cu.splines)-1))
addsplinetobone(p.parBone)
childP = []
# Now grow each of the stems in the list of those to be extended
for st in stemList:
# When using pruning, we need to ensure that the random effects will be the same for each iteration to make sure the problem is linear.
randState = getstate()
startPrune = True
lengthTest = 0.0
# Store all the original values for the stem to make sure we have access after it has been modified by pruning
originalLength = st.segL
originalCurv = st.curv
originalCurvV = st.curvV
originalSeg = st.seg
originalHandleR = st.p.handle_right.copy()
originalHandleL = st.p.handle_left.copy()
originalCo = st.p.co.copy()
currentMax = 1.0
currentMin = 0.0
currentScale = 1.0
oldMax = 1.0
deleteSpline = False
orginalSplineToBone = copy.copy(splineToBone)
forceSprout = False
# Now do the iterative pruning, this uses a binary search and halts once the difference between upper and lower bounds of the search are less than 0.005
while startPrune and ((currentMax - currentMin) > 0.005):
setstate(randState)
# If the search will halt after this iteration, then set the adjustment of stem length to take into account the pruning ratio
if (currentMax - currentMin) < 0.01:
currentScale = (currentScale - 1)*pruneRatio + 1
startPrune = False
forceSprout = True
# Change the segment length of the stem by applying some scaling
st.segL = originalLength*currentScale
# To prevent millions of splines being created we delete any old ones and replace them with only their first points to begin the spline again
if deleteSpline:
for x in splineList:
cu.splines.remove(x.spline)
newSpline = cu.splines.new('BEZIER')
newPoint = newSpline.bezier_points[-1]
Campbell Barton
committed
newPoint.co = originalCo
newPoint.handle_right = originalHandleR
newPoint.handle_left = originalHandleL
(newPoint.handle_left_type,newPoint.handle_right_type) = ('VECTOR','VECTOR')
st.spline = newSpline
st.curv = originalCurv
st.curvV = originalCurvV
st.seg = originalSeg
st.p = newPoint
newPoint.radius = st.radS
splineToBone = orginalSplineToBone
# Initialise the spline list for those contained in the current level of branching
splineList = [st]
# For each of the segments of the stem which must be grown we have to add to each spline in splineList
for k in range(curveRes[n]):
# Make a copy of the current list to avoid continually adding to the list we're iterating over
tempList = splineList[:]
#print('Leng: ',len(tempList))
# For each of the splines in this list set the number of splits and then grow it
for spl in tempList:
if k == 0:
numSplit = 0
elif (k == 1) and (n == 0):
numSplit = baseSplits
Campbell Barton
committed
numSplit = splits(segSplits[n])
if (k == int(curveRes[n]/2)) and (curveBack[n] != 0):
spl.curvAdd(-2*curve[n]/curveRes[n] + 2*curveBack[n]/curveRes[n])
growSpline(spl,numSplit,splitAngle[n],splitAngleV[n],splineList,vertAtt,handles,splineToBone)# Add proper refs for radius and attractUp
# If pruning is enabled then we must to the check to see if the end of the spline is within the evelope
if prune:
# Check each endpoint to see if it is inside
for s in splineList:
coordMag = (s.spline.bezier_points[-1].co.xy).length
ratio = (scaleVal - s.spline.bezier_points[-1].co.z)/(scaleVal*(1 - baseSize))
# Don't think this if part is needed
if (n == 0) and (s.spline.bezier_points[-1].co.z < baseSize*scaleVal):
pass#insideBool = True
else:
insideBool = ((coordMag/scaleVal) < pruneWidth*shapeRatio(8,ratio,pruneWidthPeak,prunePowerHigh,prunePowerLow))
# If the point is not inside then we adjust the scale and current search bounds
if not insideBool:
oldMax = currentMax
currentMax = currentScale
Campbell Barton
committed
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
break
# If the scale is the original size and the point is inside then we need to make sure it won't be pruned or extended to the edge of the envelope
if insideBool and (currentScale != 1):
currentMin = currentScale
currentMax = oldMax
currentScale = 0.5*(currentMax + currentMin)
if insideBool and ((currentMax - currentMin) == 1):
currentMin = 1
# If the search will halt on the next iteration then we need to make sure we sprout child points to grow the next splines or leaves
if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout:
tVals = findChildPoints(splineList,st.children)
# If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline
#if not st.children:
if not st.children:
tVals = [0.9]
# If this is the trunk then we need to remove some of the points because of baseSize
if n == 0:
trimNum = int(baseSize*(len(tVals)+1))
tVals = tVals[trimNum:]
# For all the splines, we interpolate them and add the new points to the list of child points
for s in splineList:
#print(str(n)+'level: ',s.segMax*s.segL)
childP.extend(interpStem(s,tVals,s.segMax*s.segL,s.radS))
# Force the splines to be deleted
deleteSpline = True
# If pruning isn't enabled then make sure it doesn't loop
if not prune:
startPrune = False
levelCount.append(len(cu.splines))
# If we need to add leaves, we do it here
if (storeN == levels-1) and leaves:
oldRot = 0.0
n = min(3,n+1)
# For each of the child points we add leaves
for cp in childP:
# If the special flag is set then we need to add several leaves at the same location
if leaves < 0:
oldRot = -rotate[n]/2
for g in range(abs(leaves)):
(vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape)
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
Campbell Barton
committed
# Otherwise just add the leaves like splines.
else:
(vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape)
leafVerts.extend(vertTemp)
leafFaces.extend(faceTemp)
# Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great
leafMesh = bpy.data.meshes.new('leaves')
leafObj = bpy.data.objects.new('leaves',leafMesh)
bpy.context.scene.objects.link(leafObj)
leafObj.parent = treeOb
leafMesh.from_pydata(leafVerts,(),leafFaces)
Campbell Barton
committed
if leafShape == 'rect':
Brecht Van Lommel
committed
leafMesh.uv_textures.new("leafUV")
uvlayer = leafMesh.uv_layers.active.data
for i in range(0, len(leafFaces)):
uvlayer[i*4 + 0].uv = Vector((1, 0))
uvlayer[i*4 + 1].uv = Vector((1, 1))
uvlayer[i*4 + 2].uv = Vector((1 - leafScaleX, 1))
uvlayer[i*4 + 3].uv = Vector((1 - leafScaleX, 0))
leafMesh.validate()
# This can be used if we need particle leaves
# if (storeN == levels-1) and leaves:
# normalList = []
# oldRot = 0.0
# n = min(3,n+1)
# oldRot = 0.0
# # For each of the child points we add leaves
# for cp in childP:
# # Here we make the new "sprouting" stems diverge from the current direction
# dirVec = zAxis.copy()
# oldRot += rotate[n]+uniform(-rotateV[n],rotateV[n])
# downRotMat = Matrix.Rotation(downAngle[n]+uniform(-downAngleV[n],downAngleV[n]),3,'X')
# rotMat = Matrix.Rotation(oldRot,3,'Z')
# dirVec.rotate(downRotMat)
# dirVec.rotate(rotMat)
# dirVec.rotate(cp.quat)
# normalList.extend([dirVec.x,dirVec.y,dirVec.z])
# leafVerts.append(cp.co)
# # Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great
# edgeList = [(a,a+1) for a in range(len(childP)-1)]
# leafMesh = bpy.data.meshes.new('leaves')
# leafObj = bpy.data.objects.new('leaves',leafMesh)
# bpy.context.scene.objects.link(leafObj)
# leafObj.parent = treeOb
# leafMesh.from_pydata(leafVerts,edgeList,())
# leafMesh.vertices.foreach_set('normal',normalList)
Campbell Barton
committed
# If we need and armature we add it
if useArm:
# Create the armature and objects
arm = bpy.data.armatures.new('tree')
armOb = bpy.data.objects.new('treeArm',arm)
bpy.context.scene.objects.link(armOb)
# Create a new action to store all animation
newAction = bpy.data.actions.new(name='windAction')
armOb.animation_data_create()
armOb.animation_data.action = newAction
Campbell Barton
committed
arm.draw_type = 'STICK'
arm.use_deform_delay = True
# Add the armature modifier to the curve
armMod = treeOb.modifiers.new('windSway','ARMATURE')
#armMod.use_apply_on_spline = True
armMod.object = armOb
# If there are leaves then they need a modifier
if leaves:
armMod = leafObj.modifiers.new('windSway','ARMATURE')
Campbell Barton
committed
# Make sure all objects are deselected (may not be required?)
for ob in bpy.data.objects:
ob.select = False
Campbell Barton
committed
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
# Set the armature as active and go to edit mode to add bones
bpy.context.scene.objects.active = armOb
bpy.ops.object.mode_set(mode='EDIT')
masterBones = []
offsetVal = 0
# For all the splines in the curve we need to add bones at each bezier point
for i,parBone in enumerate(splineToBone):
s = cu.splines[i]
b = None
# Get some data about the spline like length and number of points
numPoints = len(s.bezier_points)-1
splineL = numPoints*((s.bezier_points[0].co-s.bezier_points[1].co).length)
# Set the random phase difference of the animation
bxOffset = uniform(0,2*pi)
byOffset = uniform(0,2*pi)
# Set the phase multiplier for the spline
bMult = (s.bezier_points[0].radius/splineL)*(1/15)*(1/frameRate)
# For all the points in the curve (less the last) add a bone and name it by the spline it will affect
for n in range(numPoints):
oldBone = b
boneName = 'bone'+(str(i)).rjust(3,'0')+'.'+(str(n)).rjust(3,'0')
b = arm.edit_bones.new(boneName)
b.head = s.bezier_points[n].co
b.tail = s.bezier_points[n+1].co
b.head_radius = s.bezier_points[n].radius
b.tail_radius = s.bezier_points[n+1].radius
b.envelope_distance = 0.001#0.001
# If there are leaves then we need a new vertex group so they will attach to the bone
if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
leafObj.vertex_groups.new(boneName)
elif (len(levelCount) == 1) and leafObj:
leafObj.vertex_groups.new(boneName)
# If this is first point of the spline then it must be parented to the level above it
if n == 0:
if parBone:
b.parent = arm.edit_bones[parBone]
Campbell Barton
committed
# Otherwise, we need to attach it to the previous bone in the spline
else:
b.parent = oldBone
b.use_connect = True
# If there isn't a previous bone then it shouldn't be attached
if not oldBone:
b.use_connect = False
#tempList.append(b)
# Add the animation to the armature if required
if armAnim:
# Define all the required parameters of the wind sway by the dimension of the spline
a0 = 4*splineL*(1-n/(numPoints+1))/s.bezier_points[n].radius
a1 = (windSpeed/50)*a0
a2 = (windGust/50)*a0 + a1/2
# Add new fcurves for each sway as well as the modifiers
swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler',0)
swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler',2)
Campbell Barton
committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
# Set the parameters for each modifier
swayXMod1.amplitude = radians(a1)/numPoints
swayXMod1.phase_offset = bxOffset
swayXMod1.phase_multiplier = degrees(bMult)
swayXMod2.amplitude = radians(a2)/numPoints
swayXMod2.phase_offset = 0.7*bxOffset
swayXMod2.phase_multiplier = 0.7*degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
swayXMod2.use_additive = True
swayYMod1.amplitude = radians(a1)/numPoints
swayYMod1.phase_offset = byOffset
swayYMod1.phase_multiplier = degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
swayYMod2.amplitude = radians(a2)/numPoints
swayYMod2.phase_offset = 0.7*byOffset
swayYMod2.phase_multiplier = 0.7*degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
swayYMod2.use_additive = True
# If there are leaves we need to assign vertices to their vertex groups
if leaves:
offsetVal = 0
leafVertSize = 6
if leafShape == 'rect':
leafVertSize = 4
for i,cp in enumerate(childP):
for v in leafMesh.vertices[leafVertSize*i:(leafVertSize*i+leafVertSize)]:
leafObj.vertex_groups[cp.parBone].add([v.index],1.0,'ADD')
# Now we need the rotation mode to be 'XYZ' to ensure correct rotation
bpy.ops.object.mode_set(mode='OBJECT')
for p in armOb.pose.bones:
p.rotation_mode = 'XYZ'
treeOb.parent = armOb
#print(time.time()-startTime)